
Working with Two-Mode Networks in ‘multiplex’

Antonio Rivero Ostoic
School of Business and Social Sciences

Aarhus University

September 3, 2015

Social networks are systems defined by a collection of relationships among collective actors. In terms of

set theory, a relation is an ordered pair such as (x, y) that refers to a directed linkage from an element x

to an element y, where x ∈ X and y ∈ Y called the domain and codomain of the relation. The context of

a binary relation R is the overall relation set that result from the Cartesian product of the domain and

codomain or X × Y of all ordered pairs (x, y) where R is a subset of the context.

Normally a social network refers to a domain with a set of relations on such domain, which is the generic

term used to name the social entities in the system, and in such case, the system of relations is said to be

a one-mode network. However, when the domain and the codomain are not equal there are two sets of

entities that describe the entire social system, which are known as affiliation, bipartite, or else two-mode

networks.

1 Galois representation

In terms of Formal Concept Analysis, the domain and codomain of a two-mode network are characterized

respectively as a set of objects G, and a set of attributes M . A formal context is obtained with an incident

relation I ⊆ G×M between these sets, and this triple is typically represented as a data table.

> ## Fruits data set with attributes

> frt <- data.frame(yellow = c(0,1,0,0,1,0,0,0), green = c(0,0,1,0,0,0,0,1), red = c(1,0,0,1,0,0,0,0),

+ orange = c(0,0,0,0,0,1,1,0), apple = c(1,1,1,1,0,0,0,0), citrus = c(0,0,0,0,1,1,1,1))

> ## Label the objects

> rownames(frt) <- c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious","Lemon","Orange","Mandarin","Lime")

> frt

yellow green red orange apple citrus

PinkLady 0 0 1 0 1 0

GrannySmith 1 0 0 0 1 0

GoldenDelicious 0 1 0 0 1 0

RedDelicious 0 0 1 0 1 0

Lemon 1 0 0 0 0 1

Orange 0 0 0 1 0 1

Mandarin 0 0 0 1 0 1

Lime 0 1 0 0 0 1

1

Certainly another way to obtain such data table of objects and attributes can be with the command

read.table() and specifying the names of the rows. Alternatively the function read.srt() will accom-

plish almost the same by setting the attr argument to TRUE and the toarray argument to FALSE.

> read.table(file, header = TRUE,

+ row.names=c("PinkLady","GrannySmith","GoldenDelicious","RedDelicious","Lemon","Orange","Mandarin","Lime"))

> read.srt(file, header = TRUE, attr = TRUE, toarray = FALSE)

The advantage of the read.srt() function is that the first column does not appear as a “Factor” but it

is automatically taken as the names of the rows in the data table.

Galois derivations

The formal concept of a formal context is a pair of sets of objects A and attributes B that is maximally

contained on each other. A Galois derivation between G and M is defined for any subsets A ⊆ G and

B ⊆M by

A′ = m ∈M | (g,m) ∈ I (for all g ∈ A)

B′ = g ∈ G | (g,m) ∈ I (for all m ∈ B)

where A and B are said to be the extent and intent of the formal concept respectively, whereas A′ is

the set of attributes common to all the objects in the intent and B′ the set of objects possessing the

attributes in the extent.

Starting with version 1.5 it is possible to perform an algebraic analysis of two-mode networks with the

function galois() of multiplex. This command produces an adjunction between the two sets partially

ordered by inclusion, and we obtain the complete list of concepts of the context, which can be assigned

into an object with the class named “Galois” and “full”.

> ## Load first the package

> library("multiplex")

> ## Galois representation between objects and attributes

> galois(frt)

$yellow

[1] "GrannySmith, Lemon"

$green

[1] "GoldenDelicious, Lime"

$`apple, red`

[1] "PinkLady, RedDelicious"

$`citrus, orange`

[1] "Mandarin, Orange"

$apple

[1] "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$citrus

[1] "Lemon, Lime, Mandarin, Orange"

2

$`apple, citrus, green, orange, red, yellow`

character(0)

$`apple, yellow`

[1] "GrannySmith"

$`citrus, yellow`

[1] "Lemon"

$`apple, green`

[1] "GoldenDelicious"

$`citrus, green`

[1] "Lime"

[[12]]

[1] "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

attr(,"class")

[1] "Galois" "full"

It is also possible to condense the labeling of the objects and attributes with the option “reduced” in

the argument labeling of the galois() function.

> gc <- galois(frt, labeling = "reduced")

$reduc

$reduc$yellow

[1] ""

$reduc$green

[1] ""

$reduc$red

[1] "PinkLady, RedDelicious"

$reduc$orange

[1] "Mandarin, Orange"

$reduc$apple

[1] ""

$reduc$citrus

[1] ""

$reduc[[7]]

character(0)

$reduc[[8]]

[1] "GrannySmith"

$reduc[[9]]

[1] "Lemon"

$reduc[[10]]

[1] "GoldenDelicious"

$reduc[[11]]

[1] "Lime"

3

$reduc[[12]]

character(0)

However the full labeling is useful for the construction of the hierarchy of concepts, and it is kept in the

structure of the output given by the Galois derivation.

> str(gc$full)

List of 12

$ yellow : chr "GrannySmith, Lemon"

$ green : chr "GoldenDelicious, Lime"

$ apple, red : chr "PinkLady, RedDelicious"

$ citrus, orange : chr "Mandarin, Orange"

$ apple : chr "GoldenDelicious, GrannySmith, PinkLady, RedDelicious"

$ citrus : chr "Lemon, Lime, Mandarin, Orange"

$ apple, citrus, green, orange, red, yellow: chr(0)

$ apple, yellow : chr "GrannySmith"

$ citrus, yellow : chr "Lemon"

$ apple, green : chr "GoldenDelicious"

$ citrus, green : chr "Lime"

$: chr "GoldenDelicious, GrannySmith, Lemon, Lime, Mandarin, Orange, PinkLady, RedDelicious"

- attr(*, "class")= chr [1:2] "Galois" "full"

Partial ordering of the concepts

A hierarchy of the concepts is given by the relation subconcept–superconcept

(A,B) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B1 ⊆ B2)

For this, the function partial.order() now supports the “galois” option in the type argument where

the hierarchy of the concepts is constructed. In this case, even though the concepts have the “reduced”

option, it is the “full” labeling of the formal concepts that is the base of the ordering among these concepts

that can be designated in different ways.

> ## Partial ordering of the formal concepts with established labels

> pogcc <- partial.order(gc, type = "galois", labels = paste("c", 1:length(gc$full), sep = ""))

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

c1 1 0 0 0 0 0 0 0 0 0 0 1

c2 0 1 0 0 0 0 0 0 0 0 0 1

c3 0 0 1 0 1 0 0 0 0 0 0 1

c4 0 0 0 1 0 1 0 0 0 0 0 1

c5 0 0 0 0 1 0 0 0 0 0 0 1

c6 0 0 0 0 0 1 0 0 0 0 0 1

c7 1 1 1 1 1 1 1 1 1 1 1 1

c8 1 0 0 0 1 0 0 1 0 0 0 1

c9 1 0 0 0 0 1 0 0 1 0 0 1

c10 0 1 0 0 1 0 0 0 0 1 0 1

c11 0 1 0 0 0 1 0 0 0 0 1 1

c12 0 0 0 0 0 0 0 0 0 0 0 1

In the partial order table we can see that all concepts are included in concept 12, whereas concept 7

is included in the rest of the concepts, and hence these are the maxima and the minima of a complete

lattice that includes all these concepts. From the outputs given with the Galois derivation of this context

we can see as well that these concepts correspond to the set of objects and the set of attributes, which

are completely abridged in the reduced formal context.

4

Concept lattice of the context

The concept lattice of the formal context is a system of concepts partially ordered where the greatest

lower bound of the meet and the least upper bound of the join are defined as∧
t∈T

(
At, Bt

)
=
(⋂

t∈T

At,
(⋃
t∈T

Bt

)′′)
∨
t∈T

(
At, Bt

)
=
((⋃

t∈T

At

)′′
,
⋂
t∈T

Bt

)

We plot this type of lattice diagram with the labeling corresponding to the reduced context.

> ## First we assign the partial order of the reduced context to 'pogc'

> pogc <- partial.order(gc, type = "galois")

> ## Plot the lattice diagram

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram(pogc)

+ }

{yellow} {} {green} {}

{red} {PinkLady, RedDelicious} {orange} {Mandarin, Orange}

{apple} {} {citrus} {}

7

{} {GrannySmith} {} {Lemon}{} {GoldenDelicious} {} {Lime}

12

Figure 1: Concept Lattice of the fruits and their characteristics

Notice that the both objects and attributes not only are given just once (since this is a reduced repre-

sentation of the context), but the labels are placed instead of the nodes rather than next to them as the

typical representation of formal context. Moreover in case that a concept does not have a label, which

happens in reduced contexts, then the number of the concept is placed rather than leave blank the node.

5

2 Diagram levels & Filters

The construction of the concept lattice of the context allows us to have additional information about the

network relational structure. One part is concerned with the inclusion levels in the lattice structure, and

another aspect deals with downsets and upsets, which are formed from all the lower and greater bounds

of an element in the lattice diagram. Next, we take a brief look at the suitable functions to get such

information.

Levels in the lattice diagram

Particularly when dealing with large diagrams, it can be difficult to distinguish the different heights in

the lattice and the elements belonging to each level. Function diagram.levels() allows us to count with

such information, and we illustrate this routine with the entry pogcc that represents the partial order of

the concepts corresponding to the fruits data set.

> ## Diagram levels

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram.levels(pogcc) }

2 2 3 3 2 2 4 3 3 3 3 1

1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

Hence concepts 7 and 12 make a class of their own, whereas the rest of the concepts belong either to class

2 or to class 3.

By setting perm to TRUE, we obtain the different classes in the lattice structure in a convenient way, and

also a permuted partial order table according to the clustering.

> ## Diagram levels with permutation

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram.levels(pogcc, perm = TRUE) }

$cls

2 2 3 3 2 2 4 3 3 3 3 1

1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

$clu

[1] 2 2 3 3 2 2 4 3 3 3 3 1

$perm

c12 c1 c2 c5 c6 c3 c4 c8 c9 c10 c11 c7

c12 1 0 0 0 0 0 0 0 0 0 0 0

c1 1 1 0 0 0 0 0 0 0 0 0 0

c2 1 0 1 0 0 0 0 0 0 0 0 0

c5 1 0 0 1 0 0 0 0 0 0 0 0

c6 1 0 0 0 1 0 0 0 0 0 0 0

c3 1 0 0 1 0 1 0 0 0 0 0 0

c4 1 0 0 0 1 0 1 0 0 0 0 0

c8 1 1 0 1 0 0 0 1 0 0 0 0

c9 1 1 0 0 1 0 0 0 1 0 0 0

c10 1 0 1 1 0 0 0 0 0 1 0 0

c11 1 0 1 0 1 0 0 0 0 0 1 0

c7 1 1 1 1 1 1 1 1 1 1 1 1

6

Filters and Ideals

Implications among objects and attributes in an arbitrary partially ordered set representing context are

revealed by subsets in the order structure.

Let (P,≤) be an ordered set, and a, b are elements in P .

A non-empty subset U [resp. D] of P is an upset [resp. downset] called a filter [resp. ideal] if, for all

a ∈ P and b ∈ U [resp. D]

b ≤ a implies a ∈ U [resp. a ≤ b implies a ∈ D]

For a particular element x ∈ P , the upset ↑x formed for all the upper bounds of x is called a principal

filter generated by x. Dually, ↓ x is a principal ideal with all the lower bounds of x. Filters and ideals

not coinciding with P are called proper.

To illustrate these concepts, we apply the function fltr() of multiplex v.1.7 to the third element of

the partial order represented by pogcc that results in a proper principal filter for this element.

> ## Principal filter of third concept

> fltr(3, pogcc)

$`3`

[1] "c3"

$`5`

[1] "c5"

$`12`

[1] "c12"

In order to get the labels of the different concepts made of objects and attributes, we apply this function

rather to object pogc, which embodies the partial order of the reduced context.

> ## Principal filter of third concept with labels

> fltr(3, pogc)

$`3`

[1] "{red} {PinkLady, RedDelicious}"

$`5`

[1] "{apple} {}"

$`12`

[1] "12"

And in this latter case we get the same result by writing

> fltr("red", pogc)

However, full labeling in the Galois derivation typically brings misleading results with the label option.

7

Principal ideals are obtained with the same function provided that the argument ideal is set to TRUE in

this function.

> ## Principal ideal of the third concept

> fltr(3, pogc, ideal = TRUE)

$`3`

[1] "{red} {PinkLady, RedDelicious}"

$`7`

[1] "7"

3 Bipartite graphs

Two-mode network are depicted through bipartite graphs, where the entities can be related only to the

elements placed in the other set. One way to produce bipartite graphs with multiplex is by plotting an

isomorphic lattice diagram to the bipartite graph. For this we need to construct a square matrix with

both the domain and codomain where the binary ties among these are taken as inclusion relations.

For the creation of such matrix we can use the transf() function that starting with version 1.5 supports

rectangular arrays. Hence with the option “matlist” of this function we transform the data frame of

the formal context into a “list of pairs” with the relations between objects and their attributes. It is

convenient to preserve the labels in the transformation, and when assigning the output into an object we

make sure that the option lb2lb is set to TRUE.

> lstfrt <- transf(frt, type = "matlist", lb2lb = TRUE)

[1] "GoldenDelicious, apple" "GoldenDelicious, green" "GrannySmith, apple" "GrannySmith, yellow"

[5] "Lemon, citrus" "Lemon, yellow" "Lime, citrus" "Lime, green"

[9] "Mandarin, citrus" "Mandarin, orange" "Orange, citrus" "Orange, orange"

[13] "PinkLady, apple" "PinkLady, red" "RedDelicious, apple" "RedDelicious, red"

Now if we transform again the list of pairs into a “matrix” then we obtain the square array that can

be used to produce a lattice diagram isomorphic to the bipartite graph of the network. Since R is case

sensitive, the output of this transformation differentiates “orange” from “Orange”; otherwise there is a

mix of the color with the fruit that will not produce a diagram isomorphic to the bipartite graph.

> mlstfrt <- transf(lstfrt, type = "listmat", lb2lb = TRUE)

apple citrus GoldenDelicious GrannySmith green Lemon Lime Mandarin orange Orange PinkLady red RedDelicious yellow

apple 0 0 0 0 0 0 0 0 0 0 0 0 0 0

citrus 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GoldenDelicious 1 0 0 0 1 0 0 0 0 0 0 0 0 0

GrannySmith 1 0 0 0 0 0 0 0 0 0 0 0 0 1

green 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lemon 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Lime 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Mandarin 0 1 0 0 0 0 0 0 1 0 0 0 0 0

orange 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Orange 0 1 0 0 0 0 0 0 1 0 0 0 0 0

PinkLady 1 0 0 0 0 0 0 0 0 0 0 1 0 0

red 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RedDelicious 1 0 0 0 0 0 0 0 0 0 0 1 0 0

yellow 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8

Notice that this array is a matrix that is asymmetric, and this condition is essential if we want to obtain

a partial ordering that leads to the lattice diagram isomorphic to the bipartite graph of the network.

Symmetric data structures only consider mutual inclusions without any level differentiation, and hence

there will be no lines in the lattice diagram.

If we plot the diagram corresponding to this table, we obtain the lattice diagram that is isomorphic to

the bipartite graph of the network.

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram(mlstfrt)

+ }

apple citrus

GoldenDelicious GrannySmith

green

LemonLime Mandarin

orange

OrangePinkLady

red

RedDelicious

yellow

Figure 2: Bipartite graph of the fruit characteristics

Obviously, by transposing the matrix we produce inclusions from the attributes into the objects of the

context.

> if(require("Rgraphviz", quietly = TRUE)) {
+ diagram(t(mlstfrt))

+ }

9

apple citrus

GoldenDelicious GrannySmith

green

LemonLime Mandarin

orange

OrangePinkLady

red

RedDelicious

yellow

Figure 3: Transpose depiction of the Bipartite graph

References

[1] Ganter, B. and R. Wille Formal Concept Analysis – Mathematical Foundations. Springer. 1996.

[2] Gentry, J, L. Long, R. Gentleman, S. Falcon, F. Hahne, D. Sarkar, and K.D. Hansen Rgraphviz:

Provides plotting capabilities for R graph objects. R package version 2.12.0

[3] Ostoic, J.A.R. multiplex: Analysis of Multiple Social Networks with Algebra. R package version 1.7

10

