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1 Implementing supply-loss theory of plant hy-
draulics

The supply-loss theory of plant hydraulics was recently presented by Sperry
and Love (2015):

Sperry, J. S., and D. M. Love. 2015. What plant hydraulics can tell us
about responses to climate-change droughts. New Phytologist 207:14–27.

The theory uses the physics of flow through soil and xylem to quantify
how canopy water supply declines with drought and ceases by hydraulic
failure. The theory can be applied to different networks representing the
soil-plant continuum, but in our case the continuum is divided into two
resistance elements in series, one representing the rhizosphere and the other
representing the xylem.
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1.1 Xylem and rhizosphere vulnerability curves

Each continuum element has a vulnerability curve that starts at maximum
hydraulic conductance (kmax, flow rate per pressure drop) and monotonically
declines as water pressure (Ψ) becomes more negative. Vulnerability curves
form the basis of the calculations.

The xylem element was assigned a two-parameter Weibull function as
the vulnerability curve kx(Ψ):

kx(Ψ) = kxmax · e−((−Ψ/d)c) (1)

where kxmax is the xylem maximum hydraulic conductance (defined as flow
per surface unit and per pressure drop), and c and d are species-specific
parameters. For examples, if we take the following parameter values:

> kxmax = 8.0

> c = 2

> d = 3

the vulnerability curve is (see hydraulics.xylemConductance()):
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The same curve is used to specify the relationship between pressure and con-
ductance in any portion of the flow path along the xylem. The rhizosphere
conductance function kr(Ψ) is modeled as a van Genuchten function (van
Genuchten, 1980):

kr(Ψ) = krmax · v(n−1)/(2·n) · ((1− v)(n−1)/n − 1)2 (2)

v = [(αΨ)n + 1]−1 (3)
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where krmax is the maximum rhizosphere conductance, and n and α are
texture-specific parameters (see Leij et al. 1996; Carsel & Parrish 1988). If
we specify the following parameters for three soil texture types:

> #Maximum soil conductance

> #Textural parameters (1 MPa = 0.00009804139432 cm)

> #Sandy clay loam

> krmax1 = 80000000000

> alpha1 = 602 #602 MPa-1 = 0.059 cm-1

> n1 = 1.48

> #Silt loam

> krmax2 = 4000000000

> alpha2 = 203 #203 MPa-1 = 0.020 cm-1

> n2 = 1.41

> #Silty clay

> krmax3 = 400000000

> alpha3 = 50.99887 #50.99887 MPa-1 = 0.005 cm-1

> n3 = 1.09

> textures = c("Sandy clay loam","Silt loam", "Silty clay")

the corresponding kr(Ψ) functions are (see hydraulics.vanGenuchtenConductance()):
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1.2 Supply functions

The supply function describes the rate of water supply (i.e. flow) for transpi-
ration (E) as a function of pressure. The steady-state flow rate Ei through
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each i element of the continuum is related to the flow-induced drop in pres-
sure across that element (∆Ψi) by the integral transform of the element’s
vulnerability curve ki(Ψ):

Ei(∆Ψi) =

∫ Ψdown

Ψup

ki(Ψ)dΨ (4)

where Ψup and Ψdown are the upstream and downstream water potential
values, respectively. The integral transform assumes infinite discretization
of the flow path.

The supply function can be defined for individual elements of the con-
tinuum of the whole soil-plant continuum. In the case of a single xylem
element the supply function describes the flow rate as a function of canopy
xylem pressure (Ψcanopy). It can be calculated by numerical integration or
aproximated using an incomplete gamma function. The shape of the sup-
ply function starting at different root water potential values (Ψroot) is (see
hydraulics.EXylem()):
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The supply function of the rhizosphere element relates the flow rate to the
pressure inside the roots (Ψroot). It is calculated by numerical integration of
the van Genuchten function (see hydraulics.E2psiVanGenuchten()). Here
we draw the supply function for the rhizosphere starting at different values
of bulk soil pressure (Ψsoil) and for the same three texture types:
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The nearly vertical lines indicate that for many values of Ei the correspond-
ing drop in water potential through the rhizosphere will be very small. Only
for increasingly negative soil water potential values the decrease in water
potential through the rhizosphere becomes relevant. Both in the case of a
xylem element or a rhyzosphere element the derivative dEi/dΨ of the supply
function is equal to the corresponding vulnerability curve.

In the network of the two elements in series (rhizosphere + xylem)
the supply function has to be calculated by sequentially using the previ-
ous supply functions. The Ei is identical for each element and equal to
the canopy E. Since Ψsoil is known, one first inverts the supply function
of the rhizosphere to find Ψroot (see hydraulics.E2psiVanGenuchten())
and then inverts the supply function of the xylem to find Ψcanopy (see hy-

draulics.E2psiXylem()). The two operations can be summarized in a
single supply function describing the potential rate of water supply for tran-
spiration (E) as function of the canopy xylem pressure (Ψcanopy), starting
from different bulk soil (Ψsoil) values (see hydraulics.supplyFunction()):
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The supply function for the whole continuum contains much information.
The Ψ intercept at E = 0 represents the predawn canopy sap pressure
which integrates the rooted soil moisture profile. As E increments from
zero, the disproportionately greater drop in Ψcanopy results from the loss of
conductance. As the soil dries the differences in flow due to soil texture
become more apparent. The derivative of the whole continuum supply func-
tion, dE/dΨ, is not equal to either of the vulnerability curves and it has to
be obtained numerically. The derivative functions of the supply functions
shown in the previous figure are:
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The derivative dE/dΨcanopy represents the limiting hydraulic conductance
at the downstream end of the continuum, and it falls towards zero for asymp-
totic critical values (Ecrit).

1.3 Loss function

The loss function specifies where the plant regulates its actual transpiration
rate along the supply function. The supply function derivative (dE/dΨcanopy)
drives the loss function. Soil drought and high demand both push the plant
towards lower dE/dΨcanopy values. A simple rule for a loss function is that
stomata should close more as stress pushes dE/dΨcanopy closer to zero. The
loss function needs an input water demand E′ (which can be derived using
Penman’s equation or other approaches). The corresponding Psi′canopy (and
hence the unregulated pressure drop ∆Ψ′) is first determined from E′ by
inverting the supply function. The derivative dE′/dΨ′canopy corresponding
to the demand is also calculated from the supply function. The maximum
dE/dΨcanopy is at the start of the curve (dE/dΨmax) and equals maximum
soil-plant conductance. The fraction (dE′/dΨ′canopy)/(dE/dΨmax) drops
from 1 to 0 as E′ increases, quantifying how close the plant is pushed to
the critical point of complete hydraulic failure without stomatal closure.
Regulated pressure drop (∆Ψ) is calculated as:

∆Ψ = ∆Ψ′ · ((dE′/dΨ′canopy)/(dE/dΨmax)) (5)

The regulated pressure drop is then used to determine the regulated Ψcanopy

and, using again the supply function, find the regulated E value. Due to its
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formulation,∆Ψ reaches a maximum before dE′/dΨ′canopy ' 0. At this point
∆Ψ should saturate with water demand, rather than to show an unrealistic
decline with further E′ increases. Thus, beyond this ∆Ψ saturation point
the stomata are assumed to be maximally sensitive to water demand by
closing sufficiently to keep E and Ψcanopy constant.

The following figure represents the loss function (which is not reducible to
a single equation) for a xylem element only starting from three different val-
ues of transpiration demand (E′) (see hydraulics.regulatedPsiXylem()).
Black lines indicate the supply functions corresponding to different upstream
pressure values. Each point of the loss function (in gray) is the result of find-
ing unregulated pressure drop from E′, determining the regulated drop and
determining the corresponding regulated Ψcanopy and E, the latter being
drawn.
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The following three graphs illustrate the loss function when considering a
two-element network (rhizosphere + xylem) for the three soil texture types
(see hydraulics.regulatedPsiTwoElements()):

8



0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

Sandy clay loam

Canopy sap pressure (−MPa)

Tr
an

sp
ira

tio
n 

ra
te

E'=4
E'=8
E'=15

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Sandy clay loam

Soil pressure (−MPa)

R
eg

ul
at

ed
 p

re
ss

ur
e 

dr
op

 (
−

M
P

a)

E'=4
E'=8
E'=15

9



0 1 2 3 4 5

0
5

10
15

Silt loam

Canopy sap pressure (−MPa)

Tr
an

sp
ira

tio
n 

ra
te

E'=4
E'=8
E'=15

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Silt loam

Soil pressure (−MPa)

R
eg

ul
at

ed
 p

re
ss

ur
e 

dr
op

 (
−

M
P

a)

E'=4
E'=8
E'=15

10



0 1 2 3 4 5

0
5

10
15

Silty clay

Canopy sap pressure (−MPa)

Tr
an

sp
ira

tio
n 

ra
te

E=4
E=8
E=15

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Silty clay

Soil pressure (−MPa)

R
eg

ul
at

ed
 p

re
ss

ur
e 

dr
op

 (
−

M
P

a)

E'=4
E'=8
E'=15

11



1.4 Rhizosphere maximum conductance krmax

Rhizosphere vulnerability curves kr(Ψ) start astronomically high compared
with xylem curves k(Ψ), mainly because root surface is much greater than
xylem cross-sectional area. Under wet conditions the relatively low xylem
conductance limits the loss function. As soils dry, however, the decrease in
rhizosphere conductance may become relevant because it becomes closer to
the range of xylem conductance. This is shown in the following figure:
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Decreasing root surface effectively decreases krmax and makes rhizosphere
conductance to become relevant for less dry soils. These differences in soil
conductance have an effect on the loss function, which can be primarily
xylem-limited if krmax is large enough, but that becomes increasingly soil-
limited for smaller krmax values. This is illustrated in the following figure
(assuming silty loam texture):
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Given the uncertainty in rhizosphere kr(Ψ) models in dry soil and in the
area of absorving roots, Sperry and Love (2015) propose a simplifying as-
sumption consisting in that root investment is just sufficient to approach the
xylem limit across the Ψcanopy spectrum. Any greater root surface would be
wasted for no water gain, and fewer roots would be a waste of investment
in cavitation resistance.

2 Examples

2.1 Constant Ψsoil

In this example we illustrate the behavior of the supply-loss hydraulic the-
ory using an example where Ψsoil is constantly at -1.5 MPa and the water
demand (i.e. potential evapotranspiration) changes from day to day during
a year, all three soil textures are tested and plant parameters of the xylem
vulnerability curve are kxmax = 8, c = 2 and d = 3. Potential evapotranspi-
ration and regulated transpiration rate (both are assumed to be referred to
the same conducting area) are:
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The supply-loss hydraulic theory also provides water pressure at the canopy
end of the continuum. Here we plot both the unregulated and regulated
values:

0 100 200 300

−
10

−
8

−
6

−
4

−
2

0

DOY

U
nr

eg
ul

at
ed

 P
si

_c
an

op
y

Sandy clay loam
Silt loam
Silty clay

0 100 200 300

−
2.

4
−

2.
0

−
1.

6

DOY

R
eg

ul
at

ed
 P

si
_c

an
op

y

Sandy clay loam
Silt loam
Silty clay

Finally, we can also plot the relative canopy conductance as the ratio be-
tween water demand and regulated transpiration:
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2.2 Simple bucket model

In this second example, we conduct a simplified soil water balance with pre-
cipitation as input and field capacity and soil potential dictated by texture:
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Variation of soil moisture relative to field capacity is:
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The soil water potential and regulated plant potential values are:
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And the relative canopy conductance is:
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