
Bayesian model selection and averaging with
mombf

David Rossell

The mombf package implements Bayesian model selection (BMS) and
model averaging (BMA) for linear, asymmetric linear, median and quantile
regression. This is the main package implementing the family of non-local
prior (NLP) distributions (briefly reviewed here, see Johnson and Rossell
(2010, 2012) for a more detailed treatment), although other priors (mainly
Zellner’s) are also implemented. The main features are:

• Density, cumulative density, quantiles and random numbers for NLPs

• BMS in linear regression (Section 1, Johnson and Rossell (2010, 2012)).

• BMA in linear regression (Section 4, Rossell and Telesca (2016)).

• Exact BMS and BMA under orthogonal and block-diagonal regression
(Section 5, Papaspiliopoulos and Rossell (2016)).

• BMS and BMA for certain generalized linear models (Section 6, John-
son and Rossell (2012); Rossell et al. (2013))

• BMS in linear regression with non-normal residuals (Rossell and Ru-
bio, 2016). Particular cases are Bayesian versions of asymmetric least
squares, median and quantile regression.

This manual introduces some basic notions underlying NLPs and illus-
trates the use of R functions implementing the main operations required for
model selection and averaging. Most of these are internally implemented in
C++ so, while they are not optimal in any sense they are designed to be
minimally scalable to high dimensions (large p).

1

1 Basics on non-local priors

The basic motivation for NLPs is what one may denominate the model sepa-
ration principle. The idea is quite simple, suppose we are considering a (pos-
sibly infinite) set of probability models M1,M2, . . . for an observed dataset y,
if these models overlap then it becomes hard to tell which of them generated
y. The notion is important because the vast majority of applications consider
nested models: if say M1 is nested within M2 then these two models are not
well-separated. Intuitively, if y are truly generated from M1 then M1 will
receive high integrated likelihood however that for M2 will also be relatively
large given that M1 is contained in M2. We remark that the notion remains
valid when none of the posed models are true, in that case M1 is the model
of smallest dimension minimizing Kullback-Leibler divergence to the data-
generating distribution of y. A common mantra is that performing Bayesian
model selection via posterior model probabilities (equivalently, Bayes fac-
tors) automatically incorporate Occam’s razor, e.g. M1 will eventually be
favoured over M2 as the sample size n → ∞. This statement is correct but
can be misleading: there is no guarantee that the extent to which parsimony
is enforced is adequate, indeed it turns out to be insufficient in many prac-
tical situations even for small p. This issue is exacerbated for large p to the
extent that one may even loose consistency of posterior model probabilities
(Johnson and Rossell, 2012) unless sufficiently strong sparsity penalities are
introduced into the model space prior.

Intuitively, NLPs induce a probabilistic separation between the consid-
ered models which, aside from being philosophically appealing (to us), one
can show mathematically leads to stronger parsimony. When we compare
two nested models and the smaller one is true the resulting BFs converge
faster to 0 than when using conventional priors and, when the larger model
is true, they present the usual exponential convergence rates in standard pro-
cedures. That is, the extra parsimony induced by NLPs is data-dependent, as
opposed to inducing sparsity by formulating sparse model prior probabilities
or increasingly vague prior distributions on model-specific parameters.

To fix ideas we first give the general definition of NLPs and then proceed
to show some examples. Let y ∈ Y be the observed data with density p(y | θ)
where θ ∈ Θ is the (possibly infinite-dimensional) parameter. Suppose we
are interested in comparing a series of models M1,M2, . . . with corresponding
parameter spaces Θk ⊆ Θ such that Θj ∩Θk have zero Lebesgue measure for
j 6= k and, for precision, there exists an l such that Θl = Θj ∩Θk so that the
whole parameter space is covered.

Definition 1 A prior density p(θ | Mk) is a non-local prior under Mk iff

lim p(θ |Mk) = 0 as θ → θ0 for any θ0 ∈ Θj ⊂ Θk.

In words, p(θ | Mk) vanishes as θ approaches any value that would be
consistent with a submodel Mj. Any prior not satisfying Definition 1 is
a local prior (LP). As a canonical example, suppose that y = (y1, . . . , yn)
with independent yi ∼ N(θ, φ) and known φ, and that we entertain the two
following models:

M1 : θ = 0

M2 : θ 6= 0

Under M1 all parameter values are fully specified, the question is thus re-
duced to setting p(θ | M2). Ideally this prior should reflect one’s knowledge
or beliefs about likely values of θ, conditionally on the fact that θ 6= 0. The
left panel in Figure 1 shows two LPs, specifically the unit information prior
θ ∼ N(0, 1) and a heavy-tailed alternative θ ∼ Cachy(0, 1) as recommended
by Jeffreys. These assign θ = 0 as their most likely value a priori, even
though θ = 0 is not even a possible value under M2, which we view as philo-
sophically unappealing. The right panel shows three NLPs (called MOM,
eMOM and iMOM, introduced below). Their common defining feature is
their vanishing as θ → 0, thus probabilistically separating M2 from M1 or,
to borrow terminology from the stochastic processes literature, inducing a
repulsive force between M1 and M2. As illustrated in the figure beyond this
defining feature the user is free to choose any other desired property, e.g.
the speed at which p(θ | M2) vanishes at the origin, prior dispersion, tail
thickness or in multivariate cases the prior dependence structure.

Once the NLP has been specified inference proceeds as usual, e.g. poste-
rior model probabilities are

p(Mk | y) =
p(y |Mk)p(Mk)∑
j p(y |Mj)p(Mj)

(1)

where p(y |Mk) =
∫
p(y | θ)dP (θ |Mk) is the integrated likelihood under Mk

and p(Mk) the prior model probability. Similarly, inference on parameters can
be carried out conditional on any chosen model via p(θ |Mk, y) ∝ p(y | θ)p(θ |
Mk) or via Bayesian model averaging p(θ | y) =

∑
k p(θ | Mk, y)p(Mk | y).

A useful construction (Rossell and Telesca, 2016) is that any NLP can be
expressed as

p(θ |Mk) =
p(θ |Mk)

pL(θ |Mk)
pL(θ |Mk) = dk(θ)p

L(θ |Mk), (2)

where pL(θ | Mk) is a LP and dk(θ) = p(θ | Mk)/p
L(θ | Mk) a penalty term.

Simple algebra shows that

p(y |Mk) = pL(y |Mk)E
L(dk(θ) |Mk, y), (3)

where EL(dk(θ) | Mk, y) =
∫
dk(θ)dP

L(θ | Mk, y) is the posterior mean of
the penalty term under the underlying LP. That is, the integrated likelihood
under a NLP is equal to that under a LP times the posterior expected penalty
under that LP. The construction allows to use NLPs in any situation where
LPs are already implemented, all one needs is pL(y | Mk) or an estimate
thereof and posterior samples under pL(θ | y,Mk). We remark that most
functions in mombf do not rely on construction (2) but instead work directly
with NLPs, as this is typically more efficient computationally. For instance,
there are closed-form expressions and Laplace approximations to p(y | Mk)
(Johnson and Rossell, 2012), and one may sample from p(θ |Mk, y) via simple
latent truncation representations (Rossell and Telesca, 2016).

Up to this point we kept the discussion as generic as possible, in the next
section we proceed to illustrate the use of NLPs for variable selection. For
extensions to other settings see for instance Consonni and La Rocca (2010)
for directed acyclic graphs under an objective Bayes framework, Chekouo
et al. (2015) for gene regulatory networks, Collazo et al. (2016) for chain
event graphs, or Fúquene et al. (2016) for finite mixture models. We also
remark that this manual focuses mainly on practical aspects. Readers inter-
ested in theoretical NLP properties should see Johnson and Rossell (2010)
and Rossell and Telesca (2016) for an asymptotic characterization under
asymptotically Normal models with fixed dim(Θ), essentially showing that
EL(dk(θ) | Mk, y) leads to stronger parsimony, Fúquene et al. (2016) for
similar results in mixture models, and Rossell and Rubio (work in progress)
for robust linear regression with non-normal residuals where data may be
generated by a model other than those under consideration (M-complete).
Regarding high-dimensional results Johnson and Rossell (2012) prove that

under certain linear regression models p(Mt | y)
P−→ 1 as n → ∞ where Mt

is the data-generating truth when using NLPs and p = O(nα) with α < 1.

The authors also proved the conceptually stronger result that p(Mt | y)
P−→ 0

under LPs, which implies that NLPs are a necessary condition for strong con-
sistency in high dimensions (unless extra parsimony is induced via p(Mk) or
increasingly diffuse p(θ | Mk) as n grows, but this may come at a loss of
signal detection power). Shin et al. (2015) extend the consistency result to
ultra-high linear regression with p = O(en

α
) with α < 1 under certain specific

NLPs.

2 Some default non-local priors

Definition 1 in principle allows one to define NLPs in any manner that is
convenient, as long as p(θ |Mk) vanishes for any value θ0 that would be con-
sistent with a submodel of Mk. mombf implements some simple priors that
lead to convenient implementation and interpretation while offering a reason-
able modelling flexibility, but naturally we encourage everyone to come up
with more sophisticated alternatives as warranted by their specific problem
at hand. It is important to distinguish between two main strategies to de-
fine NLPs, namely imposing additive vs. product penalties. Additive NLPs
were historically the first to be introduced (Johnson and Rossell, 2010) and
primarily aimed to compare only two models, whereas product NLPs were
introduced later on (Johnson and Rossell, 2012) for the more general setting
where considers multiple models. Throughout let θ = (θ1, . . . , θp) ∈ Rp be
a vector of regression coefficients and φ a dispersion parameter such as the
residual variance in linear regression.

Suppose first that we wish to test M1 : θ = (0, . . . , 0) versus M2 : θ 6=
(0, . . . , 0). An additive NLP takes the form p(θ | Mk) = d(q(θ))pL(θ | Mk),
where q(θ) = θ′V θ for some positive-definite p × p matrix V , the penalty
d(q(θ)) = 0 if and only if q(θ) = 0 and pL(θ | Mk) is an arbitrary LP with
the only restriction that p(θ |Mk) is proper. For instance,

pM(θ | φ,Mk) =
θ′V θ

pτφ
N(θ; 0, τφV −1)

pE(θ | φ,Mk) = cEe
− τφ
θ′V θN(θ; 0, τφV −1)

pI(θ | φ,Mk) =
Γ(p/2)

|V | 12 (τφ)
p
2 Γ(ν/2)πp/2

(θ′V θ)−
ν+p
2 e−

τφ
θ′V θ (4)

are the so-called moment (MOM), exponential moment (eMOM) and inverse
moment (iMOM) priors, respectively, and cE is the moment generating func-
tion of an inverse chi-square random variable evaluated at -1. By default
V = I, but naturally other choices are possible.

Suppose now that we wish to consider all 2p models arising from setting
individual elements in θ to 0. Product NLPs are akin to (4) but now the

penalty term d(θ) is a product of univariate penalties.

pM(θ | φ,Mk) =
∏
i∈Mk

θ2i
τφk

N(θi; 0, τφk)

pE(θ | φ,Mk) =
∏
i∈Mk

exp

{√
2− τφk

θ2i

}
N(θi; 0, τφk),

pI(θ | φ,Mk) =
∏
i∈Mk

(τφk)
1
2

√
πθ2i

exp

{
−τφk
θ2i

}
. (5)

This implies that d(θ)→ 0 whenever any individual θi → 0, in contrast with
(4) which requires the whole vector θ = 0. More generally, one can envision
settings requiring a combination of additive and product penalties. For in-
stance in regression models for continuous predictors product penalties are
generally appropriate, but for categorical predictors one would like to either
include or exclude all the corresponding coefficients simultaneously, in this
sense additive NLPs resemble group-lasso type penalties and have the nice
property of being invariant to the chosen reference category. At this mo-
ment mombf primarily implements product NLPs and in some cases additive
NLPs, we plan to incorporate combined product and addivite penalties in
the future.

Figure 1 displays the prior densities in the univariate case, where (4) and
(5) are equivalent. pM induces a quadratic penalty as θ → 0, and has the
computational advantage that for posterior inference the penalty can often
be integrated in closed-form, as it simply requires second order moments. pE
and pI vanish exponentially fast as θ → 0, inducing stronger parsimony in
the Bayes factors than pM . This exponential term converges to 1 as q(θ)
increases, thus the eMOM has Normal tails and the iMOM can be easily
checked to have tails proportional to those of a Cauchy. Thick tails can
be interesting to address the so-called information paradox, namely that the
posterior probability of the alternative model converges to 1 as the residual
sum of squares from regressing y on a series of covariates converges to 0
(Liang et al., 2008; Johnson and Rossell, 2010), although in our experience
this is often not an issue unless n is extremely small. The priors above can
be extended to include nuisance regression parameters that are common to
all models, and also to consider higher powers q(θ)r for some r > 1, but for
simplicity we restrict attention to (4).

We now briefly discuss how to set the prior dispersion τ and propose
default values, though we encourage everyone to think which values are more
appropriate for the current problem at hand. By default we set τ so that
P (|θ/

√
φ| > 0.2) = 0.99, that is the signal-to-noise ratio |θj|/

√
φ is a priori

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

thseq

P
rio

r
de

ns
ity

Normal
Cauchy

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

thseq
P

rio
r

de
ns

ity

MOM
eMOM
iMOM

Figure 1: Priors for θ under a model M2 : θ 6= 0. Left: local priors. Right:
non-local priors

expected to be > 0.2. The reason for choosing the 0.2 threshold is that
in many applications smaller signals are not practically relevant (e.g. the
implied contribution to the R2 coefficient is small). The function priorp2g

facilitates finding τ for any given threshold. Other useful functions are pmom,
pemom and pimom for distribution functions, and qmom, qemom and qimom for
quantiles. Prior densities can be evaluated and plotted as shown below.

> library(mombf)

> thseq <- seq(-3,3,length=1000)

> plot(thseq,dnorm(thseq),type='l',ylab='Prior density')
> lines(thseq,dt(thseq,df=1),lty=2,col=2)

> legend('topright',c('Normal','Cauchy'),lty=1:2,col=1:2)

> thseq <- seq(-3,3,length=1000)

> plot(thseq,dmom(thseq,tau=.348),type='l',ylab='Prior density',ylim=c(0,1.2))
> lines(thseq,demom(thseq,tau=.119),lty=2,col=2)

> lines(thseq,dimom(thseq,tau=.133),lty=3,col=4)

> legend('topright',c('MOM','eMOM','iMOM'),lty=1:3,col=c(1,2,4))

Another way to elicit τ is to mimic the Unit Information Prior and set
the prior variance to 1, for the MOM prior this leads to the same τ as the
earlier rule P (|θ/

√
φ| > 0.2) = 0.99.

Another helpful function for prior elicitation of τ is mode2g, which re-
turns the τ value associated to a given prior mode m = arg max|θ| p(|θ|), for
instance m = 0.4 in our example below. The intuition is that NLPs place

most of the prior mass on |θ| > m, which implicitly means we have little
interest in detecting |θ| < m.

> prior.mode <- .4^2

> taumom <- mode2g(prior.mode,prior='normalMom')
> tauimom <- mode2g(prior.mode,prior='iMom')
> taumom

[1] 0.08

> tauimom

[1] 0.16

3 Variable selection for linear models

The main function for model selection is modelSelection, which returns
model posterior probabilities under linear regression models allowing for Nor-
mal, asymmetric Normal, Laplace and asymmetric Laplace residuals. A sec-
ond interesting function is nlpMarginal, which computes the integrated like-
lihood for a given model under the same settings. We illustrate their use with
a simple simulated dataset. Let us generate 100 observations for the response
variable and 3 covariates, where the true regression coefficient for the third
covariate is 0.

> set.seed(2011*01*18)

> x <- matrix(rnorm(100*3),nrow=100,ncol=3)

> theta <- matrix(c(1,1,0),ncol=1)

> y <- x %*% theta + rnorm(100)

To start with we assume Normal residuals (the default). We need to spec-
ify the prior distribution for the regression coefficients, the model space and
the residual variance. We specify a product iMOM prior on the coefficients
with prior dispersion tau=.131, which targets the detection of standardized
effect sizes above 0.2. Regarding the model space we use a Beta-binomial(1,1)
prior (Scott and Berger, 2010). Finally, for the residual variance we set a min-
imally informative inverse gamma prior. For defining other prior distributions
see the help for msPriorSpec (e.g. momprior, emomprior and zellnerprior

can be used to define MOM, eMOM and Zellner priors, respectively).

> priorCoef <- imomprior(tau=.131)

> priorDelta <- modelbbprior(alpha.p=1,beta.p=1)

> priorVar <- igprior(.01,.01)

modelSelection enumerates all models when its argument enumerate

is set to TRUE, otherwise it uses a Gibbs sampling scheme to explore the

model space (saved in the slot postSample). It returns the visited model
with highest posterior probability and the marginal posterior inclusion prob-
abilities for each covariate (when using Gibbs sampling these are estimated
via Rao-Blackwellization to improve accuracy).

> fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar)

Enumerating models...

Computing posterior probabilities........ Done.

> fit1$postMode

x1 x2 x3

1 1 0

> fit1$margpp

x1 x2 x3

1.00000000 1.00000000 0.04138239

> postProb(fit1)

modelid family pp

4 1,2 normal 9.586176e-01

8 1,2,3 normal 4.138239e-02

2 1 normal 2.765878e-13

3 2 normal 9.613353e-14

6 1,3 normal 1.221807e-15

7 2,3 normal 6.836394e-16

1 normal 8.690008e-20

5 3 normal 2.871131e-22

> fit2 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ enumerate=FALSE, niter=1000)

Greedy searching posterior mode... Done.

Running Gibbs sampler........... Done.

> fit2$postMode

x1 x2 x3

1 1 0

> fit2$margpp

x1 x2 x3

1.00000000 1.00000000 0.04138239

> postProb(fit2,method='norm')

modelid family pp

1 1,2 normal 0.95861761

2 1,2,3 normal 0.04138239

> postProb(fit2,method='exact')

modelid family pp

1 1,2 normal 0.97

2 1,2,3 normal 0.03

The highest posterior probability model is the simulation truth, indicat-
ing that covariates 1 and 2 should be included and covariate 3 should be
excluded. fit1 was obtained by enumerating the 23 = 8 possible mod-
els, whereas fit2 ran 1,000 Gibbs iterations, delivering very similar results.
postProb estimates posterior probabilities by renormalizing the probability
of each model conditional to the set of visited models when method=’norm’

(the default), otherwise it uses the proportion of Gibbs iterations spent on
each model.

Below we run modelSelection again but now using Zellner’s prior, with
prior dispersion set to obtain the so-called Unit Information Prior. The pos-
terior mode is still the data-generating truth, albeit its posterior probability
has decreased substantially. This illustrates the core issue with NLPs: they
tend to concentrate more posterior probability around the true model (or that
closest in the Kullback-Leibler sense). This difference in behaviour relative to
LPs becomes amplified as the number of considered models becomes larger,
which may result in the latter giving a posterior probability that converges
to 0 for the true model (Johnson and Rossell, 2012).

> priorCoef <- zellnerprior(tau=nrow(x))

> fit3 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE, niter=10^2,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ method='Laplace')

Enumerating models...

Computing posterior probabilities........ Done.

> postProb(fit3)

modelid family pp

4 1,2 normal 7.214937e-01

8 1,2,3 normal 2.785063e-01

2 1 normal 1.079508e-13

3 2 normal 3.565310e-14

6 1,3 normal 1.096444e-14

7 2,3 normal 3.827255e-15

1 normal 3.640151e-20

5 3 normal 1.394484e-21

Finally, we illustrate how to relax the assumption that residuals are Nor-
mally distributed. We may set the argument family to ’twopiecenormal’,
’laplace’ or ’twopiecelaplace’ to allow for asymmetry (for two-piece
Normal and two-piece Laplace) or thicker-than-normal tails (for Laplace and
asymmetric Laplace). For instance, the maximum likelihood estimator under
Laplace residuals is equivalent to median regression and under asymmetric
Laplace residuals to quantile regression, thus these options can be interpreted
as robust alternatives to Normal residuals. A nice feature is that regression
coefficients can still be interpreted in the usual manner. These families add
flexibility while maintaining analytical and computational tractability, e.g.
they lead to convex optimization and efficient approximations to marginal
likelihoods, and additionally to robustness we have found they can also lead
to increased sensitivity to detect non-zero coefficients. Alas, computations
under Normal residuals are inevitably faster, hence whenever this extra flex-
ibility is not needed it is nice to be able to fall back onto the Normal family,
particularly when p is large. modelSelection and nlpMarginal incorporate
this option by setting family==’auto’, which indicates that the residual
distribution should be inferred from the data. When p is small a full model
enumeration is conducted, but when p is large the Gibbs scheme spends most
time on models with high posterior probability, thus automatically focusing
on the Normal family when it provides a good enough approximation and
resorting to one of the alternatives when warranted by the data.

For instance, in the example below there’s roughly 0.95 posterior prob-
ability that residuals are Normal, hence the Gibbs algorithm would spend
most time on the (faster) Normal model. The two-piece Normal and two-
piece Laplace (also known as asymmetric Laplace) incorporate an asymmetry
parameter α ∈ [−1, 1], where α = 0 corresponds to the symmetric case (i.e.
Normal and Laplace residuals). We set a NLP on atanh(α) ∈ (−∞, infty)
so that under the asymmetric model we push prior mass away from α = 0,
which intuitively means we are interested in finding significant departures
from asymmetry and otherwise we fall back onto the simpler symmetric case.

> priorCoef <- imomprior(tau=.131)

> fit4 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ priorSkew=imomprior(tau=.131),family='auto')

Enumerating models...

Computing posterior probabilities........... Done.

> head(postProb(fit4))

modelid family pp

4 1,2 normal 9.472921e-01

8 1,2,3 normal 4.089348e-02

20 1,2 laplace 8.904186e-03

12 1,2 twopiecenormal 2.693917e-03

24 1,2,3 laplace 1.024381e-04

28 1,2 twopiecelaplace 6.088958e-05

All examples above use modelSelection, which is based on product NLPs
(5). mombf also provides some (limited) functionality for additive NLPs (4).
The code below contains an example based on the Hald data, which has
n = 13 observations, a continuous response variable and p = 4 predictors.
We load the data and fit a linear regression model.

> data(hald)

> dim(hald)

[1] 13 5

> lm1 <- lm(hald[,1] ~ hald[,2] + hald[,3] + hald[,4] + hald[,5])

> summary(lm1)

Call:

lm(formula = hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] +

hald[, 5])

Residuals:

Min 1Q Median 3Q Max

-3.1750 -1.6709 0.2508 1.3783 3.9254

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991

hald[, 2] 1.5511 0.7448 2.083 0.0708 .

hald[, 3] 0.5102 0.7238 0.705 0.5009

hald[, 4] 0.1019 0.7547 0.135 0.8959

hald[, 5] -0.1441 0.7091 -0.203 0.8441

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.446 on 8 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736

F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07

> V <- summary(lm1)$cov.unscaled

> diag(V)

(Intercept) hald[, 2] hald[, 3] hald[, 4] hald[, 5]

820.65457471 0.09271040 0.08756026 0.09520141 0.08403119

Bayes factors between a fitted model and a submodel where some of the
variables are dropped can be easily computed from the lm output using func-
tions mombf and imombf. As an example here we drop the second coefficient

from the model. Parameter g corresponds to the prior dispersion τ in our
notation. There are several options to estimate numerically iMOM Bayes fac-
tors (for MOM they have closed form), here we compare adaptive quadrature
with a Monte Carlo estimate.

> mombf(lm1,coef=2,g=taumom)

[,1]

[1,] 2.475336

> imombf(lm1,coef=2,g=tauimom,method='adapt')

[,1]

[1,] 1.536302

> imombf(lm1,coef=2,g=tauimom,method='MC',B=10^5)

[,1]

[1,] 1.534466

4 Parameter estimation

A natural question after performing model selection is obtaining estimates
for the parameters. Rossell and Telesca (2016) developed a general poste-
rior sampling framework for NLPs based on Gibbs sampling an augmented
probability model that expresses NLPs as mixtures of truncated distribu-
tions. The methodology is implemented in function rnlp. Its basic use is
simple, by setting parameter msfit to the output of modelSelection the
function produces posterior samples under each model γ visited by modelS-

election. The number of samples is proportional to its posterior probability
p(γ | y), thus averaging the output gives Bayesian model averaging estimates
E(θ | y) =

∑
γ E(θ | γ, y)p(γ | y) and likewise for the residual variance

E(φ | y).

> priorCoef <- momprior(tau=.348)

> priorDelta <- modelbbprior(alpha.p=1,beta.p=1)

> fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta)

Enumerating models...

Computing posterior probabilities........ Done.

> th <- rnlp(y=as.numeric(y),x=x,msfit=fit1,priorCoef=priorCoef,niter=10000)

> colMeans(th)

beta1 beta2 beta3 phi

1.006847248 0.943283241 -0.004003268 1.001267547

> head(th)

beta1 beta2 beta3 phi

[1,] 1.0699785 0.8691159 0 0.8907935

[2,] 0.9656519 0.8487383 0 1.2229253

[3,] 0.9649019 0.8758050 0 1.0516350

[4,] 0.9050806 0.8189167 0 0.8862611

[5,] 0.9087373 0.9623837 0 1.0739552

[6,] 1.1247194 0.8844062 0 0.8097169

From this output we can obtain model-specific posterior means.

> model <- apply(th!=0,1,function(z) paste(which(z),collapse=','))
> table(model)

model

1,2,3,4 1,2,4

250 9750

> colMeans(th[model=='1,2,4',])

beta1 beta2 beta3 phi

1.0061922 0.9433184 0.0000000 1.0016814

> colMeans(th[model=='1,2,3,4',])

beta1 beta2 beta3 phi

1.0323933 0.9419133 -0.1601307 0.9851272

Another interestingn use of rnlp is to obtain posterior samples under a
generic non-local posterior

p(θ | y) ∝ d(θ)N(θ;m,V),

where d(θ) is a non-local prior penalty and N(θ;m,V) is the normal poste-
rior that one would obtain under the underlying local prior. For instance,
suppose our prior is proportional to Zellner’s prior times a product MOM
penalty p(θ) ∝

∏
j θ

2
jN(θ; 0, nτφ(X ′X)−1) where φ is the residual variance,

then the posterior is proportional to p(θ | y) ∝
∏

j θ
2
jN(θ;m,V) where

m = sτ (X
′X)−1X ′y, V = φ(X ′X)−1s2τ where sτ = nτ/(1 + nτ) is the usual

ridge regression shrinkage factor. We may obtain posterior samples as follows.
Note that the posterior mean is close to that obtained above.

> tau= 0.348

> shrinkage= nrow(x)*tau/(1+nrow(x)*tau)

> V= shrinkage * solve(t(x) %*% x)

> m= as.vector(shrinkage * V %*% t(x) %*% y)

> phi= mean((y - x%*%m)^2)

> th= rnlp(m=m,V=phi * V,priorCoef=momprior(tau=tau))

> colMeans(th)

beta1 beta2 beta3

1.0038342 0.9289234 -0.1617318

5 Exact inference for block-diagonal regres-

sion

Papaspiliopoulos and Rossell (2016) proposed a fast computational frame-
work to compute exact posterior model probabilities, variable inclusion prob-
abilities and parameter estimates for Normal linear regression when the X ′X
matrix is block-diagonal. Naturally this includes the important particular
case of orthogonal regression where X ′X is diagonal. The framework per-
forms a fast model search that finds the best model of each size (i.e. with
1, 2, . . . , p variables) and a fast deterministic integration to account for the
fact that the residual variance is uknown (the residual variance acts as a
”cooling” parameter that affects how many variables are included, hence
the associated uncertainty must be dealt with appropriately). The func-
tion postModeOrtho tackles the diagonal X ′X case and postModeBlockDiag

the block-diagonal case.
The example below simulates n = 210 observations with p = 200 variables

where all regression coefficients are 0 except for the last three (0.5, 0.75, 1)
and the residual variance is one. We then perform variable selection under
Zellner’s and the MOM prior.

> set.seed(1)

> p <- 200; n <- 210

> x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE,scale=TRUE)

> S <- cov(x)

> e <- eigen(cov(x))

> x <- t(t(x %*% e$vectors)/sqrt(e$values))

> th <- c(rep(0,p-3),c(.5,.75,1)); phi <- 1

> y <- x %*% matrix(th,ncol=1) + rnorm(n,sd=sqrt(phi))

> priorDelta=modelbinomprior(p=1/p)

> priorVar=igprior(0.01,0.01)

> priorCoef=zellnerprior(tau=n)

> pm.zell <-

+ postModeOrtho(y,x=x,priorCoef=priorCoef,priorDelta=priorDelta,

+ priorVar=priorVar,bma=TRUE)

> head(pm.zell$models)

modelid pp

4 200,199,198 0.828818155

5 200,199,198,54 0.037323461

107 200,199,198,11 0.006070065

108 200,199,198,186 0.004133534

110 200,199,198,36 0.003679338

6 200,199,198,54,11 0.000316667

> priorCoef=momprior(tau=0.348)

> pm.mom <- postModeOrtho(y,x=x,priorCoef=priorCoef,priorDelta=priorDelta,

+ priorVar=priorVar,bma=TRUE)

> head(pm.mom$models)

modelid pp

4 200,199,198 9.779392e-01

5 200,199,198,54 1.144910e-02

107 200,199,198,11 1.209685e-03

108 200,199,198,186 7.314291e-04

110 200,199,198,36 6.262828e-04

6 200,199,198,54,11 1.717659e-05

postModelBlockDiag returns a list with the best model of each size and its corre-
sponding (exact) posterior probability, displayed in Figure 2 (left panel). It also returns
marginal inclusion probabilities and BMA estimates, shown in the right panel. The code
required to produce these figures is below.

> par(mar=c(5,5,1,1))

> nvars <- sapply(strsplit(as.character(pm.zell$models$modelid),split=','),length)
> plot(nvars,pm.zell$models$pp,ylab=expression(paste("p(",gamma,"|y)")),

+ xlab=expression(paste("|",gamma,"|")),cex.lab=1.5,ylim=0:1,xlim=c(0,50))

> sel <- pm.zell$models$pp>.05

> text(nvars[sel],pm.zell$models$pp[sel],pm.zell$models$modelid[sel],pos=4)

> nvars <- sapply(strsplit(as.character(pm.mom$models$modelid),split=','),length)
> points(nvars,pm.mom$models$pp,col='gray',pch=17)
> sel <- pm.mom$models$pp>.05

> text(nvars[sel],pm.mom$models$pp[sel],pm.mom$models$modelid[sel],pos=4,col='gray')
> legend('topright',c('Zellner','MOM'),pch=c(1,17),col=c('black','gray'),cex=1.5)

> par(mar=c(5,5,1,1))

> ols <- (t(x) %*% y) / colSums(x^2)

> plot(ols,pm.zellbmacoef,xlab='Least squares estimate',
+ ylab=expression(paste('E(',beta[j],'|y)')),cex.lab=1.5,cex.axis=1.2,col=1)
> points(ols,pm.mombmacoef,pch=3,col='darkgray')
> legend('topleft',c('Zellner','MOM'),pch=c(1,3),col=c('black','darkgray'))

We now illustrate similar functionality under block-diagonal X ′X. To
this end we consider a total p = 100 variables split into 10 blocks of 10
variables each, generated in such a way that they all have unit variance and
within-blocks pairwise correlation of 0.5. The first block has three non-zero
coefficients, the second block two and the remaining blocks contain no active
variables.

> set.seed(1)

> p <- 100; n <- 110

> blocksize <- 10

> blocks <- rep(1:(p/blocksize),each=blocksize)

> x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE,scale=TRUE)

> S <- cov(x)

> e <- eigen(cov(x))

> x <- t(t(x %*% e$vectors)/sqrt(e$values))

●

●

●●●●●● ●●●● ●●● ●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|γ|

p(
γ|

y)

200,199,198

200,199,198 ● Zellner
MOM

●●●● ●● ●● ●● ●●●● ●●●●●● ●● ● ●●● ●●● ●● ● ●●●● ●●●●●●●●● ●●● ●● ●●● ●●● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●● ● ●●● ●●● ●● ● ●● ●●● ●●●●●● ● ●●● ●●●●●● ● ● ●● ●● ● ●● ● ● ●● ● ●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●● ●● ●●●●●● ●● ● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ● ●●●● ● ●● ●● ●●●

●

●

●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Least squares estimate
E

(β
j|y

)

● Zellner
MOM

Figure 2: Posterior probability under simulated orthogonal data

> Sblock <- diag(blocksize)

> Sblock[upper.tri(Sblock)] <- Sblock[lower.tri(Sblock)] <- 0.5

> vv <- eigen(Sblock)$vectors

> sqSblock <- vv %*% diag(sqrt(eigen(Sblock)$values)) %*% t(vv)

> for (i in 1:(p/blocksize)) x[,blocks==i] <- x[,blocks==i] %*% sqSblock

> th <- rep(0,ncol(x))

> th[blocks==1] <- c(rep(0,blocksize-3),c(.5,.75,1))

> th[blocks==2] <- c(rep(0,blocksize-2),c(.75,-1))

> phi <- 1

> y <- x %*% matrix(th,ncol=1) + rnorm(n,sd=sqrt(phi))

postModeBlockDiag performs the model search using an algorithm nick-
named ”Coolblock” (as it is motivated by treating the residual variance as a
cooling parameter). Briefly, Coolblock visits a models of sizes ranging from 1
to p and returns the best model for that given size, thus also helping identify
the best model overall.

> priorCoef=zellnerprior(tau=n)

> priorDelta=modelbinomprior(p=1/p)

> priorVar=igprior(0.01,0.01)

> pm <- postModeBlockDiag(y=y,x=x,blocks=blocks,priorCoef=priorCoef,

+ priorDelta=priorDelta,priorVar=priorVar,bma=TRUE)

> head(pm$models)

modelid nvars pp pp.upper

1 0 1.764684e-24 1.764684e-24

2 10 1 7.864656e-12 7.864656e-12

3 9,10 2 7.232276e-10 7.232276e-10

4 9,10,20 3 5.857901e-07 5.857901e-07

5 9,10,19,20 4 4.814026e-03 4.814026e-03

6 8,9,10,19,20 5 8.430706e-01 8.430706e-01

> head(pm$postmean.model)

modelid X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

1 0 0 0 0 0 0 0 0.000000 0.0000000 0.000000 0 0 0 0

2 10 0 0 0 0 0 0 0 0.000000 0.0000000 1.688461 0 0 0 0

3 9,10 0 0 0 0 0 0 0 0.000000 0.8786666 1.249127 0 0 0 0

4 9,10,20 0 0 0 0 0 0 0 0.000000 0.8786666 1.249127 0 0 0 0

5 9,10,19,20 0 0 0 0 0 0 0 0.000000 0.8786666 1.249127 0 0 0 0

6 8,9,10,19,20 0 0 0 0 0 0 0 0.657439 0.6595203 1.029981 0 0 0 0

X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

1 0 0 0 0 0.0000000 0.000000 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0.0000000 0.000000 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0.0000000 0.000000 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0.0000000 -0.740712 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.8089637 -1.145194 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0.8089637 -1.145194 0 0 0 0 0 0 0 0 0 0

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85 X86 X87

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3 shows a LASSO-type plot with the posterior means under the

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Model size

P
os

te
rio

r
m

ea
n

gi
ve

n
m

od
el

X8X9

X10
X19

X20

Figure 3: Coolblock algorithm: posterior mean of regression coefficients un-
der best model of each size

best model of each size visited by Coolblock. We appreciate how the truly
active variables 8, 9, 10, 19 and 20 are picked up first.

> maxvars=50

> ylim=range(pm$postmean.model[,-1])

> plot(NA,NA,xlab='Model size',
+ ylab='Posterior mean given model',
+ xlim=c(0,maxvars),ylim=ylim,cex.lab=1.5)

> visited <- which(!is.na(pm$models$pp))

> for (i in 2:ncol(pm$postmean.model)) {

+ lines(pm$models$nvars[visited],pm$postmean.model[visited,i])

+ }

> text(maxvars, pm$postmean.model[maxvars,which(th!=0)+1],

+ paste('X',which(th!=0),sep=''), pos=3)

6 Bayes factors for generalized linear models

At the moment mombf provides some limited functionality for generalized
linear models. pmomLM implements probit models following the framework in
Rossell et al. (2013), see also Nikooienejad et al. (2016) for an alternative
framework that bypasses the need to sample θ to improve the mixing of the
Markov Chain.

As an illustration we simulate n = 50 observations from a probit re-
gression model with p = 2 correlated predictors and θ = (log(2), 0). The

predictors are stored in the matrix x, the success probabilities in the vector
p and the observed responses in the vector y. For reproducibility purposes
we set the random number generator seed.

> set.seed(4*2*2008)

> n <- 50; theta <- c(log(2),0)

> x <- matrix(NA,nrow=n,ncol=2)

> x[,1] <- rnorm(n,0,1); x[,2] <- rnorm(n,.5*x[,1],1)

> p <- pnorm(x %*% matrix(theta,ncol=1))

> y <- rbinom(n,1,p)

> th <- pmomLM(y=y,x=x,xadj=rep(1,n),niter=10000)

Running MCMC...........Done.

> head(th$postModel)

[,1] [,2]

[1,] 1 0

[2,] 1 0

[3,] 1 0

[4,] 1 0

[5,] 1 1

[6,] 1 0

> table(apply(th$postModel,1,paste,collapse=','))

0,0 0,1 1,0 1,1

237 19 7482 1262

An alternative to pmomLM, which considers all possible models under prod-
uct NLPs, is to compute Bayes factors between pairs of models under additive
NLPs using functions momknown and imomknown.

Before computing Bayes factors, we fit a probit regression model with
the function glm. The maximum likelihood estimates are stored in thetahat

and the asymptotic covariance matrix in V. These functions take as primary
arguments a vector of regression coefficients and their covariance matrix, and
hence they can be used in any setting where one has a statistic that is asymp-
totically sufficient and normally distributed. The resulting Bayes factors are
approximate. The functions also allow for the presence of a dispersion pa-
rameter sigma, i.e. the covariance of the regression coefficients is sigma*V,
but they assume that sigma is known. The probit regression model that
we simulated has no over-dispersion and hence it corresponds to sigma=1.
We first compare the full model with the model resulting from excluding the
second covariate (the first term corresponds to the intercept), setting g = 0.5
for illustration.

> glm1 <- glm(y~x[,1]+x[,2],family=binomial(link = "probit"))

> thetahat <- coef(glm1)

> V <- summary(glm1)$cov.scaled

> g <- .5

> bfmom.1 <- momknown(thetahat[2],V[2,2],n=n,g=g,sigma=1)

> bfimom.1 <- imomknown(thetahat[2],V[2,2],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.1

[,1]

[1,] 4.262401

> bfimom.1

[,1]

[1,] 3.336888

Both priors result in evidence for including the first covariate. We now
check whether the second covariate can be dropped.

> bfmom.2 <- momknown(thetahat[3],V[3,3],n=n,g=g,sigma=1)

> bfimom.2 <- imomknown(thetahat[3],V[3,3],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.2

[,1]

[1,] 0.02784354

> bfimom.2

[,1]

[1,] 0.008250121

Both Mom and iMom BF provide strong evidence in favor of the simpler
model, i.e. excluding x[,2]. To compare the full model with the model
that has no covariates (i.e. only the constant term remains) we use the same
routines, passing a vector as the first argument and a matrix as the second
argument.

> bfmom.0 <- momknown(thetahat[2:3],V[2:3,2:3],n=n,g=g,sigma=1)

> bfimom.0 <- imomknown(thetahat[2:3],V[2:3,2:3],n=n,nuisance.theta=2,g=g,sigma=1)

> bfmom.0

[,1]

[1,] 0.5272556

> bfimom.0

[,1]

[1,] 0.953978

Based on the resulting BF being close to 1, it is not clear whether the full
model is preferable to the model with no covariates.

The BF can be used to easily compute posterior probabilities for each of
the four considered models: no covariates, only x[,1], only x[,2] and both
x[,1] and x[,2]. We assume equal probabilities a priori.

> prior.prob <- rep(1/4,4)

> bf <- c(bfmom.0,bfmom.1,bfmom.2,1)

> pos.prob <- prior.prob*bf/sum(prior.prob*bf)

> pos.prob

[1] 0.090632677 0.732686026 0.004786169 0.171895128

The model with the highest posterior probability is the one including
only x[,1], i.e. the correct model, and the model with the lowest posterior
probability is that including only x[,2].

References

T. Chekouo, F.C. Stingo, J.D. Doecke, and K.-A. Do. mirna–target gene reg-
ulatory networks: A bayesian integrative approach to biomarker selection
with application to kidney cancer. Biometrics, 71(2):428–438, 2015.

Rodrigo A Collazo, Jim Q Smith, et al. A new family of non-local priors for
chain event graph model selection. Bayesian Analysis, (in press), 2016.

G. Consonni and L. La Rocca. On moment priors for Bayesian model choice
with applications to directed acyclic graphs. In J.M. Bernardo, M.J. Ba-
yarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M Smith, and M. West,
editors, Bayesian Statistics 9 - Proceedings of the ninth Valencia interna-
tional meeting, pages 119–144. Oxford University Press, 2010.

J. Fúquene, M.F.J. Steel, and D. Rossell. On choosing mixture components
via non-local priors. arXiv 1604.00314v1, pages 1–43, 2016.

V.E. Johnson and D. Rossell. Prior densities for default bayesian hypothesis
tests. Journal of the Royal Statistical Society B, 72:143–170, 2010.

V.E. Johnson and D. Rossell. Bayesian model selection in high-dimensional
settings. Journal of the American Statistical Association, 24(498):649–660,
2012.

F. Liang, R. Paulo, G. Molina, M.A. Clyde, and J.O. Berger. Mixtures of
g-priors for Bayesian variable selection. Journal of the American Statistical
Association, 103:410–423, 2008.

Amir Nikooienejad, Wenyi Wang, and Valen E Johnson. Bayesian variable
selection for binary outcomes in high dimensional genomic studies using
non-local priors. Bioinformatics, btv764:1–8, 2016.

O. Papaspiliopoulos and D. Rossell. Scalable variable selection and model
averaging under block-orthogonal design. arXiv, pages 1–19, 2016.

D. Rossell and F.J. Rubio. Tractable bayesian variable selection: beyond
normality. arXiV, 1609.01708:1–59, 2016.

D. Rossell and D. Telesca. Non-local priors for high-dimensional estimation.
Journal of the American Statistical Association, (in press):1–33, 2016.

D. Rossell, D. Telesca, and V.E. Johnson. High-dimensional Bayesian clas-
sifiers using non-local priors. In Statistical Models for Data Analysis XV,
pages 305–314. Springer, 2013.

J.G. Scott and J.O Berger. Bayes and empirical Bayes multiplicity adjust-
ment in the variable selection problem. The Annals of Statistics, 38(5):
2587–2619, 2010.

M. Shin, A. Bhattacharya, and V.E. Johnson. Scalable Bayesian variable
selection using nonlocal prior densities in ultrahigh-dimensional settings.
Texas A&M University (technical report), pages 1–33, 2015.

	Basics on non-local priors
	Some default non-local priors
	Variable selection for linear models
	Parameter estimation
	Exact inference for block-diagonal regression
	Bayes factors for generalized linear models

