
Model-based Boosting 2.0

Model-based Boosting 2.0

Torsten Hothorn LMU München Torsten.Hothorn@R-project.org

Peter Bühlmann ETH Zürich buhlmann@stat.math.ethz.ch

Thomas Kneib Universität Oldenburg thomas.kneib@uni-oldenburg.de

Matthias Schmid FAU Erlangen-Nürnberg Matthias.Schmid@imbe.med.uni-erlangen.de

Benjamin Hofner FAU Erlangen-Nürnberg Benjamin.Hofner@imbe.med.uni-erlangen.de

Editor: Mikio Braun

This is an extended version of the manuscript
Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Mattthias Schmid and Benjamin Hofner (2010),

Model-based Boosting 2.0. Journal of Machine Learning Research, 11, 2109 – 2113;
URL http://jmlr.csail.mit.edu/papers/v11/hothorn10a.html.

Abstract
This is an extended version of the manuscript Torsten Hothorn, Peter Bühlmann, Thomas Kneib,

Mattthias Schmid and Benjamin Hofner (2010), Model-based Boosting 2.0. Journal of Machine
Learning Research, 11, 2109 – 2113; http://jmlr.csail.mit.edu/papers/v11/hothorn10a.html.

We describe version 2.0 of the R add-on package mboost. The package implements boosting for
optimizing general risk functions utilizing component-wise (penalized) least squares estimates or
regression trees as base-learners for fitting generalized linear, additive and interaction models to
potentially high-dimensional data.

Keywords: component-wise functional gradient descent, splines, decision trees.

1. Overview

The R add-on package mboost (Hothorn et al., 2010) implements tools for fitting and evaluating
a variety of regression and classification models that have been suggested in machine learning
and statistics. Optimization within the empirical risk minimization framework is performed via
a component-wise functional gradient descent algorithm. The algorithm originates from the statis-
tical view on boosting algorithms (Friedman et al., 2000; Bühlmann and Yu, 2003). The theory and
its implementation in mboost allow for fitting complex prediction models, taking potentially many
interactions of features into account, as well as for fitting additive and linear models. The model
class the package deals with is best described by so-called structured additive regression (STAR)
models, where some characteristic ξ of the conditional distribution of a response variable Y given
features X is modeled through a regression function f of the features ξ(Y |X = x) = f(x). In
order to facilitate parsimonious and interpretable models, the regression function f is structured,
i.e., restricted to additive functions f(x) =

∑p
j=1 fj(x). Each model component fj(x) might take

only a subset of the features into account. Special cases are linear models f(x) = x>β, additive
models f(x) =

∑p
j=1 fj(x

(j)), where fj is a function of the jth feature x(j) only (smooth functions
or stumps, for example) or a more complex function where f(x) is implicitly defined as the sum of
multiple decision trees including higher-order interactions. The latter case corresponds to boosting
with trees. Combinations of these structures are also possible. The most important advantage of
such a decomposition of the regression function is that each component of a fitted model can be
looked at and interpreted separately for gaining a better understanding of the model at hand.

1

http://jmlr.csail.mit.edu/papers/v11/hothorn10a.html
http://jmlr.csail.mit.edu/papers/v11/hothorn10a.html

Hothorn et al.

The characteristic ξ of the distribution depends on the measurement scale of the response Y
and the scientific question to be answered. For binary or numeric variables, some function of the
expectation may be appropriate, but also quantiles or expectiles may be interesting. The definition
of ξ is determined by defining a loss function ρ whose empirical risk is to be minimized under some
algorithmic constraints (i.e., limited number of boosting iterations). The model is then fitted using

(f̂1, . . . , f̂p) = argmin
(f1,...,fp)

n∑
i=1

wiρ

yi, p∑
j=1

fj(x)

 .

Here (yi, xi), i = 1, . . . , n, are n training samples with responses yi and potentially high-dimensional
feature vectors xi, and wi are some weights. The component-wise boosting algorithm starts with
some offset for f and iteratively fits residuals defined by the negative gradient of the loss function
evaluated at the current fit by updating only the best model component in each iteration. The
details have been described by Bühlmann and Yu (2003). Early stopping via resampling approaches
or AIC leads to sparse models in the sense that only a subset of important model components fj
defines the final model. A more thorough introduction to boosting with applications in statistics
based on version 1.0 of mboost is given by Bühlmann and Hothorn (2007).

As of version 2.0, the package allows for fitting models to binary, numeric, ordered and censored
responses, i.e., regression of the mean, robust regression, classification (logistic and exponential
loss), ordinal regression1, quantile1 and expectile1 regression, censored regression (including Cox,
Weibull1, log-logistic1 or lognormal1 models) as well as Poisson and negative binomial regression1

for count data can be performed. Because the structure of the regression function f(x) can be chosen
independently from the loss function ρ, interesting new models can be fitted (e.g., in geoadditive
regression, Kneib et al., 2009).

2. Design and Implementation

The package incorporates an infrastructure for representing loss functions (so-called ‘families’), base-
learners defining the structure of the regression function and thus the model components fj , and a
generic implementation of component-wise functional gradient descent. The main progress in version
2.0 is that only one implementation of the boosting algorithm is applied to all possible models (linear,
additive, tree-based) and all families. Earlier versions were based on three implementations, one for
linear models, one for additive models, and one for tree-based boosting. In comparison to the 1.0
series, the reduced code basis is easier to maintain, more robust and regression tests have been
set-up in a more unified way. Specifically, the new code basis results in an enhanced and more user-
friendly formula interface. In addition, convenience functions for hyper-parameter selection, faster
computation of predictions and improved visual model diagnostics are available.

Currently implemented base-learners include component-wise linear models (where only one vari-
able is updated in each iteration of the algorithm), additive models with quadratic penalties (e.g.,
for fitting smooth functions via penalized splines, varying coefficients or bi- and trivariate tensor
product splines, Schmid and Hothorn, 2008), and trees.

As a major improvement over the 1.0 series, computations on larger data sets (both with respect
to the number of observations and the number of variables) are now facilitated by memory efficient
implementations of the base-learners, mostly by applying sparse matrix techniques (package Matrix,
Bates and Mächler, 2009) and parallelization for a cross-validation-based choice of the number of
boosting iterations per default via package parallel. A more elaborate description of mboost 2.0
features is available from the mboost vignette2.

1. Model family is new in version 2.0 or was added after the release of mboost 1.0.
2. Accessible via vignette("mboost", package = "mboost").

2

Model-based Boosting 2.0

3. User Interface by Example

We illustrate the main components of the user-interface by a small example on human body fat
composition: Garcia et al. (2005) used a linear model for predicting body fat content by means
of common anthropometric measurements that were obtained for n = 71 healthy German women.
In addition, the women’s body composition was measured by Dual Energy X-Ray Absorptiometry
(DXA). The aim is to describe the DXA measurements as a function of the anthropometric features.
Here, we extend the linear model by i) an intrinsic variable selection via early stopping, ii) additional
terms allowing for smooth deviations from linearity where necessary (by means of penalized splines
orthogonalized to the linear effect, Kneib et al., 2009), iii) a possible interaction between two variables
with known impact on body fat composition (hip and waist circumference) and iv) utilizing a robust
median regression approach instead of L2 risk. For the data (available as data frame bodyfat), the
model structure is specified via a formula involving the base-learners corresponding to the different
model components (linear terms: bols(); smooth terms: bbs(); interactions: btree()). The loss
function (here, the check function for the 0.5 quantile) along with its negative gradient function are
defined by the QuantReg(0.5) family (Fenske et al., 2009). The model structure (specified using
the formula fm), the data and the family are then passed to function mboost() for model fitting:

R> library("mboost") ### attach package ‘mboost’

R> print(fm) ### model structure

DEXfat ~ bols(age) + bols(waistcirc) + bols(hipcirc) + bols(elbowbreadth) +

bols(kneebreadth) + bols(anthro3a) + bols(anthro3b) + bols(anthro3c) +

bols(anthro4) + bbs(age, center = TRUE, df = 1) + bbs(waistcirc,

center = TRUE, df = 1) + bbs(hipcirc, center = TRUE, df = 1) +

bbs(elbowbreadth, center = TRUE, df = 1) + bbs(kneebreadth,

center = TRUE, df = 1) + bbs(anthro3a, center = TRUE, df = 1) +

bbs(anthro3b, center = TRUE, df = 1) + bbs(anthro3c, center = TRUE,

df = 1) + bbs(anthro4, center = TRUE, df = 1) + btree(hipcirc,

waistcirc, tree_controls = ctree_control(maxdepth = 2, mincriterion = 0))

R> ### fit model for conditional median of DEXfat

R> model <- mboost(fm, ### model structure

+ data = bodyfat, ### 71 observations

+ family = QuantReg(tau = 0.5)) ### median regression

Once the model has been fitted it is important to assess the appropriate number of boosting iterations
via the out-of-sample empirical risk. By default, 25 bootstrap samples from the training data are
drawn and the out-of-bag empirical risk is computed (parallel computation if possible):

R> ### bootstrap for assessing the ‘optimal’ number of boosting iterations

R> cvm <- cvrisk(model, grid = 1:100 * 10)

R> model[mstop(cvm)] ### restrict model to optimal mstop(cvm) iterations

Now, the final model is ready for a visual inspection:

R> plot(cvm); plot(model) ### depict out-of bag risk & selected components

The resulting plots are given in Figure 1. They indicate that a model based on three components,
including a smooth function of anthro3b and a bivariate function of hip and waist circumference,
provides the best characterization of the median body fat composition (given the model specification
offered to the boosting algorithm). A hip circumference larger than 110 cm leads to increased body
fat but only if the waist circumference is larger than 90 cm.

The sources of the mboost package are distributed at the Comprehensive R Archive Network
under GPL-2, along with binaries for all major platforms as well as documentation and regression
tests. Development versions are available from http://R-forge.R-project.org.

3

http://R-forge.R-project.org

Hothorn et al.

25−fold bootstrap

Number of boosting iterations

Q
ua

nt
ile

 R
eg

re
ss

io
n

10 70 140 220 300 380 460 540 620 700 780 860 940

1
2

3
4

5
6

(A)

●●

●
●

●●
●●●

●●
●●

●●●●●●●
●●●●●

●●●
●●●●●●

●●●●
●●●●●●●

●●●
●●●●●●●●●

●●●●●●●
●●●

●●●
●

2.5 3.0 3.5 4.0 4.5 5.0

−
6

−
4

−
2

0
2

anthro3b

f p
ar

tia
l

(B)

●

2.5 3.0 3.5 4.0 4.5 5.0

−
6

−
4

−
2

0
2

anthro3b

f p
ar

tia
l

(C)

hipcirc

w
ai

st
ci

rc

70

80

90

100

110

90 100 110 120 130

−15

−10

−5

0

5

10

15

Figure 1: Out-of-bag empirical risk (A) indicating that 450 iterations are appropriate. Fitted model
components for variable anthro3b, consisting of a linear (B) and smooth term (C). The
right panel shows the interaction model component between hip and waist circumferences.

4. Overview on 2.0 Series Features

This additional section gives some further details on new features in the mboost 2.0 series. First of all,
new families were included to permit quantile and expectile regression (QuantReg(), ExpectReg()),
ordinal regression (PropOdds()), censored regression (Weibull(), Loglog(), Lognormal()) and
count data regression (NBinomial()). All new families, except the quantile and expectile family, have
an additional scale parameter, which is included in the family and is then subsequently estimated
in the boosting algorithm without further need of modifications thereof.

For increased usability of mboost, some changes in the user interface of the base-learners were
necessary. Most prominently, the center argument in bols() was renamed to intercept to reflect
that it is used to specify whether the base-learner should contain an intercept (intercept = TRUE)
or not. The argument by (formerly denoted by z in mboost 1.0), which can be used to specify
varying coefficients, is now able to handle factors with more than two levels in addition to binary
and continuous covariates. Furthermore, the base-learners bss() (smoothing spline) and bns()

(penalized natural splines) are deprecated and replaced by bbs() (penalized splines), which results
in qualitatively the same models but is computationally much more attractive.

The speed of model estimation and prediction has been notably improved in version 2.0. Regard-
ing large data sets, a newly added search for duplicated observations of covariates in each base-learner
leads to enormous speed-ups and far less memory consumption in the base-learner fitting in each
boosting iteration. The effective number of observations in a weighted penalized least-squares prob-
lem is the number of unique covariate observations which is usually considerably smaller than the
number of observations in the learning sample, especially for factors or smooth effects for millions of
observations. The price to pay is an increased pre-processing time, however, pre-processing is just
done once at the beginning of the algorithm.

In addition, version 2.0 of mboost offers an improved infrastructure: Firstly, the subset method
model[i] can now be used to enhance or restrict a given boosting model to the specified boosting

4

Model-based Boosting 2.0

iteration i. Note that in both cases the original model will be changed to reduce the memory
footprint. If the boosting model is enhanced by specifying an index that is larger than the initial
mstop, only the missing i - mstop steps are fitted. If the model is restricted, the spare steps are
not dropped, but only hidden from the user, i.e., if we increase i again, these boosting steps are
immediately available. The newly introduced function selected() allows to inspect the path of
selected base-learners and is the basis for stability selection (in function stabsel(), cf. Meinshausen
and Bühlmann, 2010). Secondly, an interface for parallel computing (based on parallel) is automati-
cally used (if available) for cross-validation-based stopping of the algorithm in cvrisk(). With some
extra work, other parallelization packages such as snow (Tierney et al., 2008) can immediately be
integrated. Moreover, cvrisk() allows for more flexible definitions of resampling schemes (k-fold,
cross-validation, bootstrap, subsampling). Thirdly, the predict(), plot() and coef() functions
were enhanced. For linear models, the intercept is now adjusted for centered covariates and non-
zero offsets are added to the intercept when using coef(..., off2int = TRUE). Predictions are
computed much faster now and for all three functions an argument which was included to allow to
specify which base-learner(s) should be used for prediction and plotting or which coefficients should
be extracted. Per default all selected base-learners are used. Users can specify which as numeric
value(s) or as a (vector of) character string(s):

R> ### new data on a grid on range(anthro3b)

R> nd <- with(bodyfat, data.frame(anthro3b = seq(min(anthro3b), max(anthro3b),

+ length = 100)))

R> ### predictions for all base-learners of ‘anthro3b’

R> pr <- predict(model, which = "anthro3b", newdata = nd)

R> pr <- rowSums(pr) ### aggregate linear and smooth effect

The combined effect can now be used for plotting (see Figure 2).

References

Douglas Bates and Martin Mächler. Matrix: Sparse and Dense Matrix Classes and Methods, 2009.
URL http://CRAN.R-project.org/package=Matrix. R package version 0.999375-38.

Peter Bühlmann and Torsten Hothorn. Boosting algorithms: Regularization, prediction and model
fitting. Statistical Science, 22(4):477–505, 2007. doi: 10.1214/07-STS242.

Peter Bühlmann and Bin Yu. Boosting with the L2 loss: Regression and classification. Journal of
the American Statistical Association, 98:324–339, 2003.

Nora Fenske, Thomas Kneib, and Torsten Hothorn. Identifying risk factors for severe childhood mal-
nutrition by boosting additive quantile regression. Technical report, Institut für Statistik, Ludwig-
Maximilians-Universität München, 2009. URL http://epub.ub.uni-muenchen.de/10510/.

Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical
view of boosting (with discussion). The Annals of Statistics, 28:337–407, 2000.

A. L. Garcia, K. Wagner, T. Hothorn, C. Koebnick, H. J. Zunft, and U. Trippo. Improved prediction
of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research,
13(3):626–634, 2005.

Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, and Benjamin Hofner. mboost:
Model-Based Boosting, 2010. URL http://CRAN.R-project.org/package=mboost. R package
version 2.0-4.

Thomas Kneib, Torsten Hothorn, and Gerhard Tutz. Variable selection and model choice in geoad-
ditive regression models. Biometrics, 65(2):626–634, 2009.

5

http://CRAN.R-project.org/package=Matrix
http://epub.ub.uni-muenchen.de/10510/
http://CRAN.R-project.org/package=mboost

Hothorn et al.

R> plot(nd$anthro3b, pr, type = "l", xlab = "anthro3b",

+ ylab = "f(anthro3b)")

R> lines(nd$anthro3b, predict(model, which = "bols(anthro3b", newdata = nd),

+ type = "l", lty = "dashed")

2.5 3.0 3.5 4.0 4.5 5.0

−
6

−
4

−
2

0
2

anthro3b

f(
an

th
ro

3b
)

Figure 2: Effect of anthro3b, i.e., the combination of the linear and smooth effect (solid line) and
for comparison solely the linear effect (dashed line).

Nicolai Meinshausen and Peter Bühlmann. Stability selection (with discussion). Journal of the Royal
Statistical Society, Series B, 2010. In press.

Matthias Schmid and Torsten Hothorn. Boosting additive models using component-wise P-splines
as base-learners. Computational Statistics & Data Analysis, 53(2):298–311, 2008.

Luke Tierney, Anthony J. Rossini, Na Li, and Hana Sevcikova. snow: Simple Network of Worksta-
tions, 2008. URL http://CRAN.R-project.org/package=snow. R package version 0.3-3.

6

http://CRAN.R-project.org/package=snow

	Overview
	Design and Implementation
	User Interface by Example
	Overview on 2.0 Series Features

