
Package examples for networkDynamic: Dynamic

Extensions for Network Objects
Version 0.5

Carter T. Butts, Skye Bender-deMoll, Ayn Leslie-Cook,

Pavel N. Krivitsky, Zack Almquist, David R. Hunter,

Martina Morris

September 6, 2013

Contents

1 Introduction 2

2 How to start and end relationships easily 3

2.1 Activating edges . 3
2.2 Peeking back in time . 4

3 Birth, Death, Reincarnation and other ways for vertices to en-

ter and leave networks 6

3.1 Activating vertices . 6
3.2 Deactivating elements . 7

4 “Spells”: the magic under the hood 8

4.1 How we save time . 8
4.2 Multiple spells != multiplex . 10

5 Differences between Discrete and Continuous data 10

5.1 You might be discrete if... 10
5.2 You might be continuous if... 11
5.3 Comparing models . 11

6 Show me how it was: extracting static views of dynamic net-

works 13

6.1 Testing for activity . 13
6.2 Listing active elements . 13
6.3 Are regular network objects active? 14
6.4 Basic descriptives . 15
6.5 Collapsing a network vs. extracting it 15
6.6 Wiping the slate: removing activity information 17

1

6.7 Differences between “any” and “all’ aggregation rules 18

7 Squooshing data into networkDynamic objects 19

7.1 But my data are panels of network matrices... 19
7.2 Converting from toggles. 22
7.3 Batteries and tergm example not included 24
7.4 Converting a stream of spells: McFarland’s classroom interactions 25

8 Persistent IDs 28

9 Transforming networkDynamic objects to other representations 31

9.1 Converting to lists of spells . 31
9.2 Converting to a list of networks or matrices 32

10 Dynamic attributes 33

10.1 Activating TEA attributes . 33
10.2 Querying TEA attributes . 34
10.3 Modifying TEAs . 37

11 Making Lin Freeman’s windsurfers gossip 38

11.1 A toy diffusion model . 39
11.2 Go! . 40
11.3 OK, what happened? . 41
11.4 Picturing the rumor tree . 43

12 Related packages and other coming attractions 45

13 Citing networkDynamic 45

14 Vocabulary definitions 46

15 Complete package function listing 47

1 Introduction

The networkDynamic package provides support for a simple family of dynamic
extensions to the network (Butts, 2008) class; these are currently accomplished
via the standard network attribute functionality (and hence the resulting ob-
jects are still compatible with all conventional routines), but greatly facilitate
the practical storage and utilization of dynamic network data. The dynamic
extensions are motivated in part by the need to have a consistent data format
for exchanging data, storing the inputs and outputs to relational event models,
statistical estimation and simulation tools such as ergm (Hunter et al., 2008b)
and tergm (Krivitsky P and Handcock M , 2013), and dynamic visualizations.

The key features of the package provide basic utilities for working with net-
works in which:

2

❼ Vertices have ‘activity’ or ‘existence’ status that changes over time (they
enter or leave the network)

❼ Edges which appear and disappear over time

❼ Arbitrary attribute values attached to vertices and edges that change over
time

❼ Meta-level attributes of the network which change over time

❼ Both continuous and discrete time models are supported, and it is possible
to effectively blend multiple temporal representations in the same object

In addition, the package is primarily oriented towards handling the dynamic
network data inputs and outputs to network statistical estimation and simula-
tion tools like statnet and tergm. This document will provide a quick overview
and use demonstrations for some of the key features. We assume that the reader
is already familiar with the use and features of the network package.

Note: Although networkDynamic shares some of the goals (and authors) of
the experimental and quite confusable dynamicNetwork package (Bender-deMoll
et al., 2008), they are are incompatible.

2 How to start and end relationships easily

A very quick condensed example of starting and ending edges to show why it is
useful and some of the alternate syntax options.

2.1 Activating edges

The standard assumption in the network package and most sociomatrix rep-
resentations of networks is that an edge between two vertices is either present
or absent. However, many of the phenomena that we wish to describe with
networks are dynamic rather than static processes, having a set of edges which
change over time. In some situations the edge connecting a dyad may break
and reform multiple times as a relationship is ended and re-established. The
networkDynamic package adds the concept of ‘activation spells’ for each element
of a network object. Edges are considered to be present in a network when they
are active, and treated as absent during periods of inactivity. After a relation-
ship has been defined using the normal syntax or network conversion utilities, it
can be explicitly activated for a specific time period using the activate.edges
methods. Alternatively, edges can be added and activated simultaneously with
the add.edges.active helper function.

> library(networkDynamic) # load the dynamic extensions

> triangle <- network.initialize(3) # create a toy network

> add.edge(triangle,1,2) # add an edge between vertices 1 and 2

> add.edge(triangle,2,3) # add a more edges

3

> activate.edges(triangle,at=1) # turn on all edges at time 1 only

> activate.edges(triangle,onset=2, terminus=3,

+ e=get.edgeIDs(triangle,v=1,alter=2))

> add.edges.active(triangle,onset=4, length=2,tail=3,head=1)

Notice that the activate.edges method refers to the relationship using
the e argument to specify the ids of the edges to activate. To be safe, we
are looking up the ids using the get.edgeIDs method with the v and alter

arguments indicating the ids of the vertices involved in the edge. The onset

and terminus parameters give the starting and ending point for the activation
period (more on this and the at syntax later). When a network object has
dynamic elements added, it also gains the networkDynamic class, so it is both
a network and networkDynamic object.

> class(triangle)

[1] "networkDynamic" "network"

> print(triangle)

NetworkDynamic properties:

distinct change times: 5

maximal time range: 1 to 6

Network attributes:

vertices = 3

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 3

missing edges= 0

non-missing edges= 3

Vertex attribute names:

vertex.names

Edge attribute names:

active

2.2 Peeking back in time

After the activity spells have been defined for a network, it is possible to extract
views of the network at arbitrary points in time using the network.extract

function in order to calculate traditional graph statistics.

4

> degree<-function(x){as.vector(rowSums(as.matrix(x))

+ +colSums(as.matrix(x)))} # handmade degree function

> degree(triangle) # degree of each vertex, ignoring time

[1] 2 2 2

> degree(network.extract(triangle,at=0))

[1] 0 0 0

> degree(network.extract(triangle,at=1)) # just look at t=1

[1] 1 2 1

> degree(network.extract(triangle,at=2))

[1] 1 1 0

> degree(network.extract(triangle,at=5))

[1] 1 0 1

> degree(network.extract(triangle,at=10))

[1] 0 0 0

The vertex degrees at each extracted time point are different what would be
expected for the “timeless” network. When the network was sampled outside of
the defined time range (at 0 and 10) it returned degrees of 0, suggesting that
no edges are present at all. It may be helpful to plot the networks to help
understand what is going on. The plots below show the result of the standard
plot command (plot.network.default) for the triangle, as well as plots of the
network at specific time points.

> par(mfrow=c(2,2)) #show multiple plots

> plot(triangle,main=✬ignoring dynamics✬,displaylabels=T)

> plot(network.extract(

+ triangle,onset=1,terminus=2),main=✬at time 1✬,displaylabels=T)

> plot(network.extract(

+ triangle,onset=2,terminus=3),main=✬at time 2✬,displaylabels=T)

> plot(network.extract(

+ triangle,onset=5,terminus=6),main=✬at time 5✬,displaylabels=T)

5

ignoring dynamics

1
2

3

at time 1

1

2

3

at time 2

1

2

3

at time 5

1

2
3

3 Birth, Death, Reincarnation and other ways

for vertices to enter and leave networks

3.1 Activating vertices

Many network models need the ability to specify activity spells for vertices in
order to account for changes in the population due to ‘vital dynamics’ (births
and deaths) or other types of entrances and exits from the sample popula-
tion. In networkDynamic activity spells for a vertex can be specified using the
activate.vertices methods. Like edges, vertices can have multiple spells of
activity. If we build on the triangle example:

> activate.vertices(triangle,onset=1,terminus=5,v=1)

> activate.vertices(triangle,onset=1,terminus=10,v=2)

> activate.vertices(triangle,onset=4,terminus=10,v=3)

> network.size.active(triangle,at=1) # how big is it?

[1] 2

> network.size.active(triangle,at=4)

6

[1] 3

> network.size.active(triangle,at=5)

[1] 2

Using the network.size.active function shows us that specifying the activity
ranges has effectively changed the sizes (and corresponding vertex indices–more
on that later) of the network. Notice also that we’ve created contradictions in
the definition of this hand-made network, for example stating that vertex 3 isn’t
active until time 4 when earlier we said that there were ties between all nodes
at time 1. The package does not prohibit these kinds of paradoxes, but it does
provide a utility to check for them.

> network.dynamic.check(triangle)

Edges were found active where the endpoints where not in edge(s) 2 3.

$vertex.checks

[1] TRUE TRUE TRUE

$edge.checks

[1] TRUE TRUE TRUE

$dyad.checks

[1] TRUE FALSE FALSE

$vertex.tea.checks

[1] TRUE TRUE TRUE

$edge.tea.checks

[1] TRUE TRUE TRUE

$network.tea.checks

[1] TRUE

$net.obs.period.check

NULL

3.2 Deactivating elements

In this case, we can resolve the contradictions by explicitly deactivating the
edges involving vertex 3:

> deactivate.edges(triangle,onset=1,terminus=4,

+ e=get.edgeIDs(triangle,v=3,neighborhood="combined"))

> network.dynamic.check(triangle)

7

Edges were found active where the endpoints where not in edge(s) 3.

$vertex.checks

[1] TRUE TRUE TRUE

$edge.checks

[1] TRUE TRUE TRUE

$dyad.checks

[1] TRUE TRUE FALSE

$vertex.tea.checks

[1] TRUE TRUE TRUE

$edge.tea.checks

[1] TRUE TRUE TRUE

$network.tea.checks

[1] TRUE

$net.obs.period.check

NULL

The deactivation methods for vertices,deactivate.vertices, works the same
way, but it accepts a v= parameter to indicate which vertices should be modified
instead of the e= parameter.

4 “Spells”: the magic under the hood

In which we provide a brief glimpse into the underlying data structures.

4.1 How we save time

There are many possible ways of representing change in an edge set over time.
Several of the most commonly used are:

❼ A series of networks or network matrices representing the state of the
network at sequential time points

❼ An initial network and a list of edge toggles representing changes to the
network at specific time points

❼ A collection of ‘spell’ intervals giving the onset and termination times of
each element in the network they are attached to

❼ A set of multiplex edges with time values attached.

8

This package uses the spell representation, and stores the spells as a perfectly
normal but specially named active attributes on the network. These attributes
are a 2-column spell matrix in which the first column gives the onset, the second
the terminus, and each row defines an additional activity spell for the network
element. For more information, see ?activity.attribute. As an example, to
peek at the spells defined for the vertices:

> get.vertex.activity(triangle) # vertex spells

[[1]]

[,1] [,2]

[1,] 1 5

[[2]]

[,1] [,2]

[1,] 1 10

[[3]]

[,1] [,2]

[1,] 4 10

> get.edge.activity(triangle) # edge spells

[[1]]

[,1] [,2]

[1,] 1 1

[2,] 2 3

[[2]]

NULL

[[3]]

[,1] [,2]

[1,] 4 6

Notice that the first edge has a 2-spell matrix where the first spell extends
from time 1 to time 1 (a zero-duration or instantaneous spell), and the second
from time 2 to time 3 (a “unit length” spell. More on this below). The third
edge has the interesting special “null” spell c(Inf,Inf) defined to mean ‘never
active‘ which was produced when we deleted the activity associated with the
3rd edge.

Within this package, spells are assumed to be ‘right-open’ intervals, meaning
that the spell includes its lower bound but not its upper bound. For example,
the spell [2,3) covers the range between t>=2 and t<3. Another way of thinking

9

of it is that terminus means “until”. So the spell ranges from 2 until 3, but does
not include 3.

Although it would certainly be possible to directly modify the spells stored
in the active attributes, it is much safer to use the various activate and
deactivate methods to ensure that the spell matrix remains in a correctly de-
fined state. The goal of this package is to make it so that it is rarely necessary
to work with spells, or even worry very much about the underlying data struc-
tures. It should be possible to use the provided utilities to convert between the
various representations of dynamic networks. However, even if the details of
data structure can be ignored, it is still important to be very clear about the
underlying temporal model of the network you are working with.

4.2 Multiple spells != multiplex

One of the features that makes the network package so flexible is that it allows
multiplex edges. This means that a pair (or set ...) of vertices can be linked by
multiple “parallel” edges. Often this is used as a way to store several different
kinds of relations within the same network object. It is important to be clear
that, as we have defined it, having multiplex edges between vertices is not the
same thing as an edge with multiple activity spells. It is entirely possible to
activate multiple edges between a vertex pair with different spell values in order
to attach relationship-specific timing information for situations where this an
appropriate and useful representation.

5 Differences between Discrete and Continuous

data

Its 2 AM on Tuesday. Do you know what your temporal model is? Does 2 AM
mean 2:00 AM, or from 2:00 to 2:59:59? We discuss this below, as well as other
existential questions such as the differences between “at” and “onset, terminus”
syntax.

There are two key approaches to representing time when measuring some-
thing.

5.1 You might be discrete if...

The discrete model thinks of time as equal chunks, ticks, discrete steps, or
panels. To measure something we count up the value of interest for that chunk.
Discrete time is expressed as series of integers. We can refer to the 1st step,
the 365th step, but there is no concept of ordering of events within steps and
we can’t have fractional steps. A discrete time simulation can never move its
clock forward by half-a-tick. As long as the steps can be assumed to be the
same duration, there is no need to worry about what the duration actually is.
This model is very common in the traditional social networks world. Sociometric
survey data may aggregated into a set of weekly network “panels”, each of which

10

is thought of as a discrete time step in the evolution of the network. We ignore
the exact timing of what minute each survey was completed, so that we can
compare the week-to-week dynamics.

5.2 You might be continuous if...

In a continuous model, measurements are thought of as taking place at an
instantaneous point in time (as precisely as can be reasonably measured). Events
may have specific durations, but they will almost never be integers. Instead of
being present in week 1 and absent in week 2 a relationship starts on Tuesday
at 7:45 PM and ends on Friday at 10:01 AM. Continuous time models are useful
when the the ordering of events is important. It still may be useful to represent
observations in panels or measure time in integer units, but we must assume
that the state of the network could have changed between our observation at
noon on Friday of week 1 and noon on Friday of week 2.

5.3 Comparing models

Although underlying data model for the networkDynamic package is continuous
time, discrete time models can easily be represented. But it is important to
be clear about what model you are using when interpreting measurements. For
example, the activate.vertex methods can be called using an onset=t and
terminus=t+1 style, or an at=t style (which converts internally to onset=t ,
terminus=t). Here are several ways of representing the similar time information
for an edge lasting two time steps:

> disc <- network.initialize(2)

> disc[1,2]<-1

> activate.edges(disc,onset=4,terminus=6) # terminus = t+1

> is.active(disc,at=4,e=1)

[1] TRUE

> is.active(disc,at=5,e=1)

[1] TRUE

> is.active(disc,at=6,e=1)

[1] FALSE

Remember that the edge is not active at time 6, because we specified that it is
only active until time 6. And since we are thinking of this as a discrete network,
we shouldn’t ask if the edge is active at t=5.5 (but it is).

11

> is.active(disc,at=5.5,e=1)

[1] TRUE

If we really wanted it to be active at time 6, we’d have to think of it as a
continuous network and add on a tiny smidgen of time 1.

> cont <- network.initialize(2)

> cont[1,2]<-1

> activate.edges(cont,onset=3.0,terminus=6.0001)

> is.active(cont,at=4,e=1)

[1] TRUE

> is.active(cont,at=6,e=1)

[1] TRUE

> is.active(cont,at=6.5,e=1)

[1] FALSE

We could also chose to represent each measurement as the point in time at
which the edge was observed.

> point <- network.initialize(2) # continuous waves

> point[1,2]<-1

> activate.edges(point,at=4)

> activate.edges(point,at=5)

> is.active(point,at=4,e=1)

[1] TRUE

> is.active(point,at=4.5,e=1) # this doesn✬t makes sense

[1] FALSE

> is.active(point,at=4,e=1)

[1] TRUE

In short, networkDynamic provides some great tools, but you need to think
carefully about how time is measured in your data to get correct results.

1Sometimes a tiny bit of time can get added on due to floating point rounding errors. In
rare cases this causes problems in spell comparisons where spells don’t match even though it
seems they should. This happens because many decimal numbers do not have exact binary
equivalents. For example, 1.0-0.9-0.1 = -2.775558e-17 , not 0 as we might expect. So according
to the rules of floating point math, 3.6125 != (289*0.0125).

12

6 Show me how it was: extracting static views

of dynamic networks

Because working with spells correctly can be complicated, the package provides
utility methods for dynamic versions of common network operations. View the
help page at ?network.extensions for full details and arguments.

6.1 Testing for activity

As is probably already apparent, the activity range of a vertex, set of vertices,
edge, or set of edges can be tested using the is.active method by including a
time range and list of vertexIDs or edgeIDs to check.

> is.active(triangle, onset=1, length=1,v=2:3)

[1] TRUE FALSE

> is.active(triangle, onset=1, length=1,e=get.edgeIDs(triangle,v=1))

[1] TRUE

6.2 Listing active elements

Depending on the end use, a more convenient way to express these queries might
be to use utility functions to retrieve the ids of the network elements of interest
that are active for that time range.

> get.edgeIDs.active(triangle, onset=2, length=1,v=1)

[1] 1

> get.neighborhood.active(triangle, onset=2, length=1,v=1)

[1] 2

> is.adjacent.active(triangle,vi=1,vj=2,onset=2,length=1)

[1] TRUE

These methods of course accept the same additional arguments as their
network counterparts.

13

6.3 Are regular network objects active?

What happens when we ask about the activity of a regular network object? Or
what if only some vertices or edges in a networkDynamic object have activity
attributes defined? Many functions include the active.default parameter for
controlling how elements without spells should be treated. If the parameter
is not explicitly given (active.default=TRUE), they will behave as if they are
active from -Inf to Inf.

> static<-network.initialize(3)

> is.active(static,at=100,v=1:3)

[1] TRUE TRUE TRUE

> is.active(static,at=100,v=1:3,active.default=FALSE)

[1] FALSE FALSE FALSE

> dynamic<-activate.vertices(static,onset=0,terminus=200,v=2)

> is.active(dynamic,at=100,v=1:3)

[1] TRUE TRUE TRUE

> is.active(dynamic,at=100,v=1:3,active.default=FALSE)

[1] FALSE TRUE FALSE

The active.default parameter doesn’t alter the activity of elements that have
been explicitly deactivated and are represented by the “null spell” (Inf,Inf).

> inactive<-network.initialize(2)

> deactivate.vertices(inactive,onset=-Inf,terminus=Inf,v=2)

> is.active(inactive,onset=Inf,terminus=Inf,v=1:2,active.default=TRUE)

[1] TRUE FALSE

14

6.4 Basic descriptives

In some contexts, especially writing simulations on a network that can work in
both discrete and continuous time, it may be important to know all the time
points at which the structure of the network changes. The package includes a
function get.change.times that can return a list of times for the entire network,
or edges and vertices independently:

> get.change.times(triangle)

[1] 1 2 3 4 5 6 10

> get.change.times(triangle,vertex.activity=FALSE)

[1] 1 2 3 4 6

> get.change.times(triangle,edge.activity=FALSE)

[1] 1 4 5 10

We have also implemented dynamic versions of the basic network functions
network.size and network.edgecount which accept the standard activity pa-
rameters:

> network.size.active(triangle,onset=2,terminus=3)

[1] 2

> network.edgecount.active(triangle,at=5)

[1] 1

6.5 Collapsing a network vs. extracting it

We’ve already introduced the network.extract function which can extract a
sub-range of time from a networkDynamic and return it as a networkDynamic.

> get.change.times(triangle)

[1] 1 2 3 4 5 6 10

15

> network.edgecount(triangle)

[1] 3

> notflat <- network.extract(triangle,onset=1,terminus=3,trim.spells=TRUE)

> is.networkDynamic(notflat)

[1] TRUE

> network.edgecount(notflat) # did we lose edge2?

[1] 1

> get.change.times(notflat)

[1] 1 2 3

By default, the network.extract function returns a networkDynamic object
with the subset of edges in the original network that are active during the query
period. The trim.spells parameter tells it to take the more computationally
expensive step of actually modifying the activity spells in all of the network
elements to trim them to the specified range.

There is also a network.collapse function which extracts the appropriate
range and returns a static network object with the timing information removed.

> flat <-network.collapse(triangle,onset=1,terminus=3)

> is.networkDynamic(flat)

[1] FALSE

> get.change.times(flat)

numeric(0)

> network.edgecount(flat)

[1] 1

> list.edge.attributes(flat)

16

[1] "na"

If the argument rm.time.info=FALSE , the network.collapse function also
adds actiactivity.count and activity.duration attributes to the vertices
and edges to give a crude summary of the timing information that has been
removed. However, the duration information does not take into account possible
censoring of ties at the beginning and end of the network observation time
period.

> flat <-network.collapse(triangle,onset=1,terminus=3,rm.time.info=FALSE)

> flat%v%✬activity.duration✬

[1] 2 2

> flat%e%✬activity.count✬

[1] 2

> flat%e%✬activity.duration✬

[1] 1

6.6 Wiping the slate: removing activity information

Most network methods will ignore the timing information on a networkDynamic
object. However, there may be situations where it is desirable to remove all of
the timing information attached to a networkDynamic object. (Note: this is not
the same thing as deactivating elements of the network.) This can be done us-
ing the delete.edge.activity and delete.vertex.activity functions which
accept arguments to specify which elements should have the timing information
deleted.

> delete.edge.activity(triangle)

> delete.vertex.activity(triangle)

> get.change.times(triangle)

numeric(0)

> get.vertex.activity(triangle)

17

[[1]]

[,1] [,2]

[1,] -Inf Inf

[[2]]

[,1] [,2]

[1,] -Inf Inf

[[3]]

[,1] [,2]

[1,] -Inf Inf

Although the timing information of the edges and/or vertices may be re-
moved, other networkDynamic methods will assume activity or inactivity across
all time points, based on the argument active.default.

6.7 Differences between “any” and “all’ aggregation rules

In addition to the point-based (at syntax) or unit interval (length=1) activity
tests and extraction operations used in most examples so far, the methods also
support the idea of a “query spell’ specified using the same onset and terminus
syntax. So it is also possible (assuming it makes sense for the network being
studied) to use length=27.52 or onset=0, terminus=256.

Querying with a time range does raise an issue: how should we handle situa-
tions where edges or vertices have spells that begin or end part way through the
query spell? Although other potential rules have been proposed, the methods
currently include a rule argument that can take the values of any (the default)
or all. The former returns elements if they are active for any part of the query
spell, and the later only returns elements if they are active for the entire range
of the query spell.

> query <- network.initialize(2)

> query[1,2] <-1

> activate.edges(query, onset=1, terminus=2)

> is.active(query,onset=1,terminus=2,e=1)

[1] TRUE

> is.active(query,onset=1,terminus=3,rule=✬all✬,e=1)

[1] FALSE

> is.active(query,onset=1,terminus=3,rule=✬any✬,e=1)

[1] TRUE

18

7 Squooshing data into networkDynamic objects

Obviously for most non-trivial data-sets it doesn’t make sense to write out long
lists of each edge and vertex to be added and removed. The package includes
some handy conversion tools for moving from some common representations of
network dynamics to a networkDynamic object.

Currently, the networkDynamic() conversion function importing edge and
vertex timing information from the following formats:

lists of networks A list of network objects assumed to describe sequential
panels of network observations. Network sizes may vary if some vertices
are only active in certain panels.

spells A matrix or data.frame of spells specifying edge timing. Assumed to be
[onset,terminus,vertex.id] for vertices and [onset,terminus,tail ver-

tex.id, head vertex.id] for edges.

toggles A matrix or data.frame of toggles giving a sequence of activation and
deactivation times for toggles. Columns are assumed to be [toggle time,vertex.id]

for vertices and [toggle time, tail vertex id of the edge, head ver-

tex id of the edge] for edges.

changes Like toggles, but with an additional direction column indicating 1

if the toggle should change the element state to active and 0 if it should
be deactivated.

Please see ?networkDynamic for full parameter explanations. The sections
below give some more in-depth examples.

7.1 But my data are panels of network matrices...

Researchers frequently have network data in the form of network panels or
“stacks” of network matrices. The networkDynamic package includes one such
classic dynamic network data-set in this format: Newcomb’s Fraternity Net-
works. The data are 14 panel observations of friendship preference rankings
among fraternity members in a 1956 sociology study. (For more details, see
?newcomb.) This network is a useful example because it has edge weights that
change over time and the newcomb.rank version has asymmetric rank choice
ties2.

> require(networkDynamic)

> data(newcomb) # load the data

> length(newcomb) # how many networks?

[1] 14

2The attributes of individual panels will be converted to dynamic attributes, see the section
on TEAs

19

> is.network(newcomb[[1]]) # is it really a network?

[1] TRUE

> as.sociomatrix(newcomb[[1]]) # peek at sociomatrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1

2 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1

3 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1

4 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1

5 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1

6 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1

7 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1

8 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1

9 1 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0 1

10 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1

11 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1

12 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1

13 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1

14 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0

15 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1

16 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1

17 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0

> newcombDyn <- networkDynamic(network.list=newcomb) # make dynamic

Neither start or onsets specified, assuming start=0

Onsets and termini not specified, assuming each network in network.list should have a discre

Argument base.net not specified, using first element of network.list instead

Created net.obs.period to describe network

Network observation period info:

Number of observation spells: 1

Maximal range of observations: 0 to 14

Temporal mode: discrete

Time unit: step

Suggested time increment: 1

> get.change.times(newcombDyn)

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

20

When converting panel data in this form, as.networkDynamic assumes that
the panels should be assigned times of unit intervals starting at t=0, so the first
panel is given the spell [0,1), the second [1,2), etc. This is important because if
you use “at” query syntax the time does not correspond to the panel index.

> all(as.sociomatrix(newcomb[[5]]) ==

+ as.sociomatrix(network.extract(newcombDyn,at=5)))

[1] FALSE

> all(as.sociomatrix(newcomb[[5]]) ==

+ as.sociomatrix(network.extract(newcombDyn,at=4)))

[1] TRUE

>

If this isn’t consistent with how you would like to model your data, you
can use the onsets and termini parameters to provide timings for each of the
panels. This is also useful if we want to be explicit about the gap in observations
due to the missing week 9.

> newcombGaps <- networkDynamic(network.list=newcomb,

+ onsets=c(1:8,10:15),termini=c(2:9,11:16))

Argument base.net not specified, using first element of network.list instead

Created net.obs.period to describe network

Network observation period info:

Number of observation spells: 14

Maximal range of observations: 1 to 16

Temporal mode: continuous

Time unit: unknown

Suggested time increment: NA

> get.vertex.activity(newcombGaps)[[1]] # peek at spells for v1

[,1] [,2]

[1,] 1 9

[2,] 10 16

We can also store some descriptive meta-data for the network:

> nobs <-get.network.attribute(newcombGaps,✬net.obs.period✬)

> names(nobs)

21

[1] "observations" "mode" "time.increment" "time.unit"

> nobs$✬time.unit✬<-✬week✬

> nobs$✬mode✬<-✬discrete✬

> nobs$✬time.increment✬<-1

> set.network.attribute(newcombGaps,✬net.obs.period✬,nobs)

7.2 Converting from toggles.

Sometimes dynamic network data from a simulation process arrives in an effi-
cient “toggle” format. The edge dynamics of the network can be expressed as a
three-column matrix giving simply the time at which an edge changes, and the
vertices at either end of the edge. Because it doesn’t say if the edge is turned
on or off (see the “changes” format for that) we also need an initial network to
give the starting state for each of the edges.

Usually this kind of input would come from the low-level output of a simula-
tion, but we can create a crude synthetic data-set to demonstrate the conversion.
Lets say we have a network of size 10, and at each time step we want a single
randomly chosen edge to turn on or off, and we will do this 1000 times.

> toggles <-cbind(time=1:1000,

+ tail=sample(1:10,1000,replace=TRUE),

+ head=sample(1:10,1000,replace=TRUE))

> head(toggles) # peek at begining

time tail head

[1,] 1 3 1

[2,] 2 3 3

[3,] 3 7 7

[4,] 4 7 9

[5,] 5 1 3

[6,] 6 1 2

> empty<-network.initialize(10,loops=TRUE) # to define initial states

> randomNet <-networkDynamic(base.net=empty,edge.toggles=toggles)

Created net.obs.period to describe network

Network observation period info:

Number of observation spells: 1

Maximal range of observations: 1 to 1000

Temporal mode: discrete

Time unit: step

Suggested time increment: 1

22

We converted the toggles using the edge.togglesargument to networkDynamic().
If we wanted the vertices to flip on and off as well, the function also accepts a
vertex.toggles argument. Once the toggles have been translated into a net-
work format, we can do things like look at the distribution of edge durations
created by our crude model.

> edgeDurations<-get.edge.activity(randomNet,as.spellList=TRUE)$duration

> hist(edgeDurations)

> summary(edgeDurations)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 26.00 62.50 91.83 130.20 630.00

Histogram of edgeDurations

edgeDurations

F
re

qu
en

cy

0 100 200 300 400 500 600

0
50

10
0

15
0

20
0

Our “simulation” was long enough that we should see a nice long-tailed dis-
tribution of edge activity durations. However, when we check the terminus
censoring,

> sum(get.edge.activity(randomNet,as.spellList=TRUE)$terminus.censored)

[1] 56

we can see that there are around 50 edges that had not ended at the ter-
mination of our simulation period, so we should interpret the mean durations

23

with caution. It is also interesting to consider how we might have skewed the
edge durations because we started with an empty network. To examine this
we can construct a time-series of the number of active edges in the network by
repeatedly applying the dynamic edge-counting function at each time point.

> nEdgesActive<-sapply(0:1000,

+ function(t){network.edgecount.active(randomNet,at=t)})

> plot(nEdgesActive,xlab=✬timestep✬,ylab=✬number of active edges✬)

0 200 400 600 800 1000

0
10

20
30

40
50

60

timestep

nu
m

be
r

of
 a

ct
iv

e
ed

ge
s

This shows us that it took a few hundred time steps of “burn in” for the
network to move from its initial extreme (the zero-edges condition) to a sort
of equilibrium state. After which there were enough active edges that some
of them started getting toggled off again, and it continues to wobble around a
value of about 50 edges until the end.

7.3 Batteries and tergm example not included

Unfortunately we can’t include a real live tergm model example here, because
the tergm package depends on networkDynamic, and we don’t want to create
a circular package dependency. But are nice examples located in the term and
ndtv package vignettes.

24

7.4 Converting a stream of spells: McFarland’s classroom

interactions

Not surprisingly, the networkDynamic() function can create networkDynamic

objects from a matrix of activity spells stored in a data.frames. It assumes
that the first two columns give the onset and terminus of a spell, and the third
and forth columns correspond to the network indices of the ego and alter vertices
for that dyad. Multiple spells per dyad are expressed by multiple rows. In the
following example, we read some tabular data describing arc relationships out of
example text files. For more information about the data-set (which also exists
as a networkDynamic object) see ?cls33_10_16_96.

> vertexData <-read.table(system.file(✬extdata/cls33_10_16_96_vertices.tsv✬,

+ package=✬networkDynamic✬),,header=T)

> vertexData[1:5,] # peek

vertex_id data_id start_minute end_minute sex role

1 1 122658 0 49 F grade_11

2 2 129047 0 49 M grade_11

3 3 129340 0 49 M grade_11

4 4 119263 0 49 M grade_12

5 5 122631 0 49 F grade_12

> edgeData <-read.table(system.file(✬extdata/cls33_10_16_96_edges.tsv✬,

+ package=✬networkDynamic✬),header=T)

> edgeData[1:5,] # peek

from_vertex_id to_vertex_id start_minute end_minute weight interaction_type

1 14 12 0.125 0.125 1 social

2 12 14 0.250 0.250 1 social

3 18 12 0.375 0.375 1 sanction

4 12 18 0.500 0.500 1 sanction

5 1 12 0.625 0.625 1 sanction

Now that the spell data is loaded in, we need to form it into a network.
We want to use the vertex_id, start_minute and end_minute from the vertex
data, and the from_vertex_id, to_vertex_id, start_minute and end_minute

from the edge data. Since the columns are not in the order that we want, we re-
order the column indices when passing to the edge.spells and the vertex.spells
arguments of networkDynamic.

> classDyn <- networkDynamic(vertex.spells=vertexData[,c(3,4,1)],

+ edge.spells=edgeData[,c(3,4,1,2)])

25

Initializing base.net of size 20 imputed from maximum vertex id in edge records

Created net.obs.period to describe network

Network observation period info:

Number of observation spells: 1

Maximal range of observations: 0 to 49

Temporal mode: continuous

Time unit: unknown

Suggested time increment: NA

The conversion printed out summary of the (optional) network observation
period attribute (net.obs.period) which tells us that it made a guess that this
was a continuous time network. And if we peek at the change times of the
network, it appears that it this is probably accurate.

> get.change.times(classDyn)[1:10]

[1] 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.167

We can also store the time units for the network, just in case we (or someone
else) needs to know them later

> nobs <-get.network.attribute(classDyn,✬net.obs.period✬)

> names(nobs)

[1] "observations" "mode" "time.increment" "time.unit"

> nobs$✬time.unit✬<-✬minutes✬

> set.network.attribute(classDyn,✬net.obs.period✬,nobs)

The original data include some attribute information for the vertices which
we’d like to add, but first we need to check if they are dynamic or not. We will
assume that if each vertex_id has only one row, the attributes must have only
one spell associated with them and can be treated as static. We also must make
sure the vertex_ids are in order. Since read.table creates a data.frame

object, we explicitly convert factors to character values.

> nrow(vertexData)==length(unique(vertexData$vertex_id))

[1] TRUE

Looks good! Lets load ’em up...

> set.vertex.attribute(classDyn,"data_id",vertexData$data_id)

> set.vertex.attribute(classDyn,"sex",as.character(vertexData$sex))

> set.vertex.attribute(classDyn,"role",as.character(vertexData$role))

26

To run standard network measures we will need to first “bin” or “slice” the
network up into static networks. Using the get.networks function we will
collapse the classroom data into series of networks, each of which aggregates 5
minutes of streaming interactions.

> classNets <- get.networks(classDyn,start=0,end=50,time.increment=5,rule=✬latest✬)

> classDensity <- sapply(classNets, network.density)

> plot(classDensity,type=✬l✬,xlab=✬network slice #✬,ylab=✬density✬)

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

network slice #

de
ns

ity

Since this data-set consists of continuous time streams of relational infor-
mation, the choice of 5 minutes is fairly arbitrary. Other durations will reveal
dynamics at various timescales.

> par(mfrow=c(2,2)) # show multiple plots

> plot(network.extract(

+ classDyn,onset=0,length=40,rule="any"),

+ main=✬entire 40 min class period✬,displaylabels=T)

> plot(network.extract(

+ classDyn,onset=0,length=5,rule="any"),

+ main=✬a 5 min chunk✬,displaylabels=T)

> plot(network.extract(

+ classDyn,onset=0,length=2.5,rule="any"),

+ main=✬a 2.5 min chunk✬,displaylabels=T)

27

> plot(network.extract(

+ classDyn,onset=0,length=.1,rule="any"),

+ main=✬a single conversation turn✬,displaylabels=T)

entire 40 min class period

1

23

4
5

6

7

8

9

10

11

12

13

14

15
16

17

18

1920

a 5 min chunk

1

2

3

4
5

67

8

9

10

1112

13

14

15

1617
18

19

20

a 2.5 min chunk

1

23

4

5

6

7

8

9

10

11 12

13
14

15

16

17

18

19

20

a single conversation turn

1

2
3

4

5

6
7

8

9
10

11

12

13
14

15

16
1718

19

20

8 Persistent IDs

As has already been mentioned, the standard vertex and edge ids used in the
network package are indices, so they must change when the network size changes
during an extraction operation 3. So how can we follow a specific network ele-
ment through a series of slicing and dicing operations? Since v0.5, the network-
Dynamic package supports defining an (optional) “persistent id” (pid) for edges
and vertices.

Once a persistent id has been defined, the functions get.vertex.id() and
get.vertex.pid can be used to translate between the normal ids and the pids.
For edges, the functions are named get.edge.id and get.edge.pid. Lets look
at an example where we find the original vertices corresponding to vertices in
smaller extracted net.

> haystack<-network.initialize(30)

> activate.vertices(haystack,v=10:20)

3In the case of vertex ids, they may also change during vertex deletions, or additions to
the first mode of a bipartite network

28

Now hide some needles in the haystack...

> set.vertex.attribute(haystack,✬needle✬,TRUE,v=sample(10:20,2))

... make up an id for the vertices, and define that it will be our persistent id.

> set.vertex.attribute(haystack,✬hayId✬,paste(✬straw✬,1:30,sep=✬✬))

> set.network.attribute(haystack,✬vertex.pid✬,✬hayId✬)

Lets find the needles in the new stack after some hay has been removed over
time

> newstack<-network.extract(haystack,at=100,active.default=FALSE)

> network.size(newstack)

[1] 11

> needleIds <-which(get.vertex.attribute(newstack,✬needle✬))

> needleIds

[1] 7 8

What are the pids of vertices with needles? Which vertices are the corre-
sponding ones in the original haystack?

> get.vertex.pid(newstack,needleIds)

[1] "straw16" "straw17"

> get.vertex.id(haystack,get.vertex.pid(newstack,needleIds))

[1] 16 17

In the example above, we made up a new id, but if the data set already had
some type of unique identifier for vertices, we could have used it instead. For
the previous McFarland example we could use data_id:

> set.network.attribute(classDyn,✬vertex.pid✬,✬data_id✬)

In some cases it might be tempting to use the vertex.names attributes of
networks as a persistent id without checking that it is unique. This can cause
problems if vertices are added or deleted.

> net<-network.initialize(3)

> add.vertices(net,1)

> delete.vertices(net,2)

> # notice the NA value

> as.matrix(net)

29

1 3 <NA>

1 0 0 0

3 0 0 0

<NA> 0 0 0

To make life easier, we can just indicate that a unique set of vertex.names
can safely be used as a vertex.pid by setting vertex.pid to ✬vertex.names✬.

This has the advantage of not adding an extra attribute that needs to be carried
around, and the pids will appear as the labels.

> net<-network.initialize(3)

> set.network.attribute(net,✬vertex.pid✬,✬vertex.names✬)

> add.vertices(net,1,vertex.pid=✬4✬)

> add.vertices(net,1)

> delete.vertices(net,2)

> as.matrix(net)

1 3 4 7c187cae3099

1 0 0 0 0

3 0 0 0 0

4 0 0 0 0

7c187cae3099 0 0 0 0

Notice that when we added vertices in the first case we explicitly included in a
vertex pid for the new vertex. In the second case, we didn’t specify a pid, so it
made up a messy one to make sure they stayed unique.

The function initialize.pids can also be used to create a set of pids on all
existing vertices (named vertex.pid) and edges (named edge.pid). The pids are
currently initialized with meaningless but unique pseudo-random hex strings
using the tempfile function (something like ✬4ad912252bc2✬) These are also
the types of new pids that will be created if add.vertices is called in a network
with a vertex.pid defined, as in the example above. It is a good idea to define
pids after a network object as been constructed and before any extractions are
performed.

> net<-network.initialize(3)

> add.edges(net,tail=1:2,head=2:3)

> initialize.pids(net)

> net%v%✬vertex.pid✬

[1] "7c185d56d5c9" "7c186c75123a" "7c18edb8360"

> net%e%✬edge.pid✬

[1] "7c1866096bac" "7c187d397e7e"

The edge pids can be useful in looking up edges if vertex deletions cause the
ids of the edge’s vertices to be permuted.

30

9 Transforming networkDynamic objects to other

representations

Great, I got all my data into your magic format, now how do I get it out again?

9.1 Converting to lists of spells

As we’ve already demonstrated, for number of types of analysis it is useful to be
able to dump the edge timing information into a “flat” tabular representation.

> newcombEdgeSpells<-get.edge.activity(newcombDyn,as.spellList=TRUE)

> newcombEdgeSpells[1:5,] # peek at the beginning

onset terminus tail head onset.censored terminus.censored duration edge.id

1 0 1 2 1 FALSE FALSE 1 1

2 2 3 2 1 FALSE FALSE 1 1

3 6 9 2 1 FALSE FALSE 3 1

4 11 12 2 1 FALSE FALSE 1 1

5 0 14 6 1 FALSE FALSE 14 2

The first two columns of the spell matrix give the network indices of the vertices
involved in the edge, and the next two give the onset and terminus for the spell.
The right.censored column indicates if a statistical estimation process using
this spell list should assume that the entire duration of the edge’s activity is
included or that it was partially censored by the observation window. Note
that the duration column gives the total duration for the specific spell of the
edge,(not the entire edge duration) and an edge may appear in multiple rows.
Because this may be the most common type of conversion people need to do,
we also created an as.data.frame alias get.edge.activity function.

> newcombEdgeSpells<-as.data.frame(newcombDyn)

> newcombEdgeSpells[1:5,] # peek at the beginning

onset terminus tail head onset.censored terminus.censored duration edge.id

1 0 1 2 1 FALSE FALSE 1 1

2 2 3 2 1 FALSE FALSE 1 1

3 6 9 2 1 FALSE FALSE 3 1

4 11 12 2 1 FALSE FALSE 1 1

5 0 14 6 1 FALSE FALSE 14 2

Of course, these methods only return information about the edge dynamics
so there is a corresponding get.vertex.activity function.

> vertSpells <- get.vertex.activity(newcombDyn,as.spellList=TRUE)

> vertSpells[1:5,]

31

onset terminus vertex.id onset.censored terminus.censored duration

1 0 14 1 FALSE FALSE 14

2 0 14 2 FALSE FALSE 14

3 0 14 3 FALSE FALSE 14

4 0 14 4 FALSE FALSE 14

5 0 14 5 FALSE FALSE 14

Which is not so exciting in this example, since we don’t have any vertex
dynamics.

9.2 Converting to a list of networks or matrices

The get.networks function gives us a quick way to collapse a series of static
network objects from a networkDynamic. We can use lapply to extract a list
of several non-overlapping unit slices from the random network we created a
while back, and them print them out as matrices.

> lapply(get.networks(randomNet,start=0,end=2,time.increment=1),as.matrix)

[[1]]

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

[[2]]

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

If we have a network that already has ’slicing’ information in its net.obs.period
attribute, get.networks can use those values a defaults. So if we apply it to

32

our previous newcombGaps example we should get back our list of 15 networks,
with the ninth one missing.

> newSlices<-get.networks(newcombGaps)

> sapply(newSlices,network.size)

[1] 17 17 17 17 17 17 17 17 0 17 17 17 17 17 17

10 Dynamic attributes

An important tool for working with dynamic networks is the ability to rep-
resent time-varying attributes of networks, vertices (changing properties) and
edges (changing weights). In the networkDynamic package we refer to these as
dynamic attributes or “TEAs” (Temporally Extended Attributes). A TEA is a
standard edge, vertex, or network attribute that has a name ending in .active

and carries meta-data regarding its state over time. We store the TEAs as a
two-part list, where the first part is a list of values, and the second is a spell
matrix where each row gives the onset and terminus of activity for the corre-
sponding value. See ?activate.vertex.attribute for the full specification of
Temporally Extended Attributes. Of course we try to hide most of this as much
as possible using a set of accessor functions.

10.1 Activating TEA attributes

The functions for creating TEA attributes are named similarly to the regular
functions for manipulating network, vertex, and edge attributes but they also
accept the spell-related arguments (onset, terminus, at, length).

> net <-network.initialize(5)

> activate.vertex.attribute(net,"happiness", -1, onset=0,terminus=1)

> activate.vertex.attribute(net,"happiness", 5, onset=1,terminus=3)

> activate.vertex.attribute(net,"happiness", 2, onset=4,terminus=7)

> list.vertex.attributes(net) # what are they actually named?

[1] "happiness.active" "na" "vertex.names"

> get.vertex.attribute.active(net,"happiness",at=2)

[1] 5 5 5 5 5

> get.vertex.attribute(net,"happiness.active",unlist=FALSE)[[1]]

33

[[1]]

[[1]][[1]]

[1] -1

[[1]][[2]]

[1] 5

[[1]][[3]]

[1] 2

[[2]]

[,1] [,2]

[1,] 0 1

[2,] 1 3

[3,] 4 7

Notice that when using the activate.vertex.attribute and get.vertex.attribute.active
functions we don’t have to include the “.active” part of the attribute name, it
handles that on its own. When we used the regular get.vertex.attribute

function to peek at the attribute of the first vertex we can see the list of values
(-1,5,2) and the spell matrix. We also had to include the unlist=FALSE argu-
ment so that it didn’t mangle the list object by smooshing into a vector when
it was returned.

There are similar activation functions for edge and network-level attributes.

> activate.network.attribute(net,✬colors✬,"red",

+ onset=0,terminus=1)

> activate.network.attribute(net,✬colors✬,"green",

+ onset=1,terminus=5)

> add.edges(net,tail=c(1,2,3),head=c(2,3,4)) # need edges to activate-

> activate.edge.attribute(net,✬weight✬,c(5,12,7),onset=1,terminus=3)

> activate.edge.attribute(net,✬weight✬,c(1,2,1),onset=3,terminus=7)

Since we didn’t give the edges themselves timing info, they will be assumed to
be always active. But we’ve specified that the ’weight’ of the edges should vary
over time.

10.2 Querying TEA attributes

What happens when there are no values defined? When we activate the vertex
attributes, we left a gap in the spell coverage. What if we ask for values in the
time period?

> get.vertex.attribute.active(net,"happiness",at=3.5)

[1] NA NA NA NA NA

34

> get.vertex.attribute.active(net,"happiness",

+ onset=2.5,terminus=3.5)

[1] 5 5 5 5 5

> get.vertex.attribute.active(net,"happiness",

+ onset=2.5,terminus=3.5,rule="all")

[1] NA NA NA NA NA

In the first case, no values are defined so NA is returned. In the second case,
the query spell included part of a defined value since inclusion rule defaults to
‘rule=✬any✬ and the query intersected with part of the spell associated with
the value 5. We can ask it to only return values if they match the entire query
spell by setting rule=✬all✬, which is what happened in the third case.

The functions also permit queries that will intersect with multiple attribute
values. In this case the earliest value is returned, but it also gives a warning
that the value returned may not be the appropriate value for the time range.

> get.vertex.attribute.active(net,"happiness",onset=2.5,terminus=4.5)

[1] 5 5 5 5 5

Warning message:

In get.vertex.attribute.active(net, "happiness", onset = 2.5,

terminus = 4.5) : Multiple attribute values matched query

spell for some vertices, only earliest value used

If we know that this behavior (returning the earliest attribute value that inter-
sects with the query spell) is what is desired, we can suppress the warnings by
specifying rule=✬earliest✬.

> get.vertex.attribute.active(net,"happiness",onset=2.5,terminus=4.5,rule=✬earliest✬)

[1] 5 5 5 5 5

As might be expected, rule=✬latest✬ also works, but it returns the latest (most
recent, largest time value) attribute intersecting with the query spell.

> get.vertex.attribute.active(net,"happiness",onset=2.5,terminus=4.5,rule=✬latest✬)

[1] 2 2 2 2 2

35

In many cases the user might want to aggregate the values together in some
way, but that there is no way for the query function know what the correct
aggregation method would be–especially if the attributes have categorical rather
than numeric values. Should the results be a sum? An average? A time-
weighted average? A value sampled at random? In order to handle these cases
correctly, code must be designed to explicitly handle the multiple values. To
facilitate this the query functions have an argument return.tea=TRUE which
can be set so that they will return the (appropriately trimmed) TEA structure
to be evaluated.

> get.vertex.attribute.active(net,"happiness",onset=2.5,terminus=4.5,

+ return.tea=TRUE)[[1]]

[[1]]

[[1]][[1]]

[1] 5

[[1]][[2]]

[1] 2

[[2]]

[,1] [,2]

[1,] 1 3

[2,] 4 7

If we wanted to calculate the sum value for an attribute over a particular time
range

> sapply(get.vertex.attribute.active(net,"happiness",onset=0,terminus=7,

+ return.tea=TRUE),function(splist){

+ sum(unlist(splist[[1]]))

+ })

[1] 6 6 6 6 6

The query syntax for network- and edge-level TEAs is similar to the ver-
tex case get.network.attribute.active and get.edge.attribute.active.
However, in keeping with the pattern established by the network package,
get.edge.value.active works as an alternate.

> get.edge.attribute.active(net,✬weight✬,at=2)

[1] 5 12 7

> get.edge.attribute.active(net,✬weight✬,at=5)

36

[1] 1 2 1

There are are also functions for checking which attributes are present at any
point in time (optionally excluding non-TEA attributes).

> list.vertex.attributes.active(net,at=2)

[1] "na" "vertex.names" "happiness.active"

> list.edge.attributes.active(net,at=2)

[1] "na" "weight.active"

> list.network.attributes.active(net,at=2,dynamic.only=TRUE)

[1] "colors.active"

10.3 Modifying TEAs

The TEA functions are designed to maintain the appropriate sorted representa-
tion of attributes and spells even if attributes are not added in temporal order.
So its possible to overwrite the attribute values.

> activate.vertex.attribute(net, "happiness",100, onset=0,terminus=10,v=1)

> get.vertex.attribute.active(net,"happiness",at=2)

[1] 100 5 5 5 5

Or set attributes to be inactive for specific time ranges and vertices.

> deactivate.vertex.attribute(net, "happiness",onset=1,terminus=10,v=2)

> get.vertex.attribute.active(net,"happiness",at=2)

[1] 100 NA 5 5 5

37

11 Making Lin Freeman’s windsurfers gossip

For a more advanced and realistic demonstration of TEAs and, we will construct
a toy rumor diffusion model. Our intention is to release packages in the near
future which provide built-in functions for much of the simulation code below.

In 1988, Lin Freeman collected a month-long data-set of daily social inter-
actions between windsurfers on California beaches (Almquist, et al , 2011),
(Freeman et al , 1988). The data-set is included in networkDynamic and
has some challenging features, including vertex dynamics (different people are
present on the beach on different days) and a missing day of observation. (Run
?windsurfers for more details).

> data(windsurfers) # let✬s go to the beach!

> range(get.change.times(windsurfers))

[1] 0 31

> sapply(0:31,function(t){ # how many people in net each day?

+ network.size.active(windsurfers,at=t)})

[1] 11 14 23 22 13 6 16 21 12 24 37 10 9 14 10 12 24 21 12 11 15 16 10 28 0

[26] 8 10 3 10 14 34 0

Although not directly relevant for the trivial simulation we are about to
build, the windsurfers network object also includes some network-level dy-
namic attributes that give information about the weather, etc. We can extract
the information as a time-series for plotting.

> list.network.attributes.active(windsurfers,-Inf,Inf,dynamic.only=TRUE)

[1] "atmp.active" "cord.active" "day.active" "gst.active" "week.active"

[6] "wspd.active" "wvht.active"

> par(mfcol=c(2,1)) # show multiple plots

> plot(sapply(0:31,function(t){ # how many people in net each day?

+ network.size.active(windsurfers,at=t)}),

+ type=✬l✬,xlab="number on beach",ylab="day"

+)

> plot(sapply(0:31,function(t){ # how many people in net each day?

+ get.network.attribute.active(windsurfers,✬atmp✬,at=t)}),

+ type=✬l✬,xlab="air temp",ylab="day"

+)

> par(mfcol=c(1,1))

38

0 5 10 15 20 25 30

0
10

30

number on beach

da
y

0 5 10 15 20 25 30

16
.5

18
.0

19
.5

air temp

da
y

But the appropriate values will also appear in the network returned when
we collapse to a specific day.

> day3 <-network.collapse(windsurfers,at=2)

> day3%n%✬day✬ # what day of the week is day 3?

[1] "Saturday"

> day3%n%✬atmp✬ # air temp?

[1] 18.50417

11.1 A toy diffusion model

We will create a very crude model of information transmission as an example
of simulation employing dynamic attributes on a network with changing edges
and vertices. We will assume that there is a “rumor” spreading among the
windsurfers. At each time step, they have some probability of passing the rumor
to the people they are interacting with on the beach that day. First we define
a function to run the simulation:

39

> runSim<-function(net,timeStep,transProb){

+ # loop through time, updating states

+ times<-seq(from=0,to=max(get.change.times(net)),by=timeStep)

+ for(t in times){

+ # find all the people who know and are active

+ knowers <- which(!is.na(get.vertex.attribute.active(

+ net,✬knowsRumor✬,at=t,require.active=TRUE)))

+ # get the edge ids of active friendships of people who knew

+ for (knower in knowers){

+ conversations<-get.edgeIDs.active(net,v=knower,at=t)

+ for (conversation in conversations){

+ # select conversation for transmission with appropriate prob

+ if (runif(1)<=transProb){

+ # update state of people at other end of conversations

+ # but we don✬t know which way the edge points so..

+ v<-c(net$mel[[conversation]]$inl,

+ net$mel[[conversation]]$outl)

+ # ignore the v we already know

+ v<-v[v!=knower]

+ activate.vertex.attribute(net,"knowsRumor",TRUE,

+ v=v,onset=t,terminus=Inf)

+ # record who spread the rumor

+ activate.vertex.attribute(net,"heardRumorFrom",knower,

+ v=v,onset=t,length=timeStep)

+ # record which friendships the rumor spread across

+ activate.edge.attribute(net,✬passedRumor✬,

+ value=TRUE,e=conversation,onset=t,terminus=Inf)

+ }

+ }

+ }

+ }

+ return(net)

+ }

11.2 Go!

Then we set the parameters and the initial state of the network and run the
simulation.

> timeStep <- 1 # units are in days

> transProb <- 0.2 # how likely to tell in each conversation/day

> # start the rumor out on vertex 1

> activate.vertex.attribute(windsurfers,"knowsRumor",TRUE,v=1,

+ onset=0-timeStep,terminus=Inf)

> activate.vertex.attribute(windsurfers,"heardRumorFrom",1,v=1,

40

+ onset=0-timeStep,length=timeStep)

> windsurfers<-runSim(windsurfers,timeStep,transProb) # run it!

11.3 OK, what happened?

We’ll make some network plots so we can get an idea of what happened.

> par(mfcol=c(1,2)) # show two plots side by side

> wind7<-network.extract(windsurfers,at=7)

> plot(wind7,

+ edge.col=sapply(!is.na(get.edge.value.active(wind7,

+ "passedRumor",at=7)), function(e){ switch(e+1,"darkgray","red")}),

+ vertex.col=sapply(!is.na(get.vertex.attribute.active(wind7,

+ "knowsRumor",at=7)), function(v){switch(v+1,"gray","red")}),

+ label.cex=0.5,displaylabels=TRUE,main="gossip at time 7")

> wind30<-network.extract(windsurfers,at=30)

> plot(wind30,

+ edge.col=sapply(!is.na(get.edge.value.active(wind30,

+ "passedRumor",at=30)),function(e){switch(e+1,"darkgray","red")}),

+ vertex.col=sapply(!is.na(get.vertex.attribute.active(wind30,

+ "knowsRumor",at=30)),function(v){switch(v+1,"gray","red")}),

+ label.cex=0.5,displaylabels=TRUE,main="gossip at time 30")

> par(mfcol=c(1,1))

41

gossip at time 7

1

2
4

5

6

8

16
19

29

30

39

48

50

51

55

57
58

59

60

61

62

gossip at time 30

1

2
3

4

6

12

13

14

1516

21

22

23
2425

37

38

43

44

48
51

58

65

66

67
68

6974

75

79

87

89
92

95

Which people heard the rumor halfway through the month? How many
heard each day?

> get.vertex.attribute.active(windsurfers,✬knowsRumor✬,at=15)

[1] TRUE TRUE NA TRUE NA TRUE NA NA NA TRUE NA NA TRUE NA NA

[16] NA NA NA NA NA NA NA NA NA NA NA NA NA NA TRUE

[31] NA NA NA NA TRUE NA NA NA TRUE TRUE TRUE NA NA NA NA

[46] NA NA NA NA NA TRUE NA TRUE TRUE NA NA NA NA TRUE NA

[61] NA TRUE TRUE NA TRUE NA NA NA NA NA NA NA NA TRUE TRUE

[76] TRUE NA NA TRUE NA NA NA TRUE NA NA NA NA NA NA NA

[91] NA NA NA NA NA

> plot(sapply(0:31,function(t){

+ sum(get.vertex.attribute.active(windsurfers,✬knowsRumor✬,at=t),

+ na.rm=TRUE)}),

+ main=✬windsurfers who know✬,ylab="# people",xlab=✬time✬

+)

42

0 5 10 15 20 25 30

10
20

30
40

windsurfers who know

time

pe

op
le

In additional to extracting values, we can do operations using the TEA
attributes directly. Our simulation function recorded each time a person was
told the rumor. What are the ids of the people who told person 3? On which
days did person 3 hear the rumor?

> # pull TEA from v3, extract values from 1st part and unlist

> unlist(get.vertex.attribute.active(windsurfers,✬heardRumorFrom✬,

+ onset=0,terminus=31,return.tea=TRUE)[[3]][[1]])

[1] 29 74 41 1 74

> # pull TEA from v3, extract times from 2nd part and pull col 1

> get.vertex.attribute.active(windsurfers,✬heardRumorFrom✬,

+ onset=0,terminus=31,return.tea=TRUE)[[3]][[2]][,1]

[1] 20 23 25 26 30

11.4 Picturing the rumor tree

We can also write a function to create a rumor transmission tree using the
heardRumorFrom attribute in order to plot out the sequence of conversation
steps that spread the gossip.

43

> transTree<-function(net){

+ # for each vertex in net who knows

+ knowers <- which(!is.na(get.vertex.attribute.active(net,

+ ✬knowsRumor✬,at=Inf)))

+ # find out who the first transmission was from

+ transTimes<-get.vertex.attribute.active(net,"heardRumorFrom",

+ onset=-Inf,terminus=Inf,return.tea=TRUE)

+ # subset to only ones that know

+ transTimes<-transTimes[knowers]

+ # get the first value of the TEA for each knower

+ tellers<-sapply(transTimes,function(tea){tea[[1]][[1]]})

+ # create a new net of appropriate size

+ treeIds <-union(knowers,tellers)

+ tree<-network.initialize(length(treeIds),loops=TRUE)

+ # copy labels from original net

+ set.vertex.attribute(tree,✬vertex.names✬,treeIds)

+ # translate the knower and teller ids to new network ids

+ # and add edges for each transmission

+ add.edges(tree,tail=match(tellers,treeIds),

+ head=match(knowers,treeIds))

+ return(tree)

+ }

> plot(transTree(windsurfers),displaylabels=TRUE,

+ label.cex=0.5,label.col=✬blue✬,loop.cex=3)

44

1
2

3

4

6

10

13

1415

16

17

23

24

29

30

35
39

40

41

43

44

48

51

52

53

5459

62

63

65

66

67

68

74

75

76

79

80

83

85

87

89

92

95

We can see that the rumor started at v1, our seed vertex, which has a little
loop because it infected itself.

12 Related packages and other coming attrac-

tions

The statnet team is releasing several packages that work closely with the networkDynamic
package to provide additional features.

❼ ndtv : Network Dynamic Temporal Visualization package – like TV for
your networks. The ndtv package creates network animations of dy-
namic networks stored in the networkDynamic format. http://cran.

r-project.org/web/packages/ndtv

❼ tsna : Temporal SNA tools for measuring and doing descriptive statistics
on dynamic networks stored in the networkDynamic format.

13 Citing networkDynamic

You can use R’s built in citation function to give the citation for the package.

> citation(package=✬networkDynamic✬)

45

http://cran.r-project.org/web/packages/ndtv
http://cran.r-project.org/web/packages/ndtv

To cite package âĂŸnetworkDynamicâĂŹ in publications use:

Carter T. Butts, Ayn Leslie-Cook, Pavel N. Krivitsky and Skye

Bender-deMoll (2013). networkDynamic: Dynamic Extensions for Network

Objects. R package version 0.5. http://statnet.org

A BibTeX entry for LaTeX users is

@Manual{,

title = {networkDynamic: Dynamic Extensions for Network Objects},

author = {Carter T. Butts and Ayn Leslie-Cook and Pavel N. Krivitsky and Skye Bender-deM

year = {2013},

note = {R package version 0.5},

url = {http://statnet.org},

}

14 Vocabulary definitions

This is a list of terms and common function arguments giving their special
meanings within the context of the networkDynamic package.

spell bounded interval of time describing activity period of a network element

onset beginning of spell

terminus end of a spell

length the duration of a spell

at a single time point, a spell with zero length where onset=terminus

start beginning (least time) of observation period (or series of spells)

end end (greatest time) of observation period (or series of spells)

spell list or spell matrix a means of describing the activity of a network or
network element using a matrix in which one column contains the onsets
and another the termini of each spell

toggle list a means of describing the activity of a network or network element
using a list of times at which an element changed state (‘toggled’)

onset-censored when elements of a dynamic network are known to be active
before start of the defined observation period, even if the onset of the spell
is not known.

terminus-censored when elements of a dynamic network are known to be
active after the end of the defined observation period, even if the terminus
of the spell is not known.

46

TEA Temporally Extended Attribute: structure for storing dynamic attribute
data on vertices, edges, and networks.

pid A “Persistent ID” for a vertex or edge that will remain the same despite
extraction and deletion operations.

15 Complete package function listing

Below is a reference list of all the public functions included in the package
networkDynamic

> cat(ls("package:networkDynamic"),sep="\n")

activate.edge.attribute

activate.edges

activate.edge.value

activate.network.attribute

activate.vertex.attribute

activate.vertices

add.edge

add.edges

add.edges.active

add.vertices

add.vertices.active

as.data.frame.networkDynamic

as.networkDynamic

as.networkDynamic.network

as.networkDynamic.networkDynamic

as.network.networkDynamic

deactivate.edge.attribute

deactivate.edges

deactivate.network.attribute

deactivate.vertex.attribute

deactivate.vertices

delete.edge.activity

delete.vertex.activity

edge.pid.check

get.change.times

get.edge.activity

get.edge.attribute.active

get.edge.id

get.edgeIDs.active

get.edge.pid

get.edges.active

get.edge.value.active

get.neighborhood.active

47

get.network.attribute.active

get.networks

get.vertex.activity

get.vertex.attribute.active

get.vertex.id

get.vertex.pid

initialize.pids

is.active

is.adjacent.active

is.networkDynamic

%k%

list.edge.attributes.active

list.network.attributes.active

list.vertex.attributes.active

network.collapse

network.dyadcount.active

networkDynamic

network.dynamic.check

network.edgecount.active

network.extract

network.naedgecount.active

network.size.active

print.networkDynamic

reconcile.edge.activity

reconcile.vertex.activity

search.spell

spells.hit

spells.overlap

%t%

vertex.pid.check

References

Almquist, Zack W. and Butts, Carter T. (2011). Logistic Network Regression
for Scalable Analysis of Networks with Joint Edge/Vertex Dynamics. IMBS

Technical Report MBS 11-03, University of California, Irvine.

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for
Managing and Animating Longitudinal Network Data: dynamicnetwork and
rSoNIA Journal of Statistical Software 24:7.

Butts CT (2008). network: A Package for Managing Relational Data in R. Jour-
nal of Statistical Software, 24(2). http://www.jstatsoft.org/v24/i02/.

. Fit, Simulate and Diagnose Models for Network Evolution based
on Exponential-Family Random Graph Models. The Statnet Project

48

http://www.jstatsoft.org/v24/i02/

(<URL: http://www.statnet.org>). Version 3.2-11879-11880.1-2013.02.22-
17.20.10, <URL: CRAN.R-project.org/package=tergm>.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm:
A Package to Fit, Simulate and Diagnose Exponential-Family Models for Net-
works. Journal of Statistical Software, 24(3). http://www.jstatsoft.org/
v24/i03/.

Newcomb T. (1961) The acquaintance process New York: Holt, Reinhard and
Winston.

Freeman, L. C., Freeman, S. C., Michaelson, A. G., (1988) On human social
intelligence. Journal of Social Biological Structure 11, 415-425.

49

http://www.jstatsoft.org/v24/i03/
http://www.jstatsoft.org/v24/i03/

	Introduction
	How to start and end relationships easily
	Activating edges
	Peeking back in time

	Birth, Death, Reincarnation and other ways for vertices to enter and leave networks
	Activating vertices
	Deactivating elements

	``Spells'': the magic under the hood
	How we save time
	Multiple spells != multiplex

	Differences between Discrete and Continuous data
	You might be discrete if...
	You might be continuous if...
	Comparing models

	Show me how it was: extracting static views of dynamic networks
	Testing for activity
	Listing active elements
	Are regular network objects active?
	Basic descriptives
	Collapsing a network vs. extracting it
	Wiping the slate: removing activity information
	Differences between ``any'' and ``all' aggregation rules

	Squooshing data into networkDynamic objects
	But my data are panels of network matrices...
	Converting from toggles.
	Batteries and tergm example not included
	Converting a stream of spells: McFarland's classroom interactions

	Persistent IDs
	Transforming networkDynamic objects to other representations
	Converting to lists of spells
	Converting to a list of networks or matrices

	Dynamic attributes
	Activating TEA attributes
	Querying TEA attributes
	Modifying TEAs

	Making Lin Freeman's windsurfers gossip
	A toy diffusion model
	Go!
	OK, what happened?
	Picturing the rumor tree

	Related packages and other coming attractions
	Citing networkDynamic
	Vocabulary definitions
	Complete package function listing

