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1 Introduction

The planor R package provides functions to generate design fractions with possibly one
or several block systems. It can be considered as an R version of the planor software
presented in [16], and this document is actually a direct adaptation of [16] for the R user.
The method used in planor is derived from the key matrix method [28], described in
detail in [21], [22], [18], and more simply in [7]. This method produces designs called
regular in which effects are either estimable independently or completely confounded.

In the simplest case, the user must provide the variance analysis model, specifying
the terms sought to be estimated in this model. planor searches for one or more designs
meeting the users requirement among designs which can be constructed by this method.
As there is not always a solution, the program indicates how far it has proceeded in the
construction of the design, thus enabling the user to make a new request in order to obtain
a solution.

planor can take into account hierarchical constraints among factors. It is also
possible to introduce several “models” together with the corresponding families of terms
to be estimated, called “parts to be estimated”. This feature is particularly useful in a
block design in which a factor must remain constant within each block. In such a case,
its effect is not estimable within blocks, that is, in a model with a block effect. But it
can be estimable between blocks if its estimation is requested in a model with no block
effect: confusion is thus avoided with any other treatment effect. When there are several
block systems, this feature can be used to require the estimation of certain effects in
pre-specified strata.

planor was initially designed to draw up experimental designs to operate a robot.
This robot, developed by the Laboratoire du Génie de l’Hygiène et des Procédés Ali-
mentaires de l’INRA Massy (LGHPA) (Laboratory for public health and food process
engineering of INRA Massy) in the framework of a contract with the Association pour le
développement de la Recherche dans l’Industrie LAITière (ARILAIT) (Association for the
development of dairy industry research) is used to test surface cleaning and disinfection
procedures. For this reason, a substantial part of this instruction manual is devoted to
the designs for this robot, which in fact illustrate the program’s abilities very well.

The analysis and interpretation of the designs obtained by planor is usually simple,
provided the user is quite familiar with the variance analysis techniques. In particular,
when there are blocks and certain factors remain constant within the blocks, the analysis
draws on notions of inter- and intra-block strata. The main effect of a factor remaining
constant within each block is tested against inter-block variance, which differs from intra-
block error variance used to test the other effects. Another case in which the analysis
requires caution is when the number of degrees of freedom of the error is very low or zero.
Additional indications and references on these subjects may be found in [20] and [18].

The presentation adopted in this instruction manual avoids algebraic formalism,



thus rendering the text a little less rigorous but thereby making it accessible to a much
wider public. The slightly difficult passages are printed in small type and are preceded by
an asterisk. They may be skipped without affecting understanding of the rest of the text.
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2 Presentation of the method

Experimental units are identified by the levels of a certain number of factors, referred
to as basic factors. From these factors, potentially decomposed into pseudofactors, the
program defines new factors, also called added, derived or defined factors, satisfying the
conditions imposed, if possible. These factors are linear combinations of the basic fac-
tors or pseudofactors resulting from their decomposition. The following few examples
effectively illustrate the method and its properties.

2.1 Example with 2-level factors

2.1.1 Definition and properties of the design

There are 8 units identified by combinations of levels of 3 treatment factors A, B, C,
each with 2 coded levels 0 and 1. From these three basic factors, a new factor D is
defined by setting D = A+B +C (mod 2). This same design can also be defined by the
relation D = ABC if the levels are coded as 1 and −1. In order to distinguish between
the two codings and associated layouts, we refer to additive notation in the first case and
to multiplicative notation in the second case. The shift from additive to multiplicative
notation occurs by replacing each α level by level (−1)α. Table 1 presents the design in
both its forms.

D = A+B + C

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

D = ABC

A B C D
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
−1 1 1 −1
−1 1 −1 1
−1 −1 1 1
−1 −1 −1 −1

ind.rep.
0
2
7
1
6
5
4
3

Table 1: Example 2.1: 4 factors and 23 experimental units.

The factorial effects studied are the main effects A, B, C, D of the factors and
their interactions AB, AC, . . . , ABCD. These effects are also noted additively: e(A) for
the main effect of A, e(A + B), e(A + C), . . . , e(A + B + C + D) for the interactions.
The functional notation e() with this additive notation is essential to distinguish a sum
of effects such as e(A + B) + e(C) from the corresponding interaction e(A + B + C). It
will sometimes also be used in multiplicative notation to distinguish an effect from the
corresponding product of factors (equal to -1 or 1).

The precise definition of effects is simple in multiplicative notation. If we denote
by τ(A,B,C,D) the mean response –in more statistical terms, the expectation of the

3



added deduced aliased
term equality effects

0 = A+B + C +D e(0), e(A+B + C +D)
A A = B + C +D e(A), e(B + C +D)
B B = A+ C +D e(B), e(A+ C +D)
C C = A+B +D e(C), e(A+B +D)

A+B A+B = C +D e(A+B), e(C +D)
A+ C A+ C = B +D e(A+ C), e(B +D)
B + C B + C = A+D e(B + C), e(A+D)

A+B + C A+B + C = D e(A+B + C), e(D)

Table 2: Aliased effects in the example 2.1.

response– for the (A,B,C,D) treatment, the main effect of A and the AB interaction are
for instance defined by

e(A) =
1

16

∑
A,B,C,D

A τ(A,B,C,D) =
1

2

∑
A

A τ(A, ., ., .)

=
1

2

(
τ(1, ., ., .)− τ(−1, ., ., .)

)
e(AB) =

1

16

∑
A,B,C,D

AB τ(A,B,C,D) =
1

4

∑
A,B

AB τ(A,B, ., .)

=
1

4

(
τ(1, 1, ., .)− τ(1,−1, ., .)− τ(−1, 1, ., .) + τ(−1,−1, ., .)

)
.

Each (.) point indicates that the mean has been determined from the corresponding
letter. For example:

τ(A,B, ., .) =
1

4

(
τ(A,B, 1, 1) + τ(A,B, 1,−1) + τ(A,B,−1, 1) + τ(A,B,−1,−1)

)
The defining relation D = A+B + C(mod 2) is rewritten in the form

A+B + C +D = 0 (mod 2) . (1)

By adding to this equality the sums A, . . . , A+B+C formed from the three basic factors,
we obtain the equalities appearing in the second column of table 2. Through the following
simple rule, the sets of aliased effects appearing in the third column of the table can then
be obtained. Note that the terms confounded and aliased are synonymous in this context,
therefore we shall use both terms indifferently.

Rule 1 The effects corresponding to two equal sums α and β are aliased.

Note that e(0) is by definition the general mean. The interaction e(A + B + C + D) is
thus confounded with this general mean.
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In this instance, the confounding of two effects, for example e(A+B) and e(C +D)
results in the fact that only their sum e(A+B) + e(C+D) can be estimated. The aliased
effects are the same when 1 is added to the definition of D, that is, if D = A+B+C + 1
(mod 2), or even

A+B + C +D = 1 (mod 2), (ABCD = −1 in multiplicative notation) . (2)

In this case, it is not the sums but the differences, such as e(A + B) − e(C + D), which
are estimable.

Examination of the third column of table 2 shows that the main effects are coun-
founded in this example with 3-factor interactions and that two-factor interactions are
confounded with each other. This results from the fact that the defining relation (1)
contains 4 factors. Such a design is said to be of resolution 4. When 3-factor or 4-
factor interactions are neglected, each of the sums e(A) + e(BCD), . . . , e(ABC) + e(D)
containing a main effect reduces to this main effect. The main effects are then estimable.

2.1.2 Principle of a design search by planor

In the above, the properties of the design are inferred from its definition. planor generally
proceeds in reverse order. It searches for the design on the basis of the model and part
to be estimated. Thus in this example, the first step is to specify the factors A, B, C, D
and their level numbers. This is done by using the planor.factors function. Here, the
result is stored in the R object ABCD.fact

> library("planor")

> ABCD.fact <- planor.factors(factors=c("A","B","C","D"),

+ nlevels=rep(2,4))

The second step is to specify the model and part to be estimated, using the planor.model
function and saving the result in another object ABCD.mod

> ABCD.mod <- planor.model(

+ model= ~ A + B + C + D + A:B + A:C + A:D + B:C + B:D + C:D,

+ estimate=~ A + B + C + D)

The third step is to search for a design of a given size that satisfies the model and
estimated part that have just been specified. This involves searching for a special matrix
called the design key and then using the design key to construct the actual design. The
search for the design key is made by the function planor.designkey :

> ABCD.key <- planor.designkey(factors=ABCD.fact,

+ model=ABCD.mod,

+ nunits=8,

+ base=~A+B+C)

5



Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for column 4 .

first visit to column 4

The search is closed: max.sol = 1 solution(s) found

The results are stored in ABCD.key and the base argument is used to specify that A,
B and C are the basic factors. The planor.designkey function explores the possibilities
for D. It eliminates choices which do not enable estimation of the effects of A, B, C, D
in the framework of the model considered. For instance, choice D = AB is eliminated
because it leads to confounding of the main effects A, B, D with interactions BD, AD,
AB, respectively. In this instance, the only valid choice is D = ±ABC, i.e. in additive
notation, D = A+B + C or D = A+B + C + 1.

The function planor.design uses the design key to construct the design. After
selection at random or by the user of the constant 0 or 1 added to A+B +C in order to
obtain D1, the design is constructed by default in the systematic order which appears in
table 1. It is stored in the design slot of the output called here ABCD.sys.

> ABCD.sys <- planor.design(ABCD.key)

> print(ABCD.sys@design)

A B C D

1 1 1 1 1

2 1 1 2 2

3 1 2 1 2

4 1 2 2 1

5 2 1 1 2

6 2 1 2 1

7 2 2 1 1

8 2 2 2 2

Note that the function planor.design replaces the level numbers 0 and 1 by the
actual factor levels (1 and 2 by default), in order to obtain a design which may be readily
used.

2.1.3 Randomization

The allocation of treatments to experimental units (plots in agriculture, animals in animal
science, procedure number in a laboratory experiment, . . . ) is generally random. In the
present case, there are no blocks and such random allocation, called randomization, is
achieved by randomly drawing the unit number allocated to each of the 8 treatments. A

1not implemented
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possible result of this draw is denoted by ind.rep (repetition index) in table 1. Getting a
completely randomized rather than a systematic design is possible by using the argument
randomize=~UNITS of the function planor.design, as shown in the following variant of
the four-factor example :

> ABCD.factL <- planor.factors(factors=list(

+ A=c("small","big"),

+ B=c("cold","hot"),

+ C=c("black","white"),

+ D=c("yes","no")))

> ABCD.key <- planor.designkey(factors=ABCD.factL,

+ model=ABCD.mod,

+ nunits=8)

> ABCD.rand <- planor.design(ABCD.key, randomize=~UNITS)

> print(ABCD.rand@design)

A B C D

1 small hot black no

2 small cold black yes

3 big cold white yes

4 small hot white yes

5 big cold black no

6 small cold white no

7 big hot black yes

8 big hot white no

The same factors have been declared by planor.factors, except that explicit labels
have been given to their levels. The output of planor.design is now a randomized design.

2.1.4 Alternatives for the writing of the model

planor uses the R syntax for model formulae, which automatically completes the model
by adding the constant and terms “included” in one of the interactions if the factors are
separated by a star *. The writing of the above model can thus be shortened by omitting
the main effects since each of the latter is included in an interaction:

model=~ A*B + A*C + A*D + B*C + B*D + C*D

When there are many factors, writing the model can become tedious. In order to
shorten the process, brackets can be used. The model is developed and the redundant
factors in each effect are deleted as well as the redundant terms in the formula.

7



Thus

(A+B + C +D)(A+B + C +D) −→ A ∗A+A ∗B +A ∗ C +A ∗D +B ∗A+B ∗B +B ∗ C +B ∗D
+C ∗A+ C ∗B + C ∗ C + C ∗D +D ∗A+D ∗B +D ∗ C +D ∗D

−→ A+B +A : B + C +A : C +D +A : D +B : C +B : D + C : D
−→ A+B + C +D +A : B +A : C +A : D +B : C +B : D + C : D

therefore the previous model can be written in the form

model=~(A+B+C+D)*(A+B+C+D) or model=~(A+B+C+D)^2

If the model is intended to contain all except for one or two interactions, say B.C,
B.D, it may be convenient to use an expression such as

model=~(A+B+C+D)^2 - (B:C+B:D) or2 model=~(A+B+C+D)^2 - B:(C+D)

where the minus sign is used to subtract both interactions from the model.

2.2 Example with 3-level factors

2.2.1 Definition and properties

There are 27 units defined by 3 treatment factors A, B, C with 3 coded levels 0, 1, 2. A
new treatment factor D and a block factor Bl are defined by setting D = A+B +C and
Bl = A+B + 2C (mod 3).

The resulting design is given in table 3. The multiplicative notation appearing in
the middle of this table uses the cube root j = exp(2π/3) of the unit, which replaces the
−1 used in the case of 2-level factors.

The factorial effects of the main effect of A are A, A2, and those of the interaction
between A and B are AB, A2B2, AB2, A2B. The factorial effects of the other main
effects and interactions are enumerated similarly. In additive notation, these same effects
are noted e(A), e(2A), e(A+ B), e(2A+ 2B), e(A+ 2B), e(2A+ B), etc . . . The precise
definition of these effects, associated with a decomposition into orthogonal contrasts also
referred to as orthogonal degrees of freedom, is by no means essential to understanding
and using planor .

By adding 2D to the equality D = A + B + C and by then multiplying the result
by 2 (mod 3), the following is obtained:

0 = A+B + C + 2D = 2A+ 2B + 2C +D . (3)

The addition of 27 linear combinations between the basic factors A, B, C then gives rise
to the equalities appearing on the left side of table 4. The block effects Bl and 2Bl equal
to A + B + 2C and 2A + 2B + C, respectively, have been added in brackets (caution:
2× 2 C = 4C = C mod 3 ).

2needs to be checked
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D = A+B + C
Bl = A+B + 2C

A B C D Bl
0 0 0 0 0
0 0 1 1 2
0 0 2 2 1
0 1 0 1 1
0 1 1 2 0
0 1 2 0 2
0 2 0 2 2
0 2 1 0 1
0 2 2 1 0
1 0 0 1 1
1 0 1 2 0
1 0 2 0 2
1 1 0 2 2
1 1 1 0 1
1 1 2 1 0
1 2 0 0 0
1 2 1 1 2
1 2 2 2 1
2 0 0 2 2
2 0 1 0 1
2 0 2 1 0
2 1 0 0 0
2 1 1 1 2
2 1 2 2 1
2 2 0 1 1
2 2 1 2 0
2 2 2 0 2

D = ABC
Bl = ABC2

A B C D Bl
1 1 1 1 1
1 1 j j j2

1 1 j2 j2 j
1 j 1 j j
1 j j j2 1
1 j j2 1 j2

1 j2 1 j2 j2

1 j2 j 1 j
1 j2 j2 j 1
j 1 1 j j
j 1 j j2 1
j 1 j2 1 j2

j j 1 j2 j2

j j j 1 j
j j j2 j 1
j j2 1 1 1
j j2 j j j2

j j2 j2 j2 j
j2 1 1 j2 j2

j2 1 j 1 j
j2 1 j2 j 1
j2 j 1 1 1
j2 j j j j2

j2 j j2 j2 j
j2 j2 1 j j
j2 j2 j j2 1
j2 j2 j2 1 j2

Randomization
(see table 5)

Bl0 ind-rep
2 2
0 6
1 6
1 0
2 1
0 1
0 7
1 2
2 5
1 8
2 7
0 8
0 2
1 7
2 0
2 4
0 4
1 4
0 3
1 5
2 8
2 6
0 0
1 3
1 1
2 3
0 5

Table 3: Example 2.2: 4 3-level factors on 3 blocks of 9 units

The rule 1 makes it possible to immediately infer from these equalities the sets of
aliased effects, which appear on the right side of table 4.

The following properties of the design (which may be checked in table 4) are directly
inferred from the equality in equation (3) :

� A main effect is confounded only with interactions of three or more factors.

� Among the four degrees of freedom of an interaction between two factors, two are
aliased with another two-factor interaction, and two are only aliased with interac-
tions of three or more factors.

� There is no set of three aliased effects which only contains three- or four-factor
interaction effects.

The latter property shows that any other definition of Bl would make the block effect
confounded with at least a two-factor interaction. However, the option selected here makes
the interaction effects e(C +D) and e(2C + 2D) inestimable even though interactions of
three or four factors are assumed to be null. A wiser choice would be Bl = C + 2D.
This choice would enable confounding of the block effect with effects e(C + 2D) and
e(2C + D) which are already confounded with other 2-factor interactions and are in any
case inestimable.

The design thus provides the possibility of estimating all the main effects in the
model including two-factor interactions and the block effect. The specifications resulting
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equalities induced by (3) aliased effects
0 = A+B + C + 2D =2A+ 2B + 2C +D e(0), e(A+B + C + 2D), e(2A+ 2B + 2C +D)
C = A+B + 2C + 2D = 2A+ 2B +D e(C), e(A+B + 2C + 2D), e(2A+ 2B +D)
2C = A+B + 2D = 2A+ 2B + C +D e(2C), e(A+B + 2D), e(2A+ 2B + C +D)
B = A+ 2B + C + 2D = 2A+ 2C +D e(B), e(A+ 2B + C + 2D), e(2A+ 2C +D)

B + C = A+ 2B + 2C + 2D = 2A+D e(B + C), e(A+ 2B + 2C + 2D), e(2A+D)
B + 2C = A+ 2B + 2D = 2A+ C +D e(B + 2C), e(A+ 2B + 2D), e(2A+ C +D)

2B = A+ C + 2D = 2A+B + 2C +D e(2B), e(A+ C + 2D), e(2A+B + 2C +D)
2B + C = A+ 2C + 2D = 2A+B +D e(2B + C), e(A+ 2C + 2D), e(2A+B +D)
2B + 2C = A+ 2D = 2A+B + C +D e(2B + 2C), e(A+ 2D), e(2A+B + C +D)

A = 2A+B + C + 2D = 2B + 2C +D e(A), e(2A+B + C + 2D), e(2B + 2C +D)
A+ C = 2A+B + 2C + 2D = 2B +D e(A+ C), e(2A+B + 2C + 2D), e(2B +D)
A+ 2C = 2A+B + 2D = 2B + C +D e(A+ 2C), e(2A+B + 2D), e(2B + C +D)
A+B = 2A+ 2B + C + 2D = 2C +D e(A+B), e(2A+ 2B + C + 2D), e(2C +D)

A+B + C =2A+ 2B + 2C + 2D= D e(A+B + C), e(2A+ 2B + 2C + 2D), e(D)
[Bl] = A+B + 2C = 2A+ 2B + 2D = C +D [e(Bl)], e(A+B + 2C), e(2A+ 2B + 2D), e(C +D)

A+ 2B = 2A+ C + 2D = B + 2C +D e(A+ 2B), e(2A+ C + 2D), e(B + 2C +D)
A+ 2B + C = 2A+ 2C + 2D = B +D e(A+ 2B + C), e(2A+ 2C + 2D), e(B +D)
A+ 2B + 2C = 2A+ 2D = B + C +D e(A+ 2B + 2C), e(2A+ 2D), e(B + C +D)

2A = B + C + 2D = A+ 2B + 2C +D e(2A), e(B + C + 2D), e(A+ 2B + 2C +D)
2A+ C = B + 2C + 2D = A+ 2B +D e(2A+ C), e(B + 2C + 2D), e(A+ 2B +D)
2A+ 2C = B + 2D = A+ 2B + C +D e(2A+ 2C), e(B + 2D), e(A+ 2B + C +D)
2A+B = 2B + C + 2D = A+ 2C +D e(2A+B), e(2B + C + 2D), e(A+ 2C +D)

2A+B + C = 2B + 2C + 2D = A+D e(2A+B + C), e(2B + 2C + 2D), e(A+D)
2A+B + 2C = 2B + 2D = A+ C +D e(2A+B + 2C), e(2B + 2D), e(A+ C +D)

2A+ 2B = C + 2D = A+B + 2C +D e(2A+ 2B), e(C + 2D), e(A+B + 2C +D)
[2Bl]= 2A+ 2B + C = 2C + 2D = A+B +D [e(2Bl)], e(2A+ 2B + C), e(2C + 2D), e(A+B +D)

2A+ 2B + 2C= 2D = A+B + C +D e(2A+ 2B + 2C), e(2D), e(A+B + C +D)

Table 4: Aliased effects in the example 2.2.

in such a type of design with planor are:

model Bl + (A + B + C + D)2

part to be estimated A + B + C + D
(4)

2.2.2 Search by planor for several solutions and selection through the study
of aliases

It is possible in this small-scale example to request the set of solutions satisfying the
requirement defined by (4). A direct syntax to do so is

> ABCD3.key <- planor.designkey(factors=c("Bl",LETTERS[1:4]),

+ nlevels=rep(3,5),

+ block=~Bl,

+ model=~Bl+(A+B+C+D)^2,

+ estimate=~A+B+C+D,

+ nunits=27,

+ base=~A+B+C,

+ max.sol=Inf)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 3 : key-matrix search

=> search for columns 4 to 5
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first visit to column 4

first visit to column 5

--- col. 5 ( j = 2) 8 selected candidates

--- col. 5 ( j = 2) 8 selected candidates

The search is closed: 144 solutions found

where the max.sol argument (maximum number of solutions) has been put at a value
larger than necessary3.

In this way 144 solutions are obtained. Under the hypothesis that interactions of
three or more factors are null, one third of these solutions enable the estimation of half
of the degrees of freedom for each two-factor interaction. The other two-thirds moreover
make the other two degrees of freedom of a given interaction confounded with the blocks.
It is not possible to specify to the program that a design of the appropriate third is
preferentially sought, but the solutions found can be studied a posteriori by the study of
aliases.

The remainder of this paragraph presents the result of the study of aliases for each
type of solution. The solution corresponding to the appropriate third is solution 1 which
leaves, for each of the 6 two-factor interactions, 2 unaliased degrees of freedom. The
solution corresponding to the inappropriate third is number 34 in which an interaction is
completely confounded and for which there are thus only 5 interactions with 2 unaliased
degrees of freedom.

The equalities defining each design are presented in the form of a key matrix with
one row for each basic factor. Each factor that appears either in the model, in the part to
be estimated, in the hierarchies or among the predetermined factors, is associated with a
column of this matrix specifying the linear combination of the basic factors which defines
this factor.

In fact, several disjoint designs with similar properties are obtained by adding to
each factor modulo 3, an integer included between 0 and the “cR” coefficient given at the
top of the corresponding column.

The study of aliased effects, also referred to as alias, begins with the writing of a
synthetic table from which the lists of aliased effects are easily obtained. This table is
an intermediate technique which is only of interest for highly skilled users. The ordinary
user may, without inconvenience, skip the paragraphs in small type containing this table
and related comments.

The standard proposed model for the study of aliases is the model introduced initially
for the design search. This may be modified without any problem immediately prior to
the study of aliases.

3by default, max.sol=1; to search for an unlimited number of solutions, max.sol=Inf is possible but
should be used only for problems of small size; note that it is important to use the base argument to
avoid redundant solutions
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Outputs of the study of aliases for the two solutions adopted

Solution 1 (prime 3 )

The levels of a factor at the top of a column are obtained by multiplying the levels of
the basic factors appearing at the left of the row by the coefficients in the column and by
adding a predetermined integer lower than cR. Calculations of levels performed modulo 3.

blocs ∗
cR 2 0 2 0 0

3 3 3 3 3
A B C D Bl

3 A 1 0 0 1 1
3 B 0 1 0 1 1
3 C 0 0 1 1 0

In R, the design key of Solution 1 is obtained by

> print(ABCD3.key[1])

An object of class designkey

********** Prime 3 design **********

A B C Bl D

A 1 0 0 1 1

B 0 1 0 1 1

C 0 0 1 0 1

Study of aliased effects.

The columns of the matrices below provide the defining relations of the design (kernel of the key
matrix) from which the aliased effects are inferred.

- The columns of the first matrix generate all the treatment effects confounded with the general
mean. By adding the vectors with coordinates ≤cT, all the sets of confounded treatment effects
can be inferred.

- The linear combinations with coefficients ≤cBT in the columns of the second matrix provide the
confounded block effects and, for each of these, one of the treatment effects with which it is
confounded. The other treatment effects confounded with this block effect are obtained by adding
the treatment effects confounded with the mean.

- The sets of treatment effects confounded with each other but not with a block effect can be obtained
directly by adding one of the non-zero vectors with coordinates ≤cTB to the sets of treatment
effects confounded with the blocks.

- The unconfounded block effects are obtained by adding a non-zero vector with coordinates ≤cB
to the confounded block effects.

12



- In the sets of confounded effects obtained as described above, a detailed analysis of aliases only
includes those aliases which effectively appear in the model (which may lead to differences in the
repartition of effects).

cBT 2
order 3 3

cB cT cTB bl
0 2 2 3 A 1 A 0
0 2 0 3 B 1 B 0
0 2 2 3 C 1 C 2
0 0 0 3 D 2 D 1
0 0 0 ∗ 3 Bl 0 Bl 2

↑ ↑
matrix n0 1 n0 2

� List of treatment effects confounded with the mean

;ABCD2;A2B2C2D;

� Sets of aliased effects in the model. If the set contains a block effect, the latter is
indicated in brackets.

[Bl];C2D;AB;
[Bl2];CD2;A2B2;
AC;B2D;
A2D;BC;
AD2;B2C2;
A2C2;BD2;

� list of unaliased treatment effects

A;A2B;B2;A2;B;AB2;C;D;C2D2;
AD;B2C;A2C;BD;C2;CD;D2;AC2;
B2D2;BC2;A2D2;

� list of unaliased block effects: empty

In R, this information is obtained by:

> alias(ABCD3.key[1], model=~Bl+(A+B+C+D)^2)

********** Prime 3 design **********

UNALIASED TREATMENT EFFECTS

A ; B ; C ; D ; A:B^2 ; A:C^2 ; A^2:D^2 ; B:C^2 ; B:D ; C:D

ALIASED TREATMENT EFFECTS

A:C = B^2:D

A^2:D = B:C
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TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

Bl = A:B = C^2:D

UNALIASED BLOCK EFFECTS

nil

Solution 34 (prime 3 )

Calculations of levels performed modulo 3.

blocks ∗
cR 2 0 2 0 0

3 3 3 3 3
A B C D Bl

3 A 1 0 0 2 2
3 B 0 1 0 1 1
3 C 0 0 1 1 2

Study of aliased effects.

cBT 2
ordre 3 3

cB cT cTB bl
0 2 2 3 A 1 A 0
0 2 2 3 B 2 B 0
0 2 0 3 C 2 C 2
0 0 0 3 D 1 D 2
0 0 0 ∗ 3 Bl 0 Bl 1

� List of treatment effects confounded with the mean

;AB2C2D;A2BCD2;

� Sets of aliased effects in the model. If the set contains a block effect, the latter is
indicated in brackets.

[Bl2];C2D2;
[Bl];CD;

A2C;B2D;
A2D2;B2C2;
A2B;C2D;
AB2;CD2;
BC;AD;

BD2;AC2;
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� list of unaliased treatment effects

A;BD;BC2;A2;B2C;B2D2;B;AC;
AD2;AB;C;D2;B2;A2D;A2C2;D;C2;A2B2;

� list of unaliased block effects

In R, the information is given by

> alias(ABCD3.key[34], model=~Bl+(A+B+C+D)^2)

********** Prime 3 design **********

UNALIASED TREATMENT EFFECTS

A ; B ; C ; D^2 ; A:B ; A^2:D ; B:C^2 ; B^2:D^2 ; C^2:D^2

ALIASED TREATMENT EFFECTS

A:B^2 = C:D^2

A:C^2 = B:D^2

A:D = B:C

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

Bl = A:C

UNALIASED BLOCK EFFECTS

nil

2.2.3 Randomization of a block design

Randomization takes place in two stages. In the first stage, the numbers associated with
the real blocks are associated randomly to each block number appearing in the systematic
design. The unit number allocated to each treatment within each block is then drawn
at random. Table 5 shows a possible result of this randomization which leads to the
columns entitled Bl0 and ind-rep of table 3. Column Bl0 provides the number of the real
block, and ind-rep provides that of the block unit. In the second stage, several related
transformations are required performed in order to obtain a ““ready-for-use” design, in
particular, sorting of Bl0 and ind-rep.

2.3 Example of a combination of factors with 6, 4 and 2 levels

2.3.1 Definition and properties. Decomposition into pseudofactors

There are 144 existing units distributed into 6 blocks – factor Bl –, over which 4 treatment
factors A, B, C, D with 6, 6, 4 and 2 levels, respectively, are tested. Apart from D which
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block nb. in the systematic design 0 1 2
real block nb. 2 1 0

Bl
nb. of the units allocated
to block treatments

0 2 1 5 7 0 4 8 6 3
1 6 0 2 8 7 4 5 3 1
2 6 1 7 8 2 4 3 0 5

Table 5: Randomization of a block design

only has 2 levels, each of these factors is decomposed into 2 pseudofactors as indicated in
table 6. Note that the program uses the symbol “ ” to indicate subscripting: A 1 for A1,
B 2 for B2, etc . . .

A A1 A2

1 1 2
2 1 1
3 1 0
4 0 2
5 0 1
6 0 0

B B1 B2

1 1 2
2 1 1
3 1 0
4 0 2
5 0 1
6 0 0

Bl Bl1 Bl2
1 1 2
2 1 1
3 1 0
4 0 2
5 0 1
6 0 0

C C1 C2

1 1 1
2 1 0
3 0 1
4 0 0

Table 6: Decomposition into pseudofactors in example 2.3.

Factors A, B, C are taken as basic factors. Then Bl and D are defined by the
following equalities:

Bl1 = A1 +B1 + C1 (mod 2)
Bl2 = A2 + 2B2 (mod 3)
D = A1 +B1 + C1 + C2 (mod 2)

(5)

2.3.2 Study of aliases (not updated subsection)

In order to perform the study of aliases for this specific design, the equalities defined by
(5) are inserted in the following form:

Bl 1 : A 1 +B 1 + C 1
Bl 2 : A 2 + 2B 2
D : A 1 +B 1 + C 1 + C 2

We specify in the frame added factors of this same screen that Bl is a block factor.

It is assumed that the model contains a block effect and a treatment effect including
the main effects and interactions of two factors. In view of the fact that it is automatically
completed by planor , this model may be written as:

Bl + A.B + A.C + A.D +B.C +B.D + C.D ,
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or even using a model part

model part P : A+B + C +D
model Bl + P.P

On the basis of this model entered in screen 6 (see § 5.6), the study of aliases provides
the results which follow. In the current version, these results are given separately for
primes 2 and 3 which divide the number of units.

Prime 2

� List of treatment effects confounded with the mean

;A1B1C1C2D;

� Sets of confounded effects in the model. When the set contains a block effect, the
latter is indicated in brackets.

[Bl1];C2D;
A1B1;C1C2D;
A1D;B1C1C2;
B1D;A1C1C2;

� list of unaliased treatment effects

A1;B1C1;B1;A1C1;C1;C2;D;A1C2;B1C2;C1D;C1C2;

� list of unaliased block effects: empty.

Prime 3

� List of treatment effects confounded with the mean: empty.

� Sets of aliased effects in the model. If the set has a block effect, the latter is indicated
in brackets.

[Bl22];A2
2B2;

[Bl2];A2B
2
2 ;

� list of unaliased treatment effects

;A2;B2;A2
2B

2
2 ;A2

2;A2B2;B2
2 ;

� list of unaliased block effects: empty

The aliased effects in the global design can easily be deduced from these studies
conducted separately for primes 2 and 3. The general rule is simple. Every effect is
decomposed into a product α2α3 in which α2 and α3 may be expressed from the 2- and
3-level pseudofactors, respectively. For example, α2 = A1D and α3 = A2B

2
2 for the effect

A1A2B
2
2D. So α2α3 and β2β3 are two effects thus decomposed.
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Rule 2 α2α3 and β2β3 are confounded if and only if α2 is confounded with β2 and α3 is
confounded with β3.

In particular, if neither α2, nor α3 are confounded, the effect α2α3 is not confounded. For
instance, in this example A1, A2 et A2

2 are not confounded, and neither are the products
A1A2, A1A

2
2. The 5 degrees of freedom of A are thus estimable. Similarly, it can be

observed that the other main effects are estimable in the model which includes all the
interactions of two treatment factors and the block effect.

Let us now examine an interaction such as AB. The 25 corresponding effects are all
shown in table 7 with, in the same cell, the other effects with which they are confounded.
Only three degrees of freedom are confounded with non-negligible interactions?: A1B1

confounded with C1C2D, A2B
2
2 , A2

2B2 confounded with Bl2, Bl22.

A1 B1 A1B1 C1C2D
A2 A1A2 B1A2 A1B1A2 A2C1C2D
A2

2 A1A
2
2 B1A

2
2 A1B1A

2
2 A2

2C1C2D
B2 A1B2 B1B2 A1B1B2 B2C1C2D
B2

2 A1B
2
2 B1B

2
2 A1B1B

2
2 B2

2C1C2D
A2B2 A1A2B2 B1A2B2 A1B1A2B2 A2B2C1C2D
A2

2B
2
2 A1A

2
2B

2
2 B1A

2
2B

2
2 A1B1A

2
2B

2
2 A2

2B
2
2C1C2D

A2B
2
2 A1A2B

2
2 B1A2B

2
2 A1B1A2B

2
2 A2B

2
2C1C2D

Bl2 A1Bl2 B1Bl2 A1B1Bl2 C1C2DBl2
A2

2B2 A1A
2
2B2 B1A

2
2B2 A1B1A

2
2B2 A2

2B2C1C2D
Bl22 A1Bl

2
2 B1Bl

2
2 A1B1Bl

2
2 C1C2DBl

2
2

Table 7: Confounding for effects involving 2- and 3-level pseudofactors
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3 Examples of designs for the ARILAIT robot

With a view on measuring the effectiveness of cleaning and disinfection of open surfaces,
the LGHPA laboratory and the ARILAIT association, already mentioned in the introduc-
tion, set up a robot which could soil, then clean and disinfect a surface in reproducible
conditions [6]. The surface is a stainless steel plate containing 16 circular test specimens
measuring 5 cm in diameter, laid out on the plate as indicated in figure 1.
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Figure 1: Position of test specimens on the plate

A variety of factors are likely to influence effectiveness of cleaning and disinfection.
These include, for instance, the nature of the material of which the test specimen is made,
its roughness, the type and quantity of soiling, bacterial concentration in the soiled area,
the nature, concentration, application temperature and duration of action of each of the
products used for cleaning and disinfection.

Operating the robot is subject to certain constraints. It moves by row and column,
and the levels of factors cannot vary ad libitum from one specimen to the other. Fur-
thermore, effectiveness of cleaning and disinfection is assessed by comparing the cleaned
and disinfected specimen with a control specimen that is similarly soiled but not cleaned.
For each treatment, at least at the soiling stage, two identically treated specimens are
required.

3.1 Creation of a full factorial design that incorporates manip-
ulation constraints

3.1.1 Objective and constraints

In the example in this paragraph, a single commercial product - a chlorinated alkaline
agent - is applied in the form of foam to clean and disinfect. The factors studied are
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n-soil : nature of the soiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . curd
Saint-Paulin.

q-soil : quantity of soiling deposited on the test specimens,
varied by placing a weight on the robot arm

?0.01 g/specimen
0.10 g/specimen.

rough: roughness of test specimens . . . . . . . . . . . . . . . . . . . . . 0.25µm
0.73µm.

conc : concentration of the cleaning and disinfection
product

1%
3% (v/v)

T-act : duration of action of the product . . . . . . . . . . . . . . . . 15mn
30mn.

In this experiment, there is no watertight partition preventing the diffusion of foam
from one part of the plate to another. The latter two factors, concentration and duration of
action of the product thus necessarily remain constant throughout the same manipulation
of the plate. In order to study the 4 combinations of these two factors, (1%, 15mn), (1%,
30mn), (3%, 15mn), (3%, 30mn), at least 4 such manipulations are required, that is to
say, 4 plates for 4 weeks of experimenting. To study variability from one plate to another,
two of these combinations, (3%, 15mn) and (1%, 30mn), are repeated, which results in a
total of 6 plates.

The 8 combinations of levels of the other three factors can be tested on each of the
6 plates: (curd , 0.01g/e, 0.25µm), (curd , 0.10g/e, 0.25µm), (curd , 0.01g/e, 0.73µm),
(curd , 0.10g/e, 0.73µm), (StPaul, 0.01g/e, 0.25µm), (StPaul, 0.10g/e, 0.25µm), (StPaul,
0.01g/e, 0.73µm), (StPaul, 0.10g/e, 0.73µm), by placing a treated test specimen and its
associated control for each of these treatments.

To facilitate manipulations, soiling is performed column by column, and the nature
and quantity of soiling are only modified when moving from one column to another. Two
test specimens of each roughness, with one acting as a control for the other, are placed
in each column. At the cleaning stage, the treated specimens are replaced in the same
position and the control specimens are replaced by other specimens which are only used
to fill the holes.

In this example, the design is thus clearly defined and an algorithmic search is
useless. Nevertheless, it is worth considering how to proceed to create and randomize this
design practically.

3.1.2 Creation by juxtaposition of two sub-designs

As already mentioned, the 6 plates are made up of a 4-plate design including the set of
4× 8 treatments and of a 2-plate design including half of these treatments.

These two designs, denoted by ROBOT1A and ROBOT1B, respectively, are ob-
tained separately and then merged. For each design, the basic factors are the plate
number plate, the column number in the plate col, the unit number in the column u. The
defined factors are the treatment factors: n-soil, q-soil, rough, conc, T-act. Note that on
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this example, the order of the factors has a large influence on the computing time for the
design search to be run below. Putting factors conc and Tact after factor rough results in
a much larger computing time because the solutions are then farther in the search tree.

> robotFac <- planor.factors( factors=list(

+ conc=c("1%","3%"),

+ Tact=c("15mn","30mn"),

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("10mg","100mg"),

+ rough=c(0.25,0.73),

+ plate=1:4,

+ col=1:4,

+ u=1:2),

+ block=~plate+col,

+ hierarchy=list(~nsoil/(plate*col),

+ ~qsoil/(plate*col),

+ ~conc/plate,

+ ~Tact/plate))

The “hierarchy” argument specifies that conc and T-act must be constant on each
plate and n-soil and q-soil must be constant on each column in each plate. It follows that
in the designs, conc and T-act will have to be defined from the plate number plate, and
n-soil, q-soil from the plate number pl and the columnn number in the plate col.

The ROBOT1A design must be complete, i.e., involve each of the 25 treatments
defined by n-soil, q-soil, rough, conc, T-act. In order to ensure this, a model including
all main effects and interactions of the 5 factors is specified. In addition, the rough factor
must be orthogonal to the block factors plate, col. This is specified in the listofmodels

argument of.planor.model.

> robotMod <- planor.model( model=~nsoil * qsoil * rough * conc * Tact,

+ listofmodels=list(c(~plate*col+rough,~rough)) )

The designkey can now be searched.

> robotKeyA <- planor.designkey(factors=robotFac,

+ model=robotMod,

+ nunits=32,

+ base=~plate+col+u)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 10

first visit to column 6

first visit to column 7
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--- col. 7 ( j = 2) 2 selected candidates

first visit to column 8

--- col. 8 ( j = 3) 12 selected candidates

first visit to column 9

--- col. 9 ( j = 4) 8 selected candidates

first visit to column 10

--- col. 10 ( j = 5) 16 selected candidates

The search is closed: max.sol = 1 solution(s) found

The ROBOT1A instructions may be used as the starting point for the construction
of the ROBOT1B design. In planor.factors, the levels of plate are replaced by 5 and
6 and in planor.model,T-act, for instance, is deleted from the model. However, T-act
does not appear in the model, and there is nothing to preclude it from remaining constant
in this second design. In order to compel it to assume both its levels, a second model is
developed, containing only T-act together with an empty part to be estimated.

> robotFacB <- planor.factors(factors=list(

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("10mg","100mg"),

+ rough=c(0.25,0.73),

+ conc=c("1%","3%"),

+ Tact=c("15mn","30mn"),

+ plate=5:6,

+ col=1:4,

+ u=1:2),

+ block=~plate+col,

+ hierarchy=list(~nsoil/(plate*col),

+ ~qsoil/(plate*col),

+ ~conc/plate,

+ ~Tact/plate))

> robotModB <- planor.model( model=~nsoil * qsoil * rough * conc,

+ listofmodels=list(c(~plate*col+rough,~rough),

+ c(~Tact,~Tact)) )

> robotKeyB <- planor.designkey(factors=robotFacB, model=robotModB,

+ nunits=16, base=~plate+col+u )

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 5 to 9

first visit to column 5

first visit to column 6

--- col. 6 ( j = 2) 6 selected candidates

first visit to column 7

--- col. 7 ( j = 3) 8 selected candidates

first visit to column 8
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robotKeyA

An object of class listofkeyrings

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

plate_1 plate_2 col_1 col_2 u conc Tact nsoil qsoil rough
plate_1 1 0 0 0 0 1 0 0 0 0
plate_2 0 1 0 0 0 0 1 0 0 0
col_1 0 0 1 0 0 0 0 1 0 0
col_2 0 0 0 1 0 0 0 0 1 0
u 0 0 0 0 1 0 0 0 0 1

robotKeyB

An object of class listofkeyrings

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

plate col_1 col_2 u nsoil qsoil rough conc Tact
plate 1 0 0 0 0 0 0 1 1
col_1 0 1 0 0 1 0 0 0 0
col_2 0 0 1 0 0 1 0 0 0
u 0 0 0 1 0 0 1 0 0

Table 8: Key matrices of the ROBOT1A and ROBOT1B designs

--- col. 8 ( j = 4) 0 selected candidates

--- col. 8 ( j = 4) 0 selected candidates

--- col. 7 ( j = 3) 8 selected candidates

--- col. 6 ( j = 2) 6 selected candidates

first visit to column 9

--- col. 9 ( j = 5) 1 selected candidates

The search is closed: max.sol = 1 solution(s) found

The results of the planor search are saved in robotKeyA and robotKeyB. They
contain the values of the parameters determining the search and the key matrices.

The design keys (Table 8) can be printed by

> print(robotKeyA)

> print(robotKeyB)

Here, these matrices lead to taking n-soil=col1 , q-soil=col2, rough=row, conc=plate1,
T-act=plate2 to construct ROBOT1A and n-soil=col1 , q-soil=col2, rough=col1 + row,
conc=plate, T-act=plate for ROBOT2. col1, col2, denoted by col 1, col 2 in the pro-
gram, are the pseudofactors resulting from the decomposition of the 4-level factor col
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and, similarly, plate1, plate2, denoted by plate 1, plate 2, are those resulting from the
decomposition of factor plate in the ROBOT1A design.

By default, a single solution is requested. In this case, after obtaining the single key
matrix in cases A and B, the design can be constructed by binding the designs generated
by the planor.design function. By precaution, the column order is specified explicitly
when binding the two dataframes.

> robotPlanA <- planor.design(robotKeyA)@design

> robotPlanB <- planor.design(robotKeyB)@design

> robotPlan <- rbind(robotPlanA[c("plate","col",

+ "nsoil","qsoil",

+ "rough","conc","Tact")],

+ robotPlanB[c("plate","col",

+ "nsoil","qsoil",

+ "rough","conc","Tact")])

The designs (Table 9) can be printed by

> print(robotPlanA)

> print(robotPlanB)

> print(robotPlan)

3.1.3 Randomization taking into account block structure

In order to be effectively implemented, this ROBOT1 design must be randomized by the
function planor.randomize. The randomization process must involve switching plates
around so that concentration and duration of action are always constant for each plate
following randomization. Similarly, the columns of each plate must be switched around.
This is indicated to the program by the randomization model which includes the terms
plate, plate:col, and plate:col:UNITS.

> robotRand <- planor.randomize(~plate/col/UNITS, data=robotPlan)

> write.table(robotRand, file="ROBOT.out", quote=FALSE,

+ row.names=FALSE, sep=" ")

The random permutation of the 6 plates and the 6 random permutations of the 4
columns of each plate are completed by the 24 permutations of the 2 units in each column.
The randomized design units are reordered appropriately for manipulation by the robot.
The randomized design is stored in the robotRand object and written in the ASCII file
ROBOT.out.

The randomized design robotRand can be printed by print(robotRand) (Table 10).

Remarks:
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robotPlanA

plate col u conc Tact nsoil qsoil rough

1 1 1 1 1% 15mn curd 10mg 0.25

2 1 1 2 1% 15mn curd 10mg 0.73

3 1 2 1 1% 15mn curd 100mg 0.25

4 1 2 2 1% 15mn curd 100mg 0.73

5 1 3 1 1% 15mn Saint-Paulin 10mg 0.25

6 1 3 2 1% 15mn Saint-Paulin 10mg 0.73

7 1 4 1 1% 15mn Saint-Paulin 100mg 0.25

8 1 4 2 1% 15mn Saint-Paulin 100mg 0.73

9 2 1 1 1% 30mn curd 10mg 0.25

10 2 1 2 1% 30mn curd 10mg 0.73

11 2 2 1 1% 30mn curd 100mg 0.25

12 2 2 2 1% 30mn curd 100mg 0.73

13 2 3 1 1% 30mn Saint-Paulin 10mg 0.25

14 2 3 2 1% 30mn Saint-Paulin 10mg 0.73

15 2 4 1 1% 30mn Saint-Paulin 100mg 0.25

16 2 4 2 1% 30mn Saint-Paulin 100mg 0.73

17 3 1 1 3% 15mn curd 10mg 0.25

18 3 1 2 3% 15mn curd 10mg 0.73

19 3 2 1 3% 15mn curd 100mg 0.25

20 3 2 2 3% 15mn curd 100mg 0.73

21 3 3 1 3% 15mn Saint-Paulin 10mg 0.25

22 3 3 2 3% 15mn Saint-Paulin 10mg 0.73

23 3 4 1 3% 15mn Saint-Paulin 100mg 0.25

24 3 4 2 3% 15mn Saint-Paulin 100mg 0.73

25 4 1 1 3% 30mn curd 10mg 0.25

26 4 1 2 3% 30mn curd 10mg 0.73

27 4 2 1 3% 30mn curd 100mg 0.25

28 4 2 2 3% 30mn curd 100mg 0.73

29 4 3 1 3% 30mn Saint-Paulin 10mg 0.25

30 4 3 2 3% 30mn Saint-Paulin 10mg 0.73

31 4 4 1 3% 30mn Saint-Paulin 100mg 0.25

32 4 4 2 3% 30mn Saint-Paulin 100mg 0.73

robotPlanB

plate col u nsoil qsoil rough conc Tact

1 5 1 1 curd 10mg 0.25 1% 15mn

2 5 1 2 curd 10mg 0.73 1% 15mn

3 5 2 1 curd 100mg 0.25 1% 15mn

4 5 2 2 curd 100mg 0.73 1% 15mn

5 5 3 1 Saint-Paulin 10mg 0.25 1% 15mn

6 5 3 2 Saint-Paulin 10mg 0.73 1% 15mn

7 5 4 1 Saint-Paulin 100mg 0.25 1% 15mn

8 5 4 2 Saint-Paulin 100mg 0.73 1% 15mn

9 6 1 1 curd 10mg 0.25 3% 30mn

10 6 1 2 curd 10mg 0.73 3% 30mn

11 6 2 1 curd 100mg 0.25 3% 30mn

12 6 2 2 curd 100mg 0.73 3% 30mn

13 6 3 1 Saint-Paulin 10mg 0.25 3% 30mn

14 6 3 2 Saint-Paulin 10mg 0.73 3% 30mn

15 6 4 1 Saint-Paulin 100mg 0.25 3% 30mn

16 6 4 2 Saint-Paulin 100mg 0.73 3% 30mn

robotPlan

plate col nsoil qsoil rough conc Tact

1 1 1 curd 10mg 0.25 1% 15mn

2 1 1 curd 10mg 0.73 1% 15mn

3 1 2 curd 100mg 0.25 1% 15mn

4 1 2 curd 100mg 0.73 1% 15mn

5 1 3 Saint-Paulin 10mg 0.25 1% 15mn

6 1 3 Saint-Paulin 10mg 0.73 1% 15mn

7 1 4 Saint-Paulin 100mg 0.25 1% 15mn

8 1 4 Saint-Paulin 100mg 0.73 1% 15mn

9 2 1 curd 10mg 0.25 1% 30mn

10 2 1 curd 10mg 0.73 1% 30mn

11 2 2 curd 100mg 0.25 1% 30mn

12 2 2 curd 100mg 0.73 1% 30mn

13 2 3 Saint-Paulin 10mg 0.25 1% 30mn

14 2 3 Saint-Paulin 10mg 0.73 1% 30mn

15 2 4 Saint-Paulin 100mg 0.25 1% 30mn

16 2 4 Saint-Paulin 100mg 0.73 1% 30mn

17 3 1 curd 10mg 0.25 3% 15mn

18 3 1 curd 10mg 0.73 3% 15mn

19 3 2 curd 100mg 0.25 3% 15mn

20 3 2 curd 100mg 0.73 3% 15mn

21 3 3 Saint-Paulin 10mg 0.25 3% 15mn

22 3 3 Saint-Paulin 10mg 0.73 3% 15mn

23 3 4 Saint-Paulin 100mg 0.25 3% 15mn

24 3 4 Saint-Paulin 100mg 0.73 3% 15mn

25 4 1 curd 10mg 0.25 3% 30mn

26 4 1 curd 10mg 0.73 3% 30mn

27 4 2 curd 100mg 0.25 3% 30mn

28 4 2 curd 100mg 0.73 3% 30mn

29 4 3 Saint-Paulin 10mg 0.25 3% 30mn

30 4 3 Saint-Paulin 10mg 0.73 3% 30mn

31 4 4 Saint-Paulin 100mg 0.25 3% 30mn

32 4 4 Saint-Paulin 100mg 0.73 3% 30mn

33 5 1 curd 10mg 0.25 1% 15mn

34 5 1 curd 10mg 0.73 1% 15mn

35 5 2 curd 100mg 0.25 1% 15mn

36 5 2 curd 100mg 0.73 1% 15mn

37 5 3 Saint-Paulin 10mg 0.25 1% 15mn

38 5 3 Saint-Paulin 10mg 0.73 1% 15mn

39 5 4 Saint-Paulin 100mg 0.25 1% 15mn

40 5 4 Saint-Paulin 100mg 0.73 1% 15mn

41 6 1 curd 10mg 0.25 3% 30mn

42 6 1 curd 10mg 0.73 3% 30mn

43 6 2 curd 100mg 0.25 3% 30mn

44 6 2 curd 100mg 0.73 3% 30mn

45 6 3 Saint-Paulin 10mg 0.25 3% 30mn

46 6 3 Saint-Paulin 10mg 0.73 3% 30mn

47 6 4 Saint-Paulin 100mg 0.25 3% 30mn

48 6 4 Saint-Paulin 100mg 0.73 3% 30mn

Table 9: The three designs robotPlanA, robotPlanB, and robotPlan before randomization
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plate col nsoil qsoil rough conc Tact

1 1 1 Saint-Paulin 10mg 0.25 3% 15mn

2 1 1 Saint-Paulin 10mg 0.73 3% 15mn

3 1 2 Saint-Paulin 100mg 0.25 3% 15mn

4 1 2 Saint-Paulin 100mg 0.73 3% 15mn

5 1 3 curd 100mg 0.25 3% 15mn

6 1 3 curd 100mg 0.73 3% 15mn

7 1 4 curd 10mg 0.73 3% 15mn

8 1 4 curd 10mg 0.25 3% 15mn

9 2 1 Saint-Paulin 100mg 0.25 1% 15mn

10 2 1 Saint-Paulin 100mg 0.73 1% 15mn

11 2 2 Saint-Paulin 10mg 0.73 1% 15mn

12 2 2 Saint-Paulin 10mg 0.25 1% 15mn

13 2 3 curd 100mg 0.73 1% 15mn

14 2 3 curd 100mg 0.25 1% 15mn

15 2 4 curd 10mg 0.25 1% 15mn

16 2 4 curd 10mg 0.73 1% 15mn

17 3 1 curd 100mg 0.25 3% 30mn

18 3 1 curd 100mg 0.73 3% 30mn

19 3 2 Saint-Paulin 10mg 0.73 3% 30mn

20 3 2 Saint-Paulin 10mg 0.25 3% 30mn

21 3 3 Saint-Paulin 100mg 0.25 3% 30mn

22 3 3 Saint-Paulin 100mg 0.73 3% 30mn

23 3 4 curd 10mg 0.73 3% 30mn

24 3 4 curd 10mg 0.25 3% 30mn

25 4 1 Saint-Paulin 10mg 0.73 3% 30mn

26 4 1 Saint-Paulin 10mg 0.25 3% 30mn

27 4 2 curd 10mg 0.73 3% 30mn

28 4 2 curd 10mg 0.25 3% 30mn

29 4 3 Saint-Paulin 100mg 0.25 3% 30mn

30 4 3 Saint-Paulin 100mg 0.73 3% 30mn

31 4 4 curd 100mg 0.25 3% 30mn

32 4 4 curd 100mg 0.73 3% 30mn

33 5 1 curd 10mg 0.73 1% 30mn

34 5 1 curd 10mg 0.25 1% 30mn

35 5 2 curd 100mg 0.25 1% 30mn

36 5 2 curd 100mg 0.73 1% 30mn

37 5 3 Saint-Paulin 10mg 0.25 1% 30mn

38 5 3 Saint-Paulin 10mg 0.73 1% 30mn

39 5 4 Saint-Paulin 100mg 0.73 1% 30mn

40 5 4 Saint-Paulin 100mg 0.25 1% 30mn

41 6 1 curd 100mg 0.25 1% 15mn

42 6 1 curd 100mg 0.73 1% 15mn

43 6 2 Saint-Paulin 100mg 0.25 1% 15mn

44 6 2 Saint-Paulin 100mg 0.73 1% 15mn

45 6 3 curd 10mg 0.73 1% 15mn

46 6 3 curd 10mg 0.25 1% 15mn

47 6 4 Saint-Paulin 10mg 0.25 1% 15mn

48 6 4 Saint-Paulin 10mg 0.73 1% 15mn

Table 10: Randomized ROBOT1 design (after automatic sorting)
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� The fact that col only appears in the randomization model in conjunction with
plate indicates a hierarchical relationship and entails that random permutations of
column numbers occur independently from one plate to the other. Similarly, the
repetition index, considered to be nested within all the other factors, is separately
randomized in each column of each plate. A different choice of model could be made
if the plate was in a vertical position with, for example, column 1 at the top and
column 4 at the bottom. It would then be necessary to take into account, both in
the construction and in the randomization of the design, a potential column effect
arising from differences in soiling or cleaning as a function of height. The column
factor would then be crossed with – and no longer nested within – the plate factor.

� The type of randomization performed, thoroughly studied in [4], normally leads
to a model for analysis in which a certain number of terms appear, referred to as
ancestral terms, which are automatically deduced from the randomization model. In
this example, the terms appearing in the ASCII file created by randomization, are
plate, plate.col, plate.col.UNITS. Associated effects in the variance analysis model
are random and the analysis is normally performed by a procedure that takes into
account these random effects (see [3], [20]).

� The introduction of factors plate and col is rendered indispensable here by the robot
manipulation constraints. Nevertheless, the plate effect was shown to be negligible
during the first trials, undoubtedly owing to the coupling of each treated specimen
with a control specimen, and it is natural to think that the column effect, on the
horizontally maintained plate, is even more negligible. In other words, the excellent
reproducibility of the operations performed by the robot legitimately leads to the
assumption that the variability between two different column units is similar to that
between the units of the same column. In these circumstances, it is permissible not
to take into account the column effect during the analysis.

3.2 Designs for a plate

With a view to implementing the designs described below, removable watertight parti-
tions are now placed to separate either the columns or rows of the plate. Subsequently,
treatments may be adjusted from one column to the next, at each stage of the experiment.

Moreover, soiling now takes place in two steps. At the end of each step, 8 active
specimens are obtained together with the 8 associated control specimens. In the following
stages of the experiment, cleaning and disinfection, the 16 = 2 × 8 active specimens are
laid out simultaneously on the 16 parts of the plate.

With 16 units, it is possible to study up to five 2-level factors in resolution 5, and up
to 8 in resolution 4. For an intermediate number of factors such as 6 or 7, it is impossible
to achieve a resolution better than 4. More specifically, if the model includes all the main
effects and interactions of two factors, it is impossible to estimate, in addition to the main
effects, even a single 2-factor interaction.

It might be inferred from this that it is always preferable to use 8 rather than 7 or
6 factors, but that is incorrect since the size of confounded sets of interactions increases
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with the number of factors (table 11). And if the test relating to one of these sets is
significant, the interpretation is therefore more intricate if the number of factors is higher
(see [20] for an example of interpretation of this type of design).

Basic factors Defined factors
A, B, C, D E = ABC, F = ABD, G = ACD, H = BCD

Confounding between interactions

with the 6 factors with the 7 factors with the 8 factors
A, B, C, D, E, F A, B, C, D, E, F , G A, B, C, D, E, F , G, H

AB; CE; DF
AC; BE
BC; AE
AD; BF
BD; AF
CD; EF
DE; CF

AB; DF ; CE
AC; DG; BE
BC; FG; AE
AD; CG; BF
BD; AF ; EG
CD; AG; EF
BG; CF ; DE

AB; DF ; GH; CE
AC; FH; DG; BE
BC; DH; FG; AE
AD; EH; CG; BF
BD; EG; AF ; CH
CD; EF ; AG; BH
BG; CF ; AH; DE

Table 11: Designs of resolution 4 for 16 units and 6 to 8 factors

Furthermore, if certain interactions are assumed to be negligible, or if the estimation
of certain main effects which are already known is not required, it becomes possible to
estimate certain interactions. In this case, the number of factors in the design, 6, 7 or 8,
can have an essential impact.

The above considerations reveal the type of set-up which can be sought to implement
when conducting the experiment with only one plate. In practice, it is necessary to take
into account the constraints imposed by robot manipulation. However, the following two
examples show that if the column and row effects are neglected, adaptation to constraints
may be achieved without any additional reduction of the number of factors studied.

3.2.1 Design of resolution 4 for 8 factors

In this example, there are eight treatment factors at two levels : n-soil, q-soil, c-bact,
T-act, conc, brush, rough, nat. The unique plate is divided into two macro-columns of two
columns (factors col1, col2) and two macro-rows of two rows (row1, row2) as indicated in
Figure 2.

In each macro-row, at the first soiling, the active specimens are laid out along one
of the rows (row2= 0) while the controls are laid out along the other (row2= 1). The roles
of the two rows are switched at the second soiling (row2= 0: controls, row2= 1: active
test specimens). In the subsequent stages, each of the active specimens is replaced in the
position occupied during soiling.

To facilitate manipulations, soiling is performed column by column and cleaning is
performed row by row. Soiling thus cannot vary within the same column. It follows that
the nature of the soiling (n-soil) and its bacterial concentration (c-bact) must be identical
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Figure 2: Definition of block systems (col1, col2, row1, row2)

for the two active specimens soiled simultaneously. Consequently, the levels of both factors
must be defined from the pseudofactor levels col1, col2, row2. This is indicated in the first
two hierarchy formulae specified in the hierarchy argument of planor.factors below.

Similarly, concentration (conc) and duration of action (T-act) of the cleaning product
can only be modified between rows. The levels of these factors are defined from row1 and
row2, which is also indicated in the hierarchy list.

In this case, the possibility is recognized that the weight on the robot arm may be
changed in the middle of the column, to vary the quantity of soiling q-soil. Therefore, no
hierarchical constraint is required to be taken into account for this factor.

The intensity of brushing brush is equally modified by adding a weight on the robot
arm. To avoid too frequent changes, this modification is only authorized every two units,
that is to say, only in the middle and at the end of each row. In order to take this
constraint into account, the last row of the hierarchy field is introduced which makes the
level of brush dependent on the row (row1, row2) and the macro-column (col1).

> robpl1r4.fac <- planor.factors(factors=list(

+ row1=1:2,

+ row2=1:2,

+ col1=1:2,

+ col2=1:2,

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("10mg","100mg"),

+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ brush=c("strong","weak"),

+ rough=c(0.25,0.75),

+ nat=1:2),

+ block=~row1+row2+col1+col2,
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+ hierarchy=list(~nsoil/(col1*col2*row2),

+ ~cbact/(col1*col2*row2),

+ ~Tact/(row1*row2),

+ ~conc/(row1*row2),

+ ~brush/(row1*row2*col1)))

> robpl1r4.mod <- planor.model( listofmodels=list(

+ c( ~row2 + (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2,

+ ~nsoil+qsoil+cbact+Tact+conc+brush+rough+nat),

+ c( ~col1*col2*row2 + row1*row2*col1,

+ ~rough+nat)) )

> robpl1r4.key <- planor.designkey(factors=robpl1r4.fac,

+ model=robpl1r4.mod,

+ nunits=16,

+ base=~row1+row2+col1+col2 )

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 5 to 12

first visit to column 5

first visit to column 6

--- col. 6 ( j = 2) 13 selected candidates

first visit to column 7

--- col. 7 ( j = 3) 5 selected candidates

first visit to column 8

--- col. 8 ( j = 4) 1 selected candidates

first visit to column 9

--- col. 9 ( j = 5) 0 selected candidates

--- col. 8 ( j = 4) 1 selected candidates

--- col. 9 ( j = 5) 0 selected candidates

--- col. 7 ( j = 3) 5 selected candidates

first visit to column 10

--- col. 10 ( j = 6) 0 selected candidates

--- col. 10 ( j = 6) 0 selected candidates

first visit to column 11

--- col. 11 ( j = 7) 2 selected candidates

first visit to column 12

--- col. 12 ( j = 8) 1 selected candidates

The search is closed: max.sol = 1 solution(s) found

>

> #summary(robpl1r4.key)

The first model specified in planor.model contains all the main effects and two-
factor interactions involving the 8 treatment factors, in addition to row2. The part to
be estimated contains all the main effects. The resulting design is thus of resolution 4.
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Moreover, the inclusion of factor row2 relating to the soiling number ensures that all the
main treatment effects are estimable, even in the presence of an additive soiling effect.

In contrast, the other column or row factors col1, col2, row1 are not taken into
account in the first model, for the simple reason that the hierarchical constraints do not
enable this. Thus if the model includes the term row1.row2, there can be no solution since
T-act and conc are constant in each row.

In the framework of a model including row and column effects, it is thus impossi-
ble to estimate all the main effects. Nevertheless, it can be ensured that some of these
effects are estimable. For instance in this example, adding the second pair model—part
to be estimated ensures that the main effects of roughness and “nature of the material
making up the specimen” (rough, nat) are estimable, even if the model includes, in addi-
tion to the row and column effects, the interactions column×soiling (col1.col2.row2) and
macrocolumn×row (col1.row1.row2). In the resulting set-up, two active specimens located
in the same half-row differ both in terms of roughness and nature, and this also applies
to two active specimens that are soiled simultaneously in the same column.

Randomization of the design must be consistent with the row and column struc-
ture and with the macro-column and macro-row structure, to avoid inappropriate weight
changes on the robot arm, during soiling or cleaning. Ad-hoc randomization is achieved
by using col1+col1.col2+row1+row1.row2 as the randomization model. This formula in-
dicates that randomization is defined by:

� a random permutation of the macro-columns (col1),

� a random permutation of the macro-rows (row1),

� for each of the macro-columns, a random permutation of the columns of which it
consists (col2 for col1 fixed),

� for each of the macro-rows, a random permutation of the two rows of which it
consists (row2 for row1 fixed).

Random column permutations are conducted independently in the two macro-columns.
Likewise, row permutations are conducted independently in the two macro-rows. An illus-
tration of the possible permutations is given in Table 12, and R code to get a randomized
design is given below.

> robpl1r4.rand <- planor.design(robpl1r4.key,

+ randomize=~col1/col2 + row1/row2)

> print(robpl1r4.rand@design)

row1 row2 col1 col2 nsoil qsoil cbact Tact conc brush rough nat

1 1 1 1 1 curd 10mg 3% 15mn 1% strong 0.25 1

5 1 2 1 1 curd 10mg 6% 15mn 3% weak 0.25 2

9 2 1 1 1 curd 10mg 6% 30mn 1% weak 0.75 1
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OUTPUT COMMENT

Class 0, pseudofactors col1 Randomization of macro-columns

]0)= , associated pseudofactors: No nesting pseudofactors

fonction fi :
1 0

permutation : 0 7→ 1, 1 7→ 0

Class 1, pseudofactors row1 Randomization of macro-rows

]1)= , associated pseudofactors: No nesting pseudofactors

fonction fi :
1 0

permutation : 0 7→ 1, 1 7→ 0

Class 2, pseudofactors col2 randomization of columns

]2)=0 , associated pseudofactors: col1 in each macro-column

function fi :
0 0 1
1 1 0

permutation
macro-column 0 : 0 7→ 0, 1 7→ 1
macro-column 1 : 0 7→ 1, 1 7→ 0

Class 3, pseudofactors row2 randomization of rows

]3)=1 , associated pseudofactors: row1 in each macro-row

function fi :
0 0 1
1 0 1

permutation
macro-row 0 : 0 7→ 0, 1 7→ 1
macro-row 1 : 0 7→ 0, 1 7→ 1

Table 12: Randomization of the ROBPL1R4.PS design (intermediate outputs)

32



13 2 2 1 1 curd 10mg 3% 30mn 3% strong 0.75 2

2 1 1 1 2 curd 100mg 6% 15mn 1% strong 0.75 2

6 1 2 1 2 curd 100mg 3% 15mn 3% weak 0.75 1

10 2 1 1 2 curd 100mg 3% 30mn 1% weak 0.25 2

14 2 2 1 2 curd 100mg 6% 30mn 3% strong 0.25 1

3 1 1 2 1 Saint-Paulin 100mg 6% 15mn 1% weak 0.25 1

7 1 2 2 1 Saint-Paulin 100mg 3% 15mn 3% strong 0.25 2

11 2 1 2 1 Saint-Paulin 100mg 3% 30mn 1% strong 0.75 1

15 2 2 2 1 Saint-Paulin 100mg 6% 30mn 3% weak 0.75 2

4 1 1 2 2 Saint-Paulin 10mg 3% 15mn 1% weak 0.75 2

8 1 2 2 2 Saint-Paulin 10mg 6% 15mn 3% strong 0.75 1

12 2 1 2 2 Saint-Paulin 10mg 6% 30mn 1% strong 0.25 2

16 2 2 2 2 Saint-Paulin 10mg 3% 30mn 3% weak 0.25 1

What purpose does this randomization serve? Past experiments seem to show that
the use of controls makes the effect position of the test specimen on the plate negligible.
There is, however, no certainty that this is always the case and prudence demands that
the systematic use of the very regular design obtained prior to randomization be avoided.

In principle, the theoretical study of this type of randomization leads to selecting
a statistical analysis model which includes all the block effects satisfying the hierarchies,
that is to say, that never dissociate column col2 from macro-column col1 and, similarly,
row row2 from macro-row row1. The terms of this model:

col1; row1; row1.col1; col2.col1; col2.col1.row1; row2.row1; row2.row1.col1; row2.row1.col2.col1

are the ancestral terms. Randomization makes these block effects random and, to be
entirely accurate, the analysis must take this into account to test each treatment effect in
the appropriate “strata”.

In this example, each block effect is confounded with one or several treatment effects,
as indicated by running the alias function on robpl1r4.key with model

col1.col2.row1.row2 + p.p,

where p denotes the addition of the main effects of the 8 treatment factors. It is therefore
out of question to perform the analysis by the decomposition into strata mentioned above.
For the purpose of the analysis, we have to rely on the assumption that there is no effect
of position on the plate. Neither are there, in fact, any residual degrees of freedom that
would enable estimation of error variance. Therefore, the analysis relies on the assumption
that some of the linear combinations of aliased treatment effects given by the code below
are equal to zero, and the others must be detected by a procedure such as those described
in [18] or [20].

> alias(robpl1r4.key,

+ model=~row1*row2*col1*col2 +

+ (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2)
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********** Prime 2 design **********

--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS

nil

ALIASED TREATMENT EFFECTS

nil

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

row1 = Tact

row2 = nsoil:brush = qsoil:cbact = Tact:conc = rough:nat

col1 = nsoil

col2 = qsoil

cbact = row2:col2

conc = row1:row2

brush = row2:col1

rough = row1:col1:col2

nat = row1:row2:col1:col2

row1:col1 = nsoil:Tact = qsoil:rough = cbact:nat = conc:brush

row1:col2 = nsoil:rough = qsoil:Tact = cbact:conc = brush:nat

col1:col2 = nsoil:qsoil = cbact:brush = Tact:rough = conc:nat

nsoil:cbact = qsoil:brush = Tact:nat = conc:rough = row2:col1:col2

nsoil:conc = qsoil:nat = cbact:rough = Tact:brush = row1:row2:col1

nsoil:nat = qsoil:conc = cbact:Tact = brush:rough = row1:row2:col2

UNALIASED BLOCK EFFECTS

nil

--- Synthesis on the aliased treatment effects for prime 2 ---

unaliased trt.aliased blc.aliased

[1,] 0 0 36

3.2.2 Resolution 5 design for 5 factors

A design of resolution 5 for 5 factors can be searched for by the code just below. The
factor intensity of brushing is not studied in this design, therefore, it is unnecessary to
decompose the columns into two macro-columns as in the previous example.

> robpl1r5.fac <- planor.factors(factors=list(

+ row1=1:2, row2=1:2, col=1:4,

+ nsoil=c("curd","Saint-Paulin"),

+ #qsoil=c("10mg","100mg"),
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+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ #brush=c("strong","weak"),

+ rough=c(0.25,0.75)),

+ #nat=1:2),

+ block=~row1+row2+col,

+ hierarchy=list(~nsoil/(col*row2),

+ ~cbact/(col*row2),

+ ~Tact/(row1*row2),

+ ~conc/(row1*row2)))

> #~brush/(row1*row2*col1)))

>

> robpl1r5.mod <- planor.model( listofmodels=list(

+ c(~(nsoil+cbact+Tact+conc+rough)^2, ~(nsoil+cbact+Tact+conc+rough)^2),

+ c(~row2 + nsoil+cbact+Tact+conc+rough, ~nsoil+cbact+Tact+conc+rough),

+ c(~col + rough, ~rough) ) )

> robpl1r5.key <- planor.designkey(factors=robpl1r5.fac,

+ model=robpl1r5.mod,

+ nunits=16,

+ base=~row1+row2+col)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 5 to 9

first visit to column 5

first visit to column 6

--- col. 6 ( j = 2) 5 selected candidates

first visit to column 7

--- col. 7 ( j = 3) 2 selected candidates

first visit to column 8

--- col. 8 ( j = 4) 0 selected candidates

--- col. 8 ( j = 4) 0 selected candidates

--- col. 7 ( j = 3) 2 selected candidates

first visit to column 9

--- col. 9 ( j = 5) 1 selected candidates

The search is closed: max.sol = 1 solution(s) found

>

The first model indicates that all the main effects and two-factor interactions of the
treatments factors are sought to be estimated.

It is impossible to estimate the 16 parameters in a model that also includes a block
effect such as soiling effect row2. In contrast, as in the previous example, it is possible to

35



ensure that all the main effects are estimable in a model including soiling effect (row2) and
that roughness is also estimable within columns, that is to say, in the presence of a term
col in the model. The latter two constraints relate to the second and third pairs model—
part to be estimated in the listofmodels argument of planor.model. The substitution
of col.row2 for col in pair 3 would produce the following diagnosis, which proves that it is
not possible to impose the same constraint on roughness as in the previous example:

> robpl1r5.modbis <- planor.model( listofmodels=list(

+ c(~(nsoil+cbact+Tact+conc+rough)^2, ~(nsoil+cbact+Tact+conc+rough)^2),

+ c(~row2 + nsoil+cbact+Tact+conc+rough, ~nsoil+cbact+Tact+conc+rough),

+ c(~col*row2 + rough, ~rough) ) )

> robpl1r5bis.key <- planor.designkey(factors=robpl1r5.fac,

+ model=robpl1r5.modbis,

+ nunits=16,

+ base=~row1+row2+col)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 5 to 9

first visit to column 5

first visit to column 6

--- col. 6 ( j = 2) 5 selected candidates

first visit to column 7

--- col. 7 ( j = 3) 2 selected candidates

first visit to column 8

--- col. 8 ( j = 4) 0 selected candidates

--- col. 8 ( j = 4) 0 selected candidates

--- col. 7 ( j = 3) 2 selected candidates

first visit to column 9

--- col. 9 ( j = 5) 0 selected candidates

--- col. 9 ( j = 5) 0 selected candidates

--- col. 6 ( j = 2) 5 selected candidates

The search is closed: 0 solutions found

>

The solution obtained is printed below, as well as the study of aliases with model
col.row1.row2+p.p. There are no degrees of freedom to estimate residual variance, there-
fore statistical analysis must be based on a method of detecting influencing effects similar
to that in the previous example.

> #summary(robpl1r5.key)

> alias(robpl1r5.key,

+ model=~col*row1*row2 + (nsoil+cbact+Tact+conc+rough)^2)
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********** Prime 2 design **********

--- Solution 1 for prime 2 ---

UNALIASED TREATMENT EFFECTS

nil

ALIASED TREATMENT EFFECTS

nil

TREATMENT AND BLOCK EFFECTS CONFOUNDED WITH BLOCK EFFECTS

col_1 = nsoil

col_2 = cbact

col_1:col_2 = nsoil:cbact

row1 = Tact

row2 = Tact:conc

conc = row1:row2

rough = row2:col_1:col_2

row1:col_1 = nsoil:Tact

row1:col_2 = cbact:Tact

row1:col_1:col_2 = conc:rough

row2:col_1 = cbact:rough

row2:col_2 = nsoil:rough

nsoil:conc = row1:row2:col_1

cbact:conc = row1:row2:col_2

Tact:rough = row1:row2:col_1:col_2

UNALIASED BLOCK EFFECTS

nil

--- Synthesis on the aliased treatment effects for prime 2 ---

unaliased trt.aliased blc.aliased

[1,] 0 0 15

3.3 Designs for two plates

We know that with 32 units, it is possible to study up to six 2-level factors in resolution
5 and up to 16 in resolution 4.

If one of the studied factors is qualitative with 4 levels, as the others still have 2
levels, the situation is quite different. For a resolution of 5, there may be up to four 2-level
factors in addition to the 4-level factor. For a resolution of 4, up to seven 2-level factors
can be introduced.

37



A maximum of 7 is easily obtained by the search defined just below. The result of this search reveals
the impossibility of going beyond the 7th factor.

> size32r4.fac <- planor.factors(factors=LETTERS[1:12],

+ nlevels=c(4, rep(2,11)))

> size32r4.mod <- planor.model(model=~(A+B+C+D+E+F+G+H+I+J+K+L)^2,

+ estimate=~A+B+C+D+E+F+G+H+I+J+K+L)

> size32r4.key <- planor.designkey(factors=size32r4.fac,

+ model=size32r4.mod,

+ nunits=32,

+ base=~A+B+C+D)

size32r4.key <- planor.designkey(factors=size32r4.fac,
+ model=size32r4.mod,
+ nunits=32,
+ base=~A+B+C+D)
Determination of ineligible factorial terms
Determination of ineligible pseudofactorial terms
Independent searches for prime(s) : 2
Key-matrix search for prime p = 2
There are 5 predefined columns
First visit to column 6
First visit to column 7
First visit to column 8
First visit to column 9
First visit to column 10
C-c C-c

This search introduces, as basic factors, factor A with 4 levels and three other factors with 2
levels. It may be proved simply that this choice is not restrictive by using the following result: if
factors cannot be chosen as basic factors, a defining relation exists between them. Thus if neither
of the two sets {A, B, C, D}, {A, B, C, E} can be used as a basic set, two relations of the form
Aα

1 Aβ
2BCD = 1, Aγ

1Aδ
2BCE = 1 may be formed. Nevertheless, multiplying these relations gives rise

to a relation between the three factors A, D, E which cannot exist in resolution 4.

In resolution 5, the fact that it is impossible to go beyond four 2-level factors results from
an elementary calculation of the number of degrees of freedom. With five 2-level factors, the model
includes, in addition to the general mean, 3 + 5 parameters associated with the main effects and
3 × 5 + 5 × 4/2 = 25 parameters associated with the interactions. This amounts to a total of 34
parameters, which exceeds the number of experimental units.

If the single 4-level factor is quantitative, the situation is different though. In this
case, for the purpose of the analysis we refer to [18], [7] and to paragraph 4 relating to
designs for combinations of 2- and 4-level factors.

In the case of the robot, the following examples illustrate the above cases.

3.3.1 Resolution 5 fraction 26/2

The input parameters for such a design are given below, as well as the solution in the
form of a key matrix.
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> robpl2r5.fac <- planor.factors(factors=list(

+ plate=1:2,

+ row1=1:2, row2=1:2, col=1:4,

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("10mg","100mg"),

+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ #brush=c("strong","weak"),

+ rough=c(0.25,0.75)),

+ #nat=1:2),

+ block=~plate+row1+row2+col,

+ hierarchy=list(~nsoil/(col*row2),

+ ~cbact/(col*row2),

+ ~Tact/(row1*row2),

+ ~conc/(row1*row2)))

> #~brush/(row1*row2*col1)))

>

> robpl2r5.mod <- planor.model( listofmodels=list(

+ c( ~plate + (nsoil+qsoil+cbact+Tact+conc+rough)^2,

+ ~plate + (nsoil+qsoil+cbact+Tact+conc+rough)^2),

+ c( ~plate*row2 + nsoil+qsoil+cbact+Tact+conc+rough,

+ ~ nsoil+qsoil+cbact+Tact+conc+rough),

+ c( ~plate*col*row2 + rough,

+ ~ rough) ) )

> robpl2r5.key <- planor.designkey(factors=robpl2r5.fac,

+ model=robpl2r5.mod,

+ nunits=32,

+ base=~plate+row1+row2+col)

> summary(robpl2r5.key)

> alias(robpl2r5.key,

+ model=~plate + (nsoil+qsoil+cbact+Tact+conc+rough)^2)

Hierarchical constraints are similar in nature to those in the designs for one plate.
Estimation of the plate effect is required (first pair model — part to be estimated). It is
also ensured that all the main effects are estimable, including in the presence of a soiling
effect (second pair) and that roughness varies within columns when both specimens are
soiled simultaneously (third pair).

The design obtained permits estimation of the constant, the plate effect, the 6 main
effects and 15 two-factor interactions, under the assumption that there are no interactions
of three factors or more. For the estimation of residual variance, it leaves 9 = 32 − (1 +
1 + 6 + 15) degrees of freedom, which correspond to the unaliased block effects different
from plate obtained through the study of aliases for model pl.col.row1.row2 + p.p.
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3.3.2 A 28/8 fraction of resolution 4

In this example, twenty different solutions are required and the randomsearch argument
of planor.designkey is set to TRUE. In this case, the program orders randomly the set
of possible choices for each column of the key matrix to be defined.

> robpl2f8r4.fac <- planor.factors(factors=list(

+ plate=1:2,

+ row1=1:2, row2=1:2,

+ col1=1:2, col2=1:2,

+ nsoil=c("curd","Saint-Paulin"),

+ qsoil=c("10mg","100mg"),

+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ brush=c("strong","weak"),

+ rough=c(0.25,0.75),

+ nat=1:2),

+ block=~plate+row1+row2+col1+col2,

+ hierarchy=list(

+ ~nsoil/(plate*col1*col2*row2),

+ ~cbact/(plate*col1*col2*row2),

+ ~Tact/(plate*row1*row2),

+ ~conc/(plate*row1*row2),

+ ~brush/(plate*row1*row2*col1)))

> robpl2f8r4.mod <- planor.model( listofmodels=list(

+ c( ~plate + (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2,

+ ~plate + nsoil+qsoil+cbact+Tact+conc+brush+rough+nat),

+ c( ~plate*row2 + nsoil+qsoil+cbact+Tact+conc+brush+rough+nat,

+ ~ nsoil+qsoil+cbact+Tact+conc+brush+rough+nat),

+ c( ~plate*col1*col2*row2 + rough+nat,

+ ~ rough+nat) ) )

> robpl2f8r4.key <- planor.designkey(factors=robpl2f8r4.fac,

+ model=robpl2f8r4.mod,

+ nunits=32,

+ base=~plate+row1+row2+col1+col2,

+ max.sol=20,

+ randomsearch=TRUE)

> summary(robpl2f8r4.key)

> alias(robpl2f8r4.key,

+ model=~plate*row1*row2*col1*col2 +

+ (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2)

In order to compare solutions, the study of aliases is performed with model

~plate + (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2.
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Table 13 provides the outputs for three possible solutions 3, 7, 9. These outputs in fact
illustrate the three types of results obtained through the study of aliases for the twenty
solutions.

Set of aliased treatment effects

Solution 3

rough nat ; n-soil c-bact ; q-soil conc ;
conc rough ; q-soil nat ;
conc nat ; q-soil rough ;

c-bact conc ; n-soil q-soil ;
n-soil conc ; q-soil c-bact ;
n-soil nat ; c-bact rough ;
n-soil rough ; c-bact nat ;

Solution 7

q-soil rough ; T-act nat ; conc brush ;
n-soil c-bact ; T-act rough ; q-soil nat ;

q-soil T-act ; rough nat ;
conc rough ; q-soil brush ;
q-soil conc ; brush rough ;
T-act conc ; brush nat ;
conc nat ; T-act brush ;
q-soil c-bact ; n-soil nat ;

c-bact rough ; n-soil T-act ;
n-soil q-soil ; c-bact nat ;

n-soil rough ; c-bact T-act ;

Solution 9

brush nat ; n-soil T-act ; q-soil c-bact ;
q-soil nat ; c-bact brush ; T-act conc ;
q-soil brush ; c-bact nat ; n-soil conc ;
q-soil T-act ; n-soil c-bact ; conc nat ;

n-soil q-soil ; c-bact T-act ; conc brush ;
n-soil brush ; T-act nat ; q-soil conc ;
n-soil nat ; T-act brush ; c-bact conc ;

Treatment effects unaliased with other treatment effects

Solution 3

n-soil ; conc brush ; T-act nat ;
>c-bact ; q-soil brush ; T-act rough ;
>q-soil T-act ; brush rough ; conc ;
>brush nat ; T-act brush ; T-act;
>q-soil ; brush ; n-soil brush ;
>T-act conc ; c-bact brush ; nat ;
>n-soil T-act ; rough ; c-bact T-act ;

Solution 7

c-bact ; n-soil ; rough ; q-soil ;
>T-act ; nat ; c-bact brush ;
>conc ; brush ; c-bact conc ;
>n-soil brush ; n-soil conc ;

Solution 9

n-soil ; T-act ; T-act rough ;
>n-soil rough ; rough ; conc rough ; conc ;
>c-bact ; q-soil ; q-soil rough ;
>c-bact rough ; rough nat ; brush rough ;
>brush ; nat ;

Block effects unaliased with a treatment effect

Solution 3

pl ; row1 ; pl row1 row2 col1 ;

Solution 7

row2 ; pl row2 col2 ; col2 ;
>row2 col1 col2 ; pl ;
>pl row2 col1 ; pl row1 row2 col2 ;
>pl row1 col1 col2 ;

Solution 9

row2 ; pl ; pl row1 ;
>pl row1 col2 ; pl row2 col2 ;
>row2 col1 col2 ; row1 row2 col1 ;
>pl col1 col2 ; pl row1 col1 ;

Table 13: Aliasing in three typical resolution 4 solutions for a 28/8
The sign > indicates a continuation of the same row.

The first kind of solution represented by solution 3 provides 7 sets of aliased treat-
ment effects, one of which consists of 3 two-factor interactions and the other 6 consisting
of only two interactions. It therefore leads to 15 aliased interactions and 13 = C2

8 − 15
unaliased interactions. This type of design thus enables (orthogonal) estimation of 8 main
effects, 13 isolated interactions and 7 linear combinations of interactions. The presence of
plate in the first estimate formula also makes it possible to ensure that the plate effect is
estimable. Following estimation of these 29 = 8 + 13 + 7 + 1 effects and of the constant,
only 2 = 32−30 degrees of freedom remain to estimate residual variance – degrees of free-
dom which correspond to the two unaliased block effects different from plate obtained by
the analysis of aliases (bottom of table 13). This low number of degrees of freedom makes
it necessary either to combine this estimation with a previously obtained estimation or to
use a procedure which detects influencing factors such as that mentioned earlier.
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The second kind of solution represented by solution 7 provides 11 sets of aliased
treatment effects including two sets of 3 interactions and 9 sets of two interactions, that
is to say, 24 aliased and 4 unaliased interactions. It thus allows to estimate the constant,
the plate effect, the 8 main effects, 4 isolated interactions, 11 linear combinations of
interactions and leaves 7 = 32 − (1 + 1 + 8 + 4 + 11) degrees of freedom to estimate the
residual variance. These 7 degrees of freedom correspond to the unaliased block effects
different from plate obtained by the analysis of aliases (bottom of table 13).

Finally, the third kind of solution represented by solution 9 enables the estimation
of 7 isolated interactions, 7 linear combinations of three interactions and leaves 8 degrees
of freedom to estimate residual variance.

The first type of design makes it possible to estimate more interactions and is there-
fore preferable to the other two types of design, except probably in cases in which many
effects are expected to be significant and in which the experiment is intended to provide
a correct estimator of residual variance.

The specific choice of design within the first type of design is unimportant if the
same importance is attached a priori to all two-factor interactions. For the purpose of
the example, we selected solution 3, but other equivalent solutions exist.

3.3.3 Fraction 4× 24/2 of resolution 5

The model now contains the constant, the plate effect, the main effect of the 4-level
qualitative factor n-soil, the 4 main effects of 2-level factors and their 6 interactions, the
12 interaction parameters between factor n-soil and each of the other 4 factors. It thus
contains a total of 27 = 1 + 1 + 3 + 4 + 6 + 12 parameters and leaves 5 = 32− 27 degrees
of freedom to estimate the error variance. These degrees of freedom correspond to the
unaliased block effects different from plate appearing at the bottom of table 14. They
were obtained by the analysis of aliases. A possible solution is presented in Table 14.

> robpl2f4r5.fac <- planor.factors(factors=list(

+ plate=1:2,

+ row1=1:2, row2=1:2, col=1:4,

+ nsoil=1:4,

+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ rough=c(0.25,0.75)),

+ block=~plate+row1+row2+col,

+ hierarchy=list(

+ ~nsoil/(plate*col*row2),

+ ~cbact/(plate*col*row2),

+ ~Tact/(plate*row1*row2),

+ ~conc/(plate*row1*row2)))

> robpl2f4r5.mod <- planor.model( listofmodels=list(

+ c( ~plate + (nsoil+cbact+Tact+conc+rough)^2,
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+ ~plate + (nsoil+cbact+Tact+conc+rough)^2),

+ c( ~plate*row2 + cbact+Tact+conc+rough,

+ ~cbact+Tact+conc+rough) ) )

> robpl2f4r5.key <- planor.designkey(factors=robpl2f4r5.fac,

+ model=robpl2f4r5.mod,

+ nunits=32,

+ base=~plate+row1+row2+col)

> summary(robpl2f4r5.key)

> alias(robpl2f4r5.key, model=~plate*row1*row2*col

+ + (nsoil+cbact+Tact+conc+rough)^2)

Design definition

key matrix and defining relations

n-soil1 n-soil2 c-bact T-act conc rough
pl 0 0 1 1 0 0
row1 0 0 0 1 1 0
row2 0 1 0 0 1 1
col1 1 1 1 0 0 0
col2 0 0 1 0 0 1

n-soil1 = col1
n-soil2 = row2 col1
c-bact = pl col1 col2
T-act = pl row1
conc = row1 row2
rough = row2 col2

list of unaliased block effects
pl ; pl col1 ; pl row1 col2 ; pl row1 col1 col2 ; row1 row2 col2 ; row1 row2 col1 col2 ;

Table 14: Design ROP2F4R5 for 2 plates, a 4× 24/2 of resolution 5

3.3.4 Design 4× 27/16 of resolution 4

Before examining the adaptation of such a design to the robot, a search may be performed
to find out which types of design of this form may be obtained. The analysis of aliases
for the 20 solutions obtained by the search defined below reveals a single alias structure
and suggests that, allowing for a possible permutation of the 2-level factors and also of
the three pseudofactors A1, A2, A1A2, there is only one solution. Table 15 specifies the
confounding for one of the solutions. It shows 18 unaliased effects and 13 sets of aliased
interactions. Such a set-up does not leave any residual degree of freedom and does not
enable estimation of a potential additional block effect.

> n32f4and7f2r4.fac <- planor.factors(factors=LETTERS[1:8],

+ nlevels=c(4, rep(2,7)))

> n32f4and7f2r4.mod <- planor.model( model=~(A+B+C+D+E+F+G+H)^2,

+ estimate=~A+B+C+D+E+F+G+H )

> n32f4and7f2r4.key <- planor.designkey(factors=n32f4and7f2r4.fac,

+ model=n32f4and7f2r4.mod,

+ nunits=32,

+ base=~A+B+C+D,

+ max.sol=20,
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+ randomsearch=TRUE)

> summary(n32f4and7f2r4.key)

> alias(n32f4and7f2r4.key, model=~(A+B+C+D+E+F+G+H)^2)

Detailed list of sets of aliased effects in the model

A1 B ; E F ;
A1 A2 B ; D H ; C G ;

A1 C ; E H ;
A1 A2 C ; D F ; B G ;
B C ; F H ; A1 A2 G ;

D E ; A1 G ;
A1 D ; E G ;

A1 A2 D ; B H ; C F ;
B D ; F G ; A1 A2 H ;

A1 H ; C E ;
C D ; G H ; A1 A2 F ;

A1 F ; B E ;
C H ; B F ; A1 E ; D G ;

list of unaliased effects

; A1 ; A2 ; A1 A2 ; B ; A2 B ; C ; A2 C ; A2 G ; G ;
>D ; A2 D ; A2 H ; H ; A2 F ; F ; A2 E ; A1 A2 E ; E;

Table 15: Alias structure in a 4× 27/16 of resolution 4

The R code below generates this type of design for the robot. Since it is impossible
to estimate plate, it is precluded from being included in the part to be estimated. One of
the possible solutions is presented in Table 16.

> rop2f4r4.fac <- planor.factors(factors=list(

+ plate=1:2,

+ row1=1:2, row2=1:2,

+ col1=1:2, col2=1:2,

+ nsoil=1:4,

+ qsoil=c("10mg","100mg"),

+ cbact=c("3%","6%"),

+ Tact=c("15mn","30mn"),

+ conc=c("1%","3%"),

+ brush=c("strong","weak"),

+ rough=c(0.25,0.75),

+ nat=1:2),

+ block=~plate+row1+row2+col1+col2,

+ hierarchy=list(

+ ~nsoil/(plate*col1*col2*row2),

+ ~cbact/(plate*col1*col2*row2),

+ ~Tact/(plate*row1*row2),

+ ~conc/(plate*row1*row2),
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+ ~brush/(plate*row1*row2*col1)))

> rop2f4r4.mod <- planor.model(

+ model= ~plate + (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2,

+ estimate= ~ nsoil+qsoil+cbact+Tact+conc+brush+rough+nat )

> rop2f4r4.key <- planor.designkey(factors=rop2f4r4.fac,

+ model=rop2f4r4.mod,

+ nunits=32,

+ base=~plate+row1+row2+col1+col2)

> summary(rop2f4r4.key)

> alias(rop2f4r4.key,

+ model=~plate*row1*row2*col1*col2

+ + (nsoil+qsoil+cbact+Tact+conc+brush+rough+nat)^2)

Design definition

key matrix defining relations

n-soil1 n-soil2 q-soil c-bact T-act conc brush rough nat
pl 1 0 0 0 0 1 0 1 1
row1 0 0 1 0 1 1 1 0 0
row2 1 0 0 1 1 1 1 0 1
col1 1 1 1 1 0 0 1 0 0
col2 1 1 0 1 0 0 0 1 1

n-soil1 = pl row2 col1 col2
n-soil2 = col1 col2
q-soil = row1 col1
c-bact = row2 col1 col2
T-act = row1 row2
conc = pl row1 row2
brush = row1 row2 col1
rough = pl col2
nat = pl row2 col2

list of unaliased block effects
pl ; pl col1 ; pl row1 col2 ; pl row1 col1 col2 ; row1 row2 col2 ; row1 row2 col1 col2 ;

Table 16: Design ROP2F4R4 for 2 plates, a 4× 28/32 of resolution 4
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4 Design for a combination of 2 and 4-level factors

4.1 Qualitative factors

4.1.1 Example

In a study on the effectiveness of cleaning and disinfection of surfaces, 16 factors are
initially identified. They include four important qualitative factors, such as the type of
disinfection product, for which four modalities are required.

To compare different treatments, experiments are conducted on samples of surfaces
treated in blocks of size 8. The 2 levels 4◦ et 20◦ of the factor cleaning temperature T are
necessarily constant within each block.

In order to determine the most influential factors, 64 treatments corresponding to 8
blocks may be tested in a first step. With a view to minimizing the number of trials, it
is decided to study only two levels for factors other than the four already mentioned. As
regards the latter, four levels are selected rather than three. This enables a broader range
of treatments to be covered, and substantially increases possibilities of creating design
fractions.

Initially, the blocks are ignored. The maximum number of 2-level factors which may
be added to the four 4-level factors is sought. The resolution is limited to 3 or 4, because
resolution 5 is unattainable with four 4-level factors.

> n64w4f4f2r4.key <- planor.designkey(

+ factors=LETTERS[1:17],

+ nlevels=c(rep(4,4), rep(2,13)),

+ model=~(A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q)^2,

+ estimate=~A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q,

+ nunits=64, base=~A+B+C)

> n64w3f4f2r4.key <- planor.designkey(

+ factors=LETTERS[1:17],

+ nlevels=c(rep(4,3), rep(2,14)),

+ model=~(A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q)^2,

+ estimate=~A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q,

+ nunits=64, base=~A+B+C)

> n64w2f4f2r4.key <- planor.designkey(

+ factors=LETTERS[1:17],

+ nlevels=c(rep(4,2), rep(2,15)),

+ model=~(A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q)^2,

+ estimate=~A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q,

+ nunits=64, base=~A+B+C+D)

> n64w1f4f2r4.key <- planor.designkey(

+ factors=LETTERS[1:17],

+ nlevels=c(rep(4,1), rep(2,16)),

+ model=~(A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q)^2,
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+ estimate=~A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q,

+ nunits=64, base=~A+B+C+D+E)

>

There are necessarily defining relations linking the four 4-level factors because a design of size 64 can
only contain a fraction of the 256 = 44 combinations of levels of these four factors.

Within seconds, the search for a design of resolution 4 finds relations which make
it possible to define 4 two-level factors E, F , G, H in addition to the four 4-level factors
A, B, C, D. The search for a 5th factor I has still not been completed after 5 mn and
is abandoned. This is indicated by the fact that the backtrack algorithm makes its first
visit to columns 7 (pseudofactor D1) to 13 (factor I) rapidly, but cannot find a correct
column 13.

Two possibilities arise for further study : reducing the number of 4-level factors or
limiting the resolution to 3.

4.1.2 Resolution 4 designs

A design of resolution 4 is a design in which all the main effects are estimable in a
model which includes, alongside the constant and the main effects, all the two-factor
interactions. Through suitable reparametrization, such as for instance that described in
[22], the following result is easily demonstrated, in which X is the linear model matrix.

Proposition 4.1 In a design of resolution 4, the columns X associated with the constant,
the main effects and the interactions between a fixed factor and each of the other factors
are independent.

This result was demonstrated by Margolin [23] by using the reparametrization associated
with orthogonal polynomials. It provides a lower bound to the number N of units enabling
the construction of a design of resolution 4 with predetermined factors: N must be greater
than the number of independent columns provided by the proposal.

Thus in the case at hand, if there are n4 four-level factors, n2 two-level factors, the
number of columns associated with the main effects is n2 + 3n4. If the determined factor
has 4 levels, the number of columns associated with the interactions between this factor
and each of the n2 + n4 − 1 others is 3(n2 + 3(n4 − 1)). We should thus have

N ≥ 1 + n2 + 3n4 + 3(n2 + 3(n4 − 1)) .

When N and n4 are fixed, this formula provides the following upper bound for the number
n2 of two-level factors introducible in resolution 4 :

n2 ≤
N

4
− 3n4 + 2 . (6)

In the cases {n4 = 1, N = 16k} and {n4 = 2, N = 32k}, it is known how to construct
designs of resolution 4 with this maximum number of n2 factors with 2 levels [23], [1].
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These constructions, based on the Hadamard matrices, do not guarantee regularity and,
consequently, simplicity of confounding between two-factor interactions, but they enable
the development of designs with a number of units which is not a power of 2 (for instance
n4 = 1 and N = 48, or n4 = 2, N = 96).

In contrast, for n4 = 3, there is no known comparable general method and only one
algorithm such as that of planor enables the development of orthogonal designs with a
substantial number of two-level factors.

The results obtained by planor with N = 64 and n4 varying between 1 and 4 and
N = 32 are summarized in table 17. This table specifies the basic factors used in each
search.

The choices made for these basic factors are not restrictive. This is clear when the basic factors are
the four-level factors A, B, C because in resolution 4 there cannot be any defining relation linking
these three factors. When there are only two 4-level factors A and B, it is certainly possible to add
C to them. Resolution 4 precludes any defining relation between these three factors and as a result
the 32 combinations of their levels appear. If another 2-level factor could not be added to them, all
the other factors would subsequently be defined from A, B, C, and the design would consist of two
replications of the same 32 treatments, which must be avoided. Similar reasoning applies in cases in
which there is only one 4-level factor.

nb. of 4-lev. maximum nb. basic factors added factors after
factors of 2-lev. a 5 mn search

factors
4 4 A1 A2 B1 B2 C1 C2 D1 D2 E F G H J K L M N O P Q
3 7 A1 A2 B1 B2 C1 C2 D E F G H I J L M N O P Q
2 12 A1 A2 B1 B2 C D E F G H I J K L M N P Q
1 15 A1 A2 B C D E F G H I J K L M N O P

Table 17: Resolution 4 designs for a mixture of 4 and 2 levels qualitative factors

The asterisk indicates the factor which the program was attempting to define after searching for
5 mn. In general, this factor is obtained in a fraction of a minute. The number appearing in
the second column is the number of 2-level factors on the left-hand side of ?, that is to say the
maximum number which may be defined within a reasonable time frame

The maximum number of 2-level factors given in this table 17 is to be compared
with the upper bounds from (6) which are specified for n4 included between 1 and 6 in
Table 18.

n4 1 2 3 4 5 6
n2 max 15 12 9 6 3 0

Table 18: Margolin upper bound for n2 in a size 64 resolution 4 fraction of a 4n42n2

The maximum number of 2-level factors obtained within a reasonable time frame is
slightly below the maximum provided in Table 18 when n4 = 4 or n4 = 3. It is equal to
this maximum in cases n4 = 2 and n4 = 1.
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Resolution 4 provides correct estimates of the main effects, included in the presence
of interactions. It therefore makes it possible to draw generally quite reliable conclusions.
However, table 17 shows that obtaining this resolution requires substantially restricting
the targets initially set with regard to the number of factors studied.

4.1.3 Resolution 3 designs giving a resolution 4 by foldover

If the existence of a small number of really active factors is suspected without further
specific indications, a good strategy can be to increase the number of factors studied by
reducing the resolution to 3.

The maximum number of 2-level factors which may be added to the 4-level factors in resolution 3
is easy to find. The requirement is not to have a defining relation that links only two factors. For
instance, if A, B, C, D are the four-level factors, E, F , . . . the two-level factors, there should be no
relations such as B1 = A1A2, E = A1A2, E = F . In other words, the elements A1, A2, A1A2, B1,
B2, B1B2, C1, C2, C1C2, D1, D2, D1D2, E, F , . . . must all be different. With 64 units, there are at
most 63 different non-zero elements formed from the basic factors. Therfore, once the 4-level factors
are determined, there remain 51 = 63− 12 elements which may be used to define the 2-level factors.
More generally, when s4 is the number of 4-level factors, the maximum number of 2-level factors
which may be added is s2 = 63− 3× s4.

Moreover, the theory gives the maximum number s4 of 4-level factors which may be introduced
beforehand: 21 = 63/3 (number of vectorial subspaces of dimension 1 in the vectorial space F 3

4 of
dimension 3 on the Galois field with 4 elements).

The probability of detecting the active factors increases with the number of factors
studied, but the decrease in the resolution considerably weakens the conclusions which
may be drawn. Such a design of resolution 3 is therefore generally only envisaged as an
intermediate stage which enables rapid detection of the most important factors. It may
be followed by another design restricted to the active factors detected, in order to prove or
disprove the results found and to study the interactions. Another possible continuation,
useful when the number of significant effects prevents interpretation owing to possible
confounding with the interactions, is a design foldover which in total leads to a design of
resolution 4.

4.1.3.1 Complete foldover This possibility of duplication by foldover is well known
when all the factors have two levels: the second design is equal to the product of the first
design by −1. This is called a complete foldover as all signs are changed. Table 19 provides
a classic example, for seven 2-level factors A, B, C, D, E, F , G. If a supplementary factor
N with level 1 on the first design and −1 on the second is added, the global design keeps
resolution 4 with the eight factors.

The property of shifting to resolution 4 through duplication of the design in the case of two-level
factors is real and easily proved in a much more general context than considered in this instruction
manual. Any design of resolution 3 for 2-level factors, such as for instance the design of Plackett
and Burman for 11 factors and 12 units derived from the 12th-order Hadamard matrix, provides,
through duplication by the opposite design, a design of resolution 4, that is to say, a design in which
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Initial design
(N=1)

N A B C D E F G
1 1 1 1 1 1 1 1 1
2 1 1 1 −1 1 −1 −1 −1
3 1 1 −1 1 −1 1 −1 −1
4 1 1 −1 −1 −1 −1 1 1
5 1 −1 1 1 −1 −1 1 −1
6 1 −1 1 −1 −1 1 −1 1
7 1 −1 −1 1 1 −1 −1 1
8 1 −1 −1 −1 1 1 1 −1

Complement : −1× initial design
(N = −1)

N A B C D E F G
9 −1 −1 −1 −1 −1 −1 −1 −1

10 −1 −1 −1 1 −1 1 1 1
11 −1 −1 1 −1 1 −1 1 1
12 −1 −1 1 1 1 1 −1 −1
13 −1 1 −1 −1 1 1 −1 1
14 −1 1 −1 1 1 −1 1 −1
15 −1 1 1 −1 −1 1 1 −1
16 −1 1 1 1 −1 −1 −1 1

Table 19: 28−4 of resolution 4 obtained by foldover of a 27−4 of resolution 3

the common estimation of main effects as the half-difference of the means between levels 1 and −1
is unbiased even if certain couples of factors display interactions.

If the initial design is a regular design that can be constructed by the methods considered here,
the same applies to the duplicated design. Thus in the example of Table 19, the defining relations of
the initial design with 8 units are D = AB, E = AC, F = BC, G = ABC. It is then automatically
the case, if N is the pseudofactor taking the value 1 for the first design, −1 for the second, that the
global design is defined from the 4 basic factors N , A, B, C by the relations D = ABN , E = ACN ,
F = BCN , G = ABC. It is quite apparent that the defining relations of the initial design which
overall remain valid are relations involving an even number of letters A to G. In particular, three-
letter relations verified by the initial design are no longer verified overall. For example, relation
ABD = 1 verified for the initial design cannot be valid overall since ABD = −1 for the additional
design. The defining relations of the overall design therefore include a minimum of 4 letters and this
is indeed a design of resolution 4. Note that this resolution is kept if the supplementary factor N is
taken into account.

When some factors A, B, . . . have four levels, this same process of duplication by
the opposite design, applied to the 2-level factors and to pseudofactors A1, A2, B1, B2,
. . . derived from the 4-level factors, does not lead to a design of resolution 4 in every case.
In order to produce such a design, the initial design of resolution 3 must not have any
defining word with three factors involving an even number of symbols.

For instance assume there are three 4-level factors A, B, C decomposed into pseudo-
factors A1, A2, B1, B2, C1, C2, and that D, E are 2-level factors. Then products such as
A1A2DE, A1A2B1B2C1C2 must be different from 1 in the initial design. Otherwise these
products remain equal to 1 in the opposite design and give rise to defining relation with
only 3 factors in the overall design. The resolution of the latter then does not exceed 3
since it make an interaction of three factors confounded with the mean.

One way to avoid these defining words with three factors but an even number of
symbols is to introduce two pairs {model, part to be estimated} in the search of the initial
design, as illustrated in table 20 for the case of a design with 32 units only. In this table
q = p + A + B + C = A + B + C + D + E + · · · + M is the sum of all factors. The
requirement imposed by pair 1 is that q is estimable in model q which is equivalent to
resolution 3. The second pair has an empty model and its “part to estimate”, s.s.s+ s.r.r,
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includes all products involving three factors but whose sign is unchanged when all the
pseudofactors A1, . . . , C2 and two-level factors D, E, F , . . . , have their sign changed.

Indeed, note that when developed, s.s.s includes, alongside with A1A2B1B2C1C2,
terms such as A1A2A1A2A1A2 or A1A2A1A2B1B2 which are respectively replaced by A1A2,
A1A2B1B2. But since the first pair {q,q} implies resolution 3, its presence already implies
that these latter products cannot be constantly 1 (or −1). So the only new constraint
imposed by the presence of s.s.s is that the product A1A2B1B2C1C2 is not constant, but
equal to 1 or −1. Of course it is possible to replace s.s.s by the latter product in this case
with three 4-level factors. But when there are strictly more than three 4-level factors, the
product s.s.s is still valid and more easy to type than the sum of the products similar to
A1A2B1B2C1C2.

Then, the products in s.r.r do not change sign because in each of them, the compo-
nent coming from s does not change sign while both components coming from r change
sign.It is not difficult to see that any product involving three factors either belongs to the
above sum s.s.s + s.r.r or is a product in s.s.r + r.r.r which change sign on the foldover
part.

As noted in section 5.4.6.2, a model is systematically completed by the terms in-
cluded in the terms that appear in it. Introducing s.s.s in a “model” would impose useless
constraint, for instance that a product like A1A2B1B2C1 with an odd number of symbols
is not constant. If s.s.s is among the “part to be estimated”, it is not completed in the
same way and does not include the above product.

The Margolin rule provides a maximum to the number of 2-level factors that can
be introduced. Let indeed n4 and n2 be the number of 4 and 2 level factors in the
initial resolution 3 design and N its number of units. Assume the design obtained by the
duplication process is of resolution 4. The factor equal to 1 on this design, to −1 on the
duplicated part can be added without loosing this resolution 4. Hence the duplication
leads to a resolution 4 design with 2N units, n4 four-level and n2 + 1 two-level factors.
The Margolin rule then gives

1 + 3n4 + (n2 + 1) + 9(n4 − 1) + 3(n2 + 1) ≤ 2N

that is

n2 ≤
N

2
+ 1− 3n4 .

> par5522.key <- planor.designkey(

+ factors=c("A1","A2","B1","B2","C1","C2",LETTERS[4:13]),

+ nlevels=rep(2,16),

+ listofmodels=list(

+ c(~A1*A2+B1*B2+C1*C2+D+E+F+G+H+I+J+K+L+M,

+ ~A1*A2+B1*B2+C1*C2+D+E+F+G+H+I+J+K+L+M),

+ c(~1,

+ ~(A1:A2+B1:B2+C1:C2)^3 +

+ (A1:A2+B1:B2+C1:C2)*(A1+A2+B1+B2+C1+C2+D+E+F+G+H+I+J+K+L+M)^2)),

+ nunits=32, base=~A1+A2+B1+B2+D)
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It is possible to replace the 2nd pair Model, part to be estimated by two pairs: (r.r,s) and (∅,s.s.s).
The first forbids a term in s to be equal to a product in the model r.r.

nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum Margolin maximum

1 14 14
2 11 11
3 6 8
4 3 5

Table 20: Fractions 4n42n2 of resolution 3 and size 32, that can be duplicated in resolution
4

In the case N = 32 (Table 20), the backtrack search quickly ends with a failure
indicating the maximum attainable n2. In fact, this maximum is the same as that given
by the Margolin rule when n4 ≤ 2, and it is slightly smaller when n4 ≥ 3. These maxima
are indicated in the array at the bottom of the table.

It must be remarked that the way to select the basic factors may introduce a supplementary con-
straint. To avoid such a constraint, it is always possible to introduce pseudofactors that do not
appear in the models or parts to be estimated, as basic factors . The search is then over all possible
regular designs. The drawback is that this makes the search much more longer.

In that case, putting the four-level factors A and B among the basic factors does not introduce
any constraint as there cannot be any defining word involving these two factors only. It is then
possible, to avoid any constraint due the choice of basic factors, to introduce a supplementary two-
level pseudofactor Z, that does not appear in the models and parts to be estimated, as the last basic
factor. But in that case it can also be seen that any of the two-level factors searched for can be
selected as basic one without restricting the search. This is so because, as can be easily checked
by using the program with 16 units, no more than 3 two-level factors can be defined as products
between the pseudofactors A1, A2, B1, B2 with the imposed constraints. Thus as soon as we are
looking for four two-level factors, it is possible to choose one of them as a basic one.

Table 21 illustrates the search for the example when N = 64. Since the search
may be very long in that case, it is stopped after a few minutes. It gives again the same
maximum n2 as the Margolin rule if n4 ≤ 2, and a smaller one when n4 ≥ 3. In the latter
case, several random links (RL) were used to start the search and the result given in the
bottom of the table is the better one. The definition of added factors in the case n4 = 4,
n2 = 17 is given explicitly.

Table 22 providing the Margolin maximum and the attainable maximum when N =
16 is also given for the sake of completeness. The search shows the impossibility to
introduce n4 = 3 four-level factors in that case.

As indicated in section 4.1.2, when n4 = 1, Margolin [23] provides a general way to
deduce from an Hadamard matrix of order N a resolution 4 fraction with the maximum
number of 2-level factors given by the Margolin rule. Agrawal and Dey [1] do the same in
the case n4 = 2. The number of units of the provided resolution 4 designs are 4N when
n4 = 1, 8N when n4 = 2. Since Hadamard matrices exist for almost all N multiple of 4,
i.e. of the form N = 4k, this gives 16k units when n4 = 1, 32k units when n4 = 2.
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The Agrawal and Dey construct for n4 = 2 appears to use a foldover of a resolution
3. This is not true for the Margolin construct for n4 = 1 . But by slightly modifying
it, as indicated below in the case N = 12, it is possible to get a design with the same
properties built by foldover of a resolution 3 fraction. These constructs therefore also
provide resolution 3 fractions that can be duplicated in resolution 4, with the maximum
number of 2-level factors, for the cases n4 = 1, 16k units and n4 = 2, 32k units. Since k
can be any integer, these fractions exist for a number of units which are not power of 2,
and they can be used in the same manner as in the regular case, that is to go on with the
experiment after completing the resolution 3 design if too many factors are found to be
possibly active.

A 4× 210 of resolution 3 with 24 units that can be duplicated by foldover in a resolution
4 design.

Let H be the classical 12× 12 Hadamard matrix with a first column of 1. Let H1 be deduced

from H by multiplying by 3 the second column of H. Then the matrix
[

H
H1

]
gives the searched

design. Its second column is the 4-level factor and columns 3 to 12 gives the 10 two-level factors.
This number 10 is immediately found to be the Margolin maximum in that case. The duplicated
part in the foldover may be obtained by changing all the level signs including those {−3,−1, 1, 3} of
the four-level factor.

> par5522n64.key <- planor.designkey(

+ factors=c("A1","A2","B1","B2","C1","C2","D1","D2",LETTERS[5:23]),

+ nlevels=rep(2,27),

+ listofmodels=list(

+ c(~A1*A2+B1*B2+C1*C2+D1*D2+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W,

+ ~A1*A2+B1*B2+C1*C2+D1*D2+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W),

+ c(~1,

+ ~(A1:A2+B1:B2+C1:C2+D1:D2)^3 +

+ (A1:A2+B1:B2+C1:C2+D1:D2)*

+ (A1+A2+B1+B2+C1+C2+D1+D2+E+F+G+H+I+

+ J+K+L+M+N+O+P+Q+R+S+T+U+V+W)^2)),

+ nunits=64, base=~A1+A2+B1+B2+C1+C2)

4.1.3.2 Partial foldover Instead of changing the signs of all factors, it is possible
to change only some of them to get the second follow-up design, then called a partial
foldover design on these factors (the sign of which is changed). Montgomery [25] studies
for instance a foldover on only one factor in a classical resolution 2n−k. This change gives
a foldover design which when combined with the initial fraction allows the estimation of
the main effect of this factor and of all its interactions with each of the other factors.

Ankenman [2] gives tables of resolution 3 fraction for mixtures of two- and four-level
factors, which may be duplicated by partial foldover to get a combined design of resolution
4. We examine below how to obtain such fractions with planor when the factors on which
the foldover is performed are determined.
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nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum RL Margolin maximum

1 30 30
2 27 27
3 22 0 24
4 17 888888 21

Solution for
n4 = 4, n2 = 17

D1 = B2C2, D2 = A1B1B2C1, E = A2B1C1, F = A1B2C1, G = A2B1C1C2,
H = A2B2, I = A1B2C1C2, J = A1A2B2C1, K = A2B2C2, L = A1A2B1C2,

M = A2B1B2C1C2, N = B1B2C1C2, O = A1A2B2C1C2, P = A1A2C1C2,
Q = A1B1, R = A1A2B1B2, S = A1A2B1B2C2, T = B1C1, U = A2C2

Table 21: Fraction 4n42n2 of resolution 3 and size 64, that can be duplicated in resolution
4

nb. of 4 lev. fact. nb. of 2 lev. fact.
reached maximum Margolin maximum

1 6 6
2 3 3

Table 22: Fraction 4n42n2 of resolution 3 and size 16, that can be duplicated in resolution
4

Consider first a four-level factor A, decomposed into pseudofactors A1, A2. If there is
a change of sign in the foldover on one of these pseudofactors, say A1, it is always possible
to assume there is also a change of sign for the second A2. Otherwise the product A1A2

also change sign and by selecting it as the second pseudofactor, that is by interchanging
A2 and A1A2, we return to the situation where both pseudofactors change sign. So
we now assume that for each four-level factor, the foldover is either on both associated
pseudofactors or on none of them.

The code below shows such a search for 32 units, n4 = 2 four-level and n2 = 7
two-level factors. It is performed first by complete foldover, then by partial foldover on
C, E, F , L, as in the solution given in [2] table 8. Note that, with the present planor

R package and contrary to the original planor software, it is necessary to declare the
two-level pseudofactors explicitly because they appear explicitly in model or estimate
formulae.

> set.seed(1234)

> completeFoldover.key <- planor.designkey(

+ factors=c("A1","A2","C1","C2",LETTERS[c(5:8,10:12)]),

+ nlevels=rep(2,11),

+ listofmodels=list(c(~A1*A2+C1*C2+E+F+G+H+J+K+L,

+ ~A1*A2+C1*C2+E+F+G+H+J+K+L),

+ c(~(A1+A2+C1+C2+E+F+G+H+J+K+L)^2,

+ ~A1:A2+C1:C2)),

+ nunits=32, base=~A1+A2+C1+C2+E, max.sol=10, randomsearch=TRUE)
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Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 11

first visit to column 6

first visit to column 7

--- col. 7 ( j = 2) 15 selected candidates

first visit to column 8

--- col. 8 ( j = 3) 12 selected candidates

first visit to column 9

--- col. 9 ( j = 4) 9 selected candidates

first visit to column 10

--- col. 10 ( j = 5) 8 selected candidates

first visit to column 11

--- col. 11 ( j = 6) 7 selected candidates

--- col. 11 ( j = 6) 5 selected candidates

The search is closed: max.sol = 10 solution(s) found

> partialFoldover.key <- planor.designkey(

+ factors=c("A1","A2","C1","C2",LETTERS[c(5:8,10:12)]),

+ nlevels=rep(2,11),

+ listofmodels=list(

+ c(~A1*A2+C1*C2+E+F+G+H+J+K+L,

+ ~A1*A2+C1*C2+E+F+G+H+J+K+L),

+ c(~1, ~(A1*A2+G+H+J+K+C1:C2)^3 +

+ (A1*A2+G+H+J+K+C1:C2)*(C1+C2+E+F+L)^2)),

+ nunits=32, base=~A1+A2+C1+C2+E, max.sol=10, randomsearch=TRUE)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 6 to 11

first visit to column 6

first visit to column 7

--- col. 7 ( j = 2) 16 selected candidates

first visit to column 8

--- col. 8 ( j = 3) 13 selected candidates

first visit to column 9

--- col. 9 ( j = 4) 9 selected candidates

first visit to column 10

--- col. 10 ( j = 5) 3 selected candidates

first visit to column 11

--- col. 11 ( j = 6) 3 selected candidates

--- col. 11 ( j = 6) 4 selected candidates

The search is closed: max.sol = 10 solution(s) found

In the complete foldover search, the first pair model, part to be estimated is the
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requirement for obtaining resolution 3. Then to obtain a design that produces a resolution
4 design when duplicating it by partial foldover on the four level factor C (that is on C1 and
C2) and on the two-level factors E, F , L, it is necessary to ensure that no defining product
involving three factors keeps the same sign on the foldover. This is done by the second pair
model, part to be estimated with an empty model. The part to be estimated q.q.q + q.r.r
involves two model parts q and r. The first q includes all factors or pseudofactors that
do not change sign. Among them are A1, A2, A1.A2 and C1.C2. On the contrary, the
model part r includes those factors or pseudofactors that change sign. The products in
q.q.q + q.r.r are therefore those involving three factors that do not change sign. Since
these products appear in the “part to be estimated” associated with an empty model,
they cannot be constant on the fraction.

One way of comparing the 10 designs obtained by this search is to look at their
word length pattern giving for each pair (m2,m4) the number W (m2,m4) of defining word
involving m2 two-level and m4 four-level factors. Since confounding between main effects
and two-factor interactions arises from defining word of length 3, a possible criterium to
select the design would be to minimise the number of defining word with three factors,
that is L(3) = W (0, 3) + W (1, 2) + W (2, 1) + W (3, 0). In the complete foldover (top of
table 23), this minimum is 5. But in fact, an analysis of the aliases in the model p.p
which contains all two factor interactions shows that while only 3 degrees of freedom of
the main effects are estimable with this minimum of 5, there is a solution with L(3) = 8
which allows to estimate up to 4 degrees of freedom of the main effects. In the partial
foldover (bottom of table 23) this minimum is 4 and the corresponding solution is that
which allows to estimate the maximum number 4 of degrees of freedom of the main effects.

The second important thing to consider is then the properties of the combined
resolution 4 designs. The only way to study their properties is to introduce the factor
definitions manually using the field “Predetermined factors”. As already explained, they
can be easily obtained from the definitions of the added factors in the initial fraction. A
basic pseudofactor Z taking level 1 on the fraction, −1 on the foldover, is introduced.
Then every definition remaining true after the change of sign is kept, while if the signs of
the added factor and of the product defining it differ after the change, the pseudofactor
Z is simply added in the definition.

Again criteria that may be used to compare the combined designs are the number
L(4) of words of length 4, the number of degrees of freedom of the two-factor interactions
that can be estimated in a model with all interactions, and finally the number of sets of
2, 3, . . . aliased two-factor interactions. We give these criteria in table 23, first for the ten
designs that can be duplicated by complete foldover randomly obtained by planor , then
for the ten that can be duplicated by partial foldover also randomly obtained as well as
for the design proposed by Ankelman.

If partial foldover is used in the frame of a model including all two-factor interactions,
Ankelman’s solution appears to give the maximum 4 of estimable main effects in the initial
fraction, the maximum 21 of estimable interactions in the combined design, finally the
smaller number 3 of groups of strictly more than two confounded interactions. This thus
appears to be the best solution and can of course be introduced in planor using the field
with the predetermined factors in order to get it explicitly.
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But it must be observed that solution 2 in the search for a complete foldover allows
to estimate 32 degrees of freedom of the interactions, that is 11 more than any of the
other fractions, when considering the combined design. Though the initial resolution 3
design in that case does not allow the unbiased estimation of any main effect in the model
with all two-factor interactions, that property of the combined design should make this
fraction more attractive than the others in some situation.

That can be duplicated by complete foldover
fraction 1 2 3 4 5 6 7 8 9 10

(1) 5 6 7 5 7 8 7 7 6 7
(2) 3 0 0 3 1 4 1 2 3 2
(3) 13 16 11 14 13 14 13 11 13 14
(4) 18 32 18 20 23 20 23 18 18 20
(5) 8 7 4 9 8 9 8 4 8 9

That can be duplicated by foldover on C, E, F , L
fraction 1 2 3 4 5 6 7 8 9 10 ∗

(1) 4 6 6 7 7 8 8 6 6 7 4
(2) 4 3 3 2 2 2 2 1 1 2 4
(3) 12 11 11 12 12 14 14 12 10 12 10
(4) 17 21 21 18 18 14 14 18 21 18 21
(5) 4 5 5 5 4 7 7 6 3 6 3

Table 23: Properties of some fractions for 32 units that can be duplicated

The fraction are for n4 = 2 four-level, n2 = 7 two-level factors. They can be duplicated in
resolution 4 by complete foldover (first array) or by partial foldover (second array). Row (1) and
(2) are relative to the initial fraction, rows (3) (4), (5) to the combined design with 64 units.
∗ : Ankelman’s fraction
(1) : number L(3) of defining word of length 3 in the initial fraction
(2) : number of main effects of the initial fraction that are estimable in

the model including all two-factor interactions
(3) : number L(4) of defining word of length 4 in the combined design.
(4) : number of interactions estimable in the combined design
(5) : number of sets of 3 or more aliased interactions in the combined

design.

4.1.4 Introduction of blocks

The introduction of blocks and of the hierarchical constraint for temperature in the ex-
ample considered in section 4.1.1 is achieved without any difficulty.

The code below specifies the parameters of the search for a design of resolution
4, size 64, that includes 3 factors with 4 levels and 7 factors with 2 levels, including
temperature. Note that the order in the factors argument of planor.designkey may
have an influence on the speed of the search. Here, it is more efficient to declare Bl and
T before the other treatments factors.

57



> iblock.key <- planor.designkey(factors=c("Bl","T",LETTERS[1:9]),

+ nlevels=c(8,2,4,4,4,rep(2,6)),

+ block=~Bl,

+ hierarchy=~T/Bl,

+ listofmodels=list(

+ c(~Bl + (A+B+C+D+E+F+G+H+I+T)^2,

+ ~A+B+C+D+E+F+G+H+I),

+ c(~(A+B+C+D+E+F+G+H+I+T)^2, ~T)),

+ nunits=64, base=~A+B+C,

+ max.sol=20, randomsearch=TRUE)

Design definition, solution 6, random link 520571533

key matrix defining relations

blocs ? ? ?
Bl1 Bl2 Bl3 T D E F G H I

A1 0 1 0 1 1 0 1 0 1 0
A2 1 1 0 0 1 1 1 1 0 1
B1 0 1 1 0 1 1 1 1 1 0
B2 0 0 1 1 0 1 1 0 0 1
C1 1 1 1 1 0 0 1 1 1 1
C2 0 0 0 0 1 1 0 0 1 1

Bl1 = A2C1

Bl2 = A1A2B1C1

Bl3 = B1B2C1

T = A1B2C1

D = A1A2B1C2

E = A2B1B2C2

F = A1A2B1B2C1

G = A2B1C1

H = A1B1C1C2

I = A2B2C1C2

Table 24: Resolution 4 fraction of a 43 × 27 in 8 blocks of 8 units

Among the 20 solutions obtained, the selected one provides a maximum number of
26 unaliased effects in the model including the block effect and the two-factor interactions.
These unaliased effects, which include the 15 = 3×3+6 main effects of the factors differing
from temperature T , appear in Table 25, which also provides the 37 sets of aliased effects.
Once the 63 = 26 + 37 unaliased effects and linear combinations of aliased effects have
been estimated, there are no degrees of freedom left to estimate error variance. Similarly,
all the block effects are observed to be confounded with interactions. It is therefore not
possible to identify degrees of freedom for the estimation of inter-block variance against
which the main effect of the temperature factor T confounded with the blocks is normally
tested.

In fact, neither do the 19 other solutions obtained by this search allow to identify
degrees of freedom for the estimation of inter- or intra-block variances. With this type
of design which contains a maximum number of 2-level factors, we are thus compelled
to perform the analysis using techniques such as those described and referenced in [18],
[20], with the additional problem caused by the presence of two strata, the inter- and the
intra-block ones.

An alternative is to reduce the number of 2-level factors and then attempt to identify
degrees of freedom to estimate the two errors. For inter-block error, it is known that one
of the block effects is confounded with temperature. It might be sought to ensure that
the six other block effects be unaliased, but it is easily demonstrated that when there are
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detailed list of the sets of aliased effects in the model

[Bl2]; C1C2D; B2F ; A1G;
[Bl3]; B1B2C1; A1A2F ;
[Bl2Bl3]; A1A2B2;
[Bl1]; DH; A2C1; B1G;
[Bl1Bl2]; A1B1; C1C2H;
[Bl1Bl3]; C2E; A2B1B2;
[Bl1Bl2Bl3]; T ;
DI; B1T ; A2F ;
C1C2I; A2B2;
B1B2F ; A1A2C1;
C1F ; HI; A1A2B1B2; TG;
A1T ; B2C1;
B1B2T ; C2H; A1A2G;
C1C2E; A1F ; B2G;
DE; C1T ; A1B2; FG;
A1A2B1; C2D;
A2T ; B1F ; EH;
EI; B1C1; A2G;

A1C1; B2T ;
A2B1; TF ; C1G;
A1A2T ; C2I; B1B2G;
TE; C1D; A2H;
B2I; A2C1C2;
FI; C1H; A2D;
C2T ; B1B2H; A1A2I;
B1B2I; A1A2H; C2G;
B1E; C1I; FH;
B1C2; A1A2D;
A1E; C1C2F ; B2D;
DF ; B2C1C2; A2I; EG;
A2C2; B1B2E;
TD; B1I; C1E;
A2E; B1B2C2; TH; GI;
A1A2C2; TI; B1D; GH;
B1C1C2; A1H;
A1C1C2; EF ; B1H; DG;
A1D; B2E; C1C2G;

list of unaliased effects

A1; A2; A1A2; B1; B2; B1B2; C1; C2; C1C2; D; E; F ; G; H; I;
> A1B1B2; A1C2; A1A2C1C2; B2C2; B1B2C1C2; B1B2D;

> B2H; C1C2T ; A1I; C2F ; A1A2E;

list of unaliased block effects (empty)

Table 25: Alias structure for the design of table 24
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three four-level factors A, B, C, at least one effect of each of the interactions AB, AC,
BC is confounded with the blocks.

Let us consider, for instance, interaction BC. In the products defining the seven block effects in
relation to the basic pseudofactors, A can only appear in the three forms A1, A2, A1A2. If it appears
in strictly more than 3 of these products, it necessarily appears in the same form in two of them
and consequently does not appear in the product of these two. Thus there is at least one product
defining a block effect where only B and C appear and clearly both must appear since a block effect
cannot be confounded with a main effect.

There are therefore in this case at least four aliased block effects and at most three
unaliased block effects. In order to be sure to obtain a design providing the maximum
number of unaliased block effects, three block effects are added to the part to be estimated
number 1 of table 24, either in the form Bl1, Bl2, Bl1.Bl2 of three linked effects, or in the
form Bl1, Bl2, Bl3 of three independent effects (tab. 26). Note that to indicate an index
to planor , one uses the underline symbol, that is Bl 1 for Bl1, Bl 2 for Bl2.

model part to be estimated

1 Bl+S.S
Bl1+Bl2+Bl1.Bl2+S1

or
Bl1+Bl2+Bl3+S1

2 S.S T

Table 26: Modif. of the search in tab. 24 in order to estimate the inter-block variance

In both cases, the first 4 two-level factors, among which are T , are obtained very
rapidly and the search dwells on the 5th factor. Thus four 2-level factors are selected in
addition to the three 4-level factors and the 8-level block factor.

Then for each of the two possible choices for the “part to be estimated” number 1,
twenty solutions are searched with a non-zero random link.

When the“part to be estimated 1”are Bl1+Bl2+Bl1.Bl2, the analysis of aliases for the
20 solutions reveals the same alias structure (which leads to the idea that there is in fact
only one solution, allowing for possible permutations of factors or pseudofactors). This
alias structure includes 26 unaliased effects and 32 sets of aliased effects. It thus leaves
5 = 63 − (26 + 32) degrees of freedom to estimate residual variance and by construction
contains three degrees of freedom to estimate inter-block variance.

When the“part to be estimated 1”are Bl1+Bl2+Bl3, the analysis of aliases for the 20
solutions reveals several structures. In addition to the three unaliased block effects, these
structures generally include 32 or 33 unaliased treatment effects, 24 or 25 sets of aliased
effects and leave 3 or 4 degrees of freedom to estimate residual variance. Nevertheless, one
of these, solution 2, is clearly distinguishable from the 19 others: it includes 42 unaliased
treatment effects and 17 sets of effects. It thus leaves only 1 degree of freedom for the
residual, but appears clearly superior to the other solutions. Tables 27 and 28 specify
this solution and provide its alias structure.
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Model parts
1 S1:A+B+C+D+E+F
2 S :S1+T

Hierarchies
1 T : Bl

Models
1 Bl+S.S
2 S.S

Part to be estimated
1 Bl1+Bl2+Bl3+S1
2 T

Design HYGIEN2, solution 2, random link 1691852795

key matrix defining relations

blocs ∗ ∗ ∗
Bl1 Bl2 Bl3 T D E F

A1 1 1 1 1 0 1 0
A2 1 0 1 0 1 1 1
B1 0 0 1 1 0 1 1
B2 1 1 0 0 1 1 1
C1 1 0 0 1 1 1 0
C2 1 1 1 1 0 0 1

Bl1 = A1A2B2C1C2

Bl2 = A1B2C2

Bl3 = A1A2B1C2

T = A1B1C1C2

D = A2B2C1

E = A1A2B1B2C1

F = A2B1B2C2

Table 27: Resolution 4 fraction of a 43 × 24 in 8 blocks of 8 units

detailed list of sets of aliased effects in model Bl + S.S

[Bl1Bl2Bl3]; T ;
[Bl1Bl3]; B1B2C1; A1A2E;
[Bl2Bl3]; C2F ; A2B1B2;
[Bl1Bl2]; A2C1; B2D;

A1A2B1B2; C1E;
A1A2C1; B1B2E;
B2C1; A2D;
A2B2; C1D;

B1B2F ; A2C2;
B1B2C2; A2F ;
A1T ; B1C1C2; DF ;
C1C2F ; A1E; B1D;
B1F ; TE; C1C2D;
B1T ; EF ; A1C1C2;
A1B1; C1C2T ; DE;
C1C2E; A1F ; TD;
TF ; B1E; A1D;

list of unaliased treatment effects

A1; A2; A1A2; C1; C2; C1C2; B1; B2; B1B2; D; E; F ;
A1B2; A1B1B2; A2B1; A1A2B1; A1A2B2; A1C1;

A1C2; A2C1C2; A1A2C2; A1A2C1C2; B1C1; B1C2;
B2C2; B2C1C2; B1B2C1C2; A1A2D; A2E; A1A2F ;

A2T ; A1A2T ; B1B2D; B2E; B2F ; B2T ; B1B2T ; C2D;
C2E; C1F ; C1T ; C2T ;

list of unaliased block effects

Bl1; Bl2; Bl3;

Table 28: Alias structure for design of table 27
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Of course, there is nothing to preclude duplication of a block in such a design This
provides an additional degree of freedom for inter-block residual variance and 7 for intra-
block residual variance. These degrees of freedom provide “pure” error variances insofar
as they are not inflated by potential interactions of three or more factors. Nevertheless,
the statistical analysis of the non-regular design thus obtained is more complex and the
practical relevance of this kind of repetition appears to be of little relevance, in the context
of the screening of influencing factors, in which the absence of effects of several factors
provides the possibility, on the contrary, of identifying the active factors without difficulty.

Taking into account blocks in designs of resolution 3 as those considered in tables 20,
21, 22 may be done by requiring that the main effects different from the temperature
effect are estimable within the model including all main effects and the block effect. In
the considered cases, the allocation among blocks of size 8 appears possible without any
reduction of the number of two-level factors. When duplicating, one add as supplementary
block pseudofactor the one equal to 1 on the first part, to −1 on the duplicated part.
Table 29 shows for instance how to introduce the block search in the case with N = 32
units, n4 = 2 four-level, n2 = 11 two-level factors. The symbol ∼ is used in this example
to substract T from the part to be estimated. Note that if T was not to be constant on
each block and was to be estimated within blocks, the number of two-level factors would
have in that example to be reduced of 1.

Through the study of aliases (section 5.6), one gets the “word pattern” for each of the
11 solutions randomly obtained by the backtrack search defined in table 29. This word
pattern gives in this case, for each couple (m2,m4) of integer, the number of defining words
including m2 two-level, m4 four-level factors. Fractions that have different word patterns
cannot be equivalent in the sense there is no permutation of the factors transforming one
into the other. Fractions that have the same word pattern may be non equivalent, but
there is a high probability there are in fact equivalent.

The 11 solutions have in fact three different word patterns which suggests that, up
to a permutation of the factors, there are three really different fractions. The solution 1,
2 and 5 are found to be representatives of these three fractions. It is then easy to find
the defining contrasts of the resolution 4 fractions of size 64 obtained by duplicating them
by complete foldover, and to study and compare aliasing in them. Solution 2 appears to
be the one that gives the biggest number 8 of unaliased two factor interactions (versus
7 in solution 1 and 6 in solution 5). That solution 2 has 20 sets with only two aliased
such interactions (versus 12 and 10), but it has 15 sets of 5 and more aliased two-factor
interactions (versus 7 and 5). It is therefore not clearly better than the two other solutions,
but we selected it as an example (table 30) to illustrate how the defining contrast of the
duplicated resolution 4 fraction are deduced from those of the initial resolution 3 one.

The example of a search of a resolution 3 fraction with 64 units, 4 four-level and 10
two-level factors that can be duplicated in resolution 4, shows again that partial foldover
may be less interesting than the complete foldover. The latter can estimate up to 37
isolated two-factor interactions, has 29 groups of two aliased two-factor interactions and
only 32 of strictly more than two such interactions. The introduction of blocks in it
however reduces the number of estimable two-factor interactions as six of them are aliased
with block effects in the result of the search.

62



?

name : HYGIEN3.REG
nb. of units : 32
Definition of basic factors : user
factor decomposition type : maximum
Backtrack search - time limit : 10 mn

- nb. max. sol : 11
- random link : 123456

Basic factors

fac. nb.
niv.

A 4
B 4
C 2

Added factors

fac. nb.lev. bloc fac. nb.lev. fac. nb.lev.

Bl 4 ← G 2 K 2
D 2 H 2 L 2
E 2 I 2 T 2
F 2 J 2

Model parts
p : C + D + E + F + G + H + I + J + K + L + T
q : p + A + B
r : p + A1 + A2 + B1 + B2

s : A1A2 + B1B2

Model Part to be estimated
0 q+Bl
1 q
2 r.r

0 q∼ T
1 T
2 s

Hierarchies
1 T : Bl

Table 29: Blocking a fraction 42211 of resolution 3 and size 32 that can be duplicated in
resolution 4

2nd key matrix (random link 1311708280)
blocs ∗ ∗

A1 A2 B1 B2 C Bl1 Bl2 D E F G H I J K L T
A1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1
A2 0 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0
B1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1
B2 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0
C 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0

Defining relations
of resol. 3 fraction (multiplicative) Predetermined factors of its resol. 4 complete foldover

Bl1 = A1B1

Bl2 = A1A2B2

D = A1A2B1B2

E = A1A2B2C
F = A2B2C
G = A2B1B2C
H = A1C
I = A2B2

J = A1A2B1B2C
K = A1B1C
L = B1C
T = A1B1

1 Bl1 = A1B1

2 Bl2 = A1A2B2

3 D = A1A2B1B2Bl0
4 E = A1A2B2CBl0
5 F = A2B2C
6 G = A2B1B2CBl0
7 H = A1CBl0
8 I = A2B2Bl0
9 J = A1A2B1B2C
10 K = A1B1C
11 L = B1CBl0
12 T = A1B1Bl0

Table 30: Solution 2 in the backtrack search of table 29
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4.1.5 About the notion of minimum aberration

Minimum aberration has been introduced by Fries and Hunter [13] as a tool to select a
fraction among those a a given resolution. As pointed out in [18], it is only when the
number of words of minimum length is small that a design with minimum aberration will
make estimable the maximum number of effects. For instance in the case of a regular
resolution 4 fraction 2h−m with W4 words of length 4, table 31 gives the minimum number
k2 of unaliased two-factor interactions. The table shows that a fraction with W4 = 7
make in some case only 21 interactions confounded, while a fraction with W4 = 5 (resp.
W4 = 6) will make at least 24 (resp. 28) two-factor interactions confounded. Indeed
the minimum aberration fraction 29−4 has W4 = 6 defining words of length 4 and make
28 two-factor interactions confounded whereas the 29−4 regular fraction appearing in the
tables [26] has W4 = 7, that is one more defining word of length 4, but make only 21
two-factor interactions confounded.

W4 1 2 3 4 5 6 7 > 7
k2 6 12 15 21 24 28 21 ≥ 21

Table 31: Minimum number of aliased two-factor interaction in resolution 4

4.2 Mixture of quantitative and qualitative factors

4.2.1 Polynomial and pseudofactorial effects

Let us now assume that at least one of the 4-level factors, for example A, is quantitative.
Dissymmetry then occurs between the three associated effects A1, A2, A1A2 and it is
possible to draw on this dissymetry to select the design. Here we provide an overview
of the way of proceeding. A more detailed description and, in particular, the precise
definition of polynomial effects, can be found in [18], [7].

By polynomial effects we here refer to all the effects, regardless of the qualitative
or quantitative nature of the factors they contain, where the quantitative factors appear
in polynomial form. For instance, if?A is quantitative with 4 levels, and B is qualitative
with 2 levels, the polynomial effects are the main effects B, linA, quadA, cubA and
interactions linA.B, quadA.B, cubA.B. They should be distinguished from the pseudo-
factorial effects associated with the products of pseudofactors: B, A1, A2, A1A2, A1.B,
A2.B, A1A2.B. When there are quantitative factors, it is the polynomial effects which are
really meaningful, formalize hypotheses and must be estimated.

The construction method used by planor is not directly adapted to quantitative fac-
tors and to the estimation of polynomial effects. Nevertheless, if the correspondence be-
tween the quantitative levels and pseudofactor levels is chosen appropriately, the pseudo-
factorial effects are expressed in relation to the polynomial effects in a simple form, which
may be utilized to search for defining relations between pseudofactors which are adapted
to the quantitative nature of certain factors.
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More specifically, for each 4-level quantitative factor, the correspondence between
ordered levels and pseudofactor levels is chosen as indicated in table 32. This choice is
the standard planor choice and it is therefore not necessary to redefine the levels in order
to obtain it.

The ordered levels appearing in table 32 are the first four integers 0, 1, 2, 3, which
can always be reverted to by changing the origin and scale. The correspondence of table 32
produces the relations appearing in table 33.

notation notation
additive multiplicative

A
0
1
2
3

A1 A2

1 1
1 0
0 1
0 0

A1 A2

−1 −1
−1 1

1 −1
1 1

Table 32: Pseudofactors decomposition of a quantitative factor A

A1 = (2 linA− cubA)/
√

5
A1A2 = quadA

A2 = (linA+ 2 cubA)/
√

5

linA = (2A1 + A2)/
√

5
quadA = A1A2

cubA = (−A1 + 2A2)/
√

5

Table 33: Relations between polynomial and pseudofactorial main effects

These relations are used to express a pseudofactorial effect in relation to polynomial
effects or, reciprocally, a polynomial effect on the basis of pseudofactorial effects. The
products obtained following substitution of the terms appearing on the left-hand side of
the equalities in table 33 for those appearing on the right-hand side may then be developed
in the usual manner. For example, if B is also a 4-level quantitative factor decomposed
in a similar fashion to A, and C is a two-level factor:

A2C = (linA+ 2 cubA)C/
√

5 = (linA.C + 2 cubA.C)/
√

5 ,
A1B1 = (2 linA− cubA)(2 linB − cubB)/5

= (4 linA linB − 2 cubA linB − 2 linA cubB + cubA cubB)/5,

A1A2B1 = quadA(2 linB − cubB)/
√

5

= (2 quadA linB − quadA cubB)/
√

5
linA linB = (2A1 + A2)(2B1 +B2)/5

= (4A1B1 + 2A2B1 + 2A1B2 + A2B2)/5 .

These relations and the assumptions made on polynomial effects enable nesting of
the different pseudofactorial effects and suggest search strategies for regular designs.

When all the factors are qualitative, the main criterion for classifying a factorial
effect is the number of factors which appear. A realistic assumption, when little infor-
mation is available a priori, is that the higher this number, the weaker such an effect is.
In particular, interactions of three or more factors are often assumed to be zero, which
results in the search for resolution 5 designs.
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This number of factors appearing in the effect remains an important element in
classifying polynomial effects in cases in which there are quantitative factors. Nevertheless,
another criterion is involved in this case: the degree of the polynomial effect. This degree
is 1 for a qualitative factor and equal to the polynomial degree for a quantitative effect,
that is to say, 1 for a linear effect, 2 for a quadratic effect, 3 for a cubic effect. The degree
of an effect which involves several factors is the sum of degrees for each factor. Thus the
degrees of linA quadB, cubA.C are 3 = 1 + 2 and 4 = 3 + 1, respectively. A hypothesis
often formulated is that polynomial effects of degree 3 or above are zero. A less restrictive
hypothesis is that only the polynomial effects of degree 3 which do not belong to the main
effects, i.e. involving at least two factors, are equal to zero.

Two approaches may be adopted to make effective use of the hypotheses on poly-
nomial effects. The first [14] is exclusively based on pseudofactorial effects equal to zero
with a view to obtaining a regular design. The resulting design is orthogonal with respect
to the polynomial effect and enables estimation of polynomial effects with an efficiency
of 1, that is to say, with a variance identical – allowing for size adjustment – to that
of a full factorial design. The second approach [8], based on a more refined use of the
relations in table 33, provides designs with a much lower number of units. The latter
are not orthogonal but display nonetheless excellent efficiencies in estimating polynomial
effects.

Both approaches generally give rise to designs with properties of uniform distribution
of points which make them quite robust with respect to the selected model and, for
this reason, preferable in many cases to the D-optimal designs obtained by algorithmic
procedures. The description which we provide here of these approaches is further set out
in [18] which can be referred to for additional information.

4.2.2 Regular designs that are orthogonal for the polynomial model

Under the assumption that polynomial effects of degree 3 or above are zero, the pseud-
ofactorial effects expressed only from polynomial effects of degree 3 or above are equally
zero. Including the other non-zero pseudofactorial effects in the model and part to be
estimated ensures that the design obtained enables estimation of all the polynomial ef-
fects of degree 1 or 2. It is moreover orthogonal with respect to these polynomial effects
which it estimates with the same efficiency as a full factorial design, that is to say, with
an efficiency of 1. This efficiency is not always in this case maximum efficiency, but the
designs thus constructed have a very good overall efficiency and also good robustness with
respect to the model.

Let us consider for instance a case in which there are 16 units, two 4-level quantitative
factors A and B, and one two-level quantitative factor C.

If the polynomial effects of degree 3 or above are zero, the same applies to all the
pseudofactorial effects containing 3 or more symbols. For example,

A1A2B1 = (2 quadA linB − quadA cubB)/
√

5

is zero since quadA linB and quadA cubB, of degrees 3 and 5, respectively, are both
zero.

66



The design of resolution 5 defined by A1A2B1B2C = 1 then enables estimation of
all the pseudofactorial effects with 1 or 2 symbols, and subsequently all the polynomial
effects of degree 1 or 2. It is thus adapted to the quantitative nature of factors A and B.
This design may be obtained in planor by defining the model and part to be estimated
by P.P where P is the model part defined by P : A 1 + A 2 +B 1 +B 2 + C.

In general, the smallest degree of polynomial effects on the basis of which a pseudo-
factorial effect is expressed is easily obtained. For instance, if A, B are quantitative with
4 levels, C is qualitative with 4 levels, this smallest degree is 4 for effect A1B1B2C1C2. In
order to obtain it, the number of pseudofactors derived from quantitative factors and the
number of qualitative factors are totalled, that is to say, 3 for the three pseudofactors A1,
B1, B2 and 1 for the qualitative factor C.

In accordance with this calculation method, if the design is of resolution 5 when
the pseudofactors derived from quantitative factors are assimilated to factors, it enables
orthogonal estimation of all the effects of a polynomial model of degree 2.

For instance, with 64 units, it is possible to study in resolution 5 up to 8 two-
level factors. The replacement of certain factors by pseudofactors derived from 4-level
quantitative factors results in orthogonal designs for a model of degree 2 with 1, 2, 3 or
4 four-level quantitative factors and 6, 4, 2 or 0 two-level factors, respectively. Table 34
provides an example with 2 four-level quantitative factors A, B, and 4 two-level factors
C, D, E, F . A four-level block factor BL was added. Finally, the main effects of A and B
were included in the model and part to be estimated in order to enable the estimation of
effects cubA and cubB. It would have been possible, without restricting choice, to take A,
B together with two of the 2-level factors as basic factors. However, the standard option
was selected in this case to define the basic factors, in order to illustrate the corresponding
outputs.

4.2.3 Non orthogonal for the polynomial model regular designs

4.2.3.1 1/2 fraction of a 4×4 for two quantitative factors Let us consider a case
in which there are two 4-level quantitative factors A and B and a model assumed to be
of degree 2. This model has 6 parameters: the constant, linA, linB, quadA, quadB and
linA linB. But there are only 5 pseudofactorial effects whose expression in relation to
polynomial effects does not display any of these parameters and which are therefore zero:
A1A2B1, A1A2B2, A1B1B2, A2B1B2, A1A2B1B2. The method described in the previous
paragraph therefore does not help to find an appropriate 1/2 fraction, because such a
fraction should enable the estimation of 11 = 16− 5 parameters with only 8 units. Since
the polynomial effects of degree 3 or above are assumed to be zero, the pseudofactorial
effects are expressed in the form provided in table 35.

It is apparent that linA can be estimated from a single of the two effects A1 or A2.
These two effects, however, do not provide the same information. An estimate ê(A1) with
a variance σ2/n (where n is the size of the fraction) produces an estimate

√
5ê(A1)/2 of

linA with a variance (5/4)σ2/n, while an estimation ê(A2) with the same variance σ2/n
produces an estimate

√
5ê(A2) of linA with a variance 5σ2/n four times greater. It is

thus preferable to have A2 confounded rather than A1 on the fraction.
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name : QUANT1
nb. of units : 64
Selection of basic factors : standard
(which define the unit)
factor decomposition type : maximum

. . .

Added factors
fac. lev. block

nb.

A 4
B 4
C 2
D 2
E 2
F 2
BL 4 ←

Model parts
P: A1+A2+B1+B2+C+D+E+F

Models
P.P+A+B+BL

Part to be estimated
P.P+A+B+BL

Design definition

key matrix defining relations

A1 A2 B1 B2 C D E F BL1 BL2

21 1 0 0 0 1 0 0 1 1 0
22 0 1 0 0 1 0 0 1 0 1
23 0 0 1 0 1 0 0 0 1 0
24 0 0 0 1 1 0 0 0 0 1
25 0 0 0 0 0 1 0 1 1 0
26 0 0 0 0 0 0 1 1 0 1

C = A1A2B1B2

F = A1A2DE
BL1 = A1B1D
BL2 = A2B2E

Table 34: 1/4 fraction of a 4× 4× 24, fitted to 4- levels quantitative factors

A1 = 2 linA/
√

5
A1A2 = quadA

A2 = linA/
√

5

B1 = 2 linB/
√

5
B1B2 = quadB

B2 = linB/
√

5

A1B1 = 4 linA linB/5
A1B2 = 2 linA linB/5
A2B1 = 2 linA linB/5
A2B2 = linA linB/5

Table 35: Expression of pseudofactorial effects in a degree 2 model
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One comment applies to both linB and linA linB. Thus the latter effect can be
estimated from each of the effects A1B1, A1B2, A2B1, A2B2. Nevertheless, the estimation
variance, equal to (25/16)σ2/n on the basis of an estimate ê(A1B1) with a variance σ2/n,
becomes (25/4)σ2/n on the basis of A1B2 or A2B1, and 25σ2/n on the basis of A2B2.
The information provided, by definition, inversely proportional to variance, are in the
ratios 16, 4, 4, 1. When several estimates are combined, the information is combined. For
example, if we have independent estimates ê(A1B1), ê(A1B2) with a variance σ2/n, the
combined estimate of linA linB

16

20

5

4
ê(A1B1) +

4

20

5

2
ê(A1B2)

has a variance (25/(16 + 4))σ2/n. Thus the pseudofactorial effects providing minimal
information should primarily be confounded, i.e. A2B2 and, if necessary, A1B2, A2B1.

These considerations lead to the search for a fraction 1/2 of the full factorial design
of size 16 = 4× 4 which make the substantial pseudofactorial effects A1, A1A2, B1, B1B2,
A1B1 confounded only with the 5 effects equal to zero. The corresponding model and
part to be estimated appear under the heading “search nb. 1” in table 36. The model
contains all the non-zero effects, that is to say in this instance, those effects displaying at
most 2 pseudofactors. Unfortunately, this search fails. The request must thus be made

nom : QUANT2
nb. of units : 8
Selection of basic factors : standard
factor decomposition type : maximum
Backtrack search - time limit : 10 mn
- max. nb. sol. : 999

. . .

Added factors
fac. nb.

niv.

A 4
B 4

Search nb. 1

Model parts
P:A1+A2+B1+B2

Model
P.P

Part to be estimated
A1+A1.A2+B1+B1.B2+A1.B1

FAILURE OF THE SEARCH
Search stopped on factor B2

Search nb. 2

Model
A1.A2+B1.B2+A1.B1

Part to be estimated
A1+A1.A2+B1+B1.B2+A1.B1

Defining relation
A2B2 = 1

Table 36: 1/2 fraction of a 4× 4, with quantitative 4-level factors

more flexible by authorizing confounding of the 5 above-mentioned substantial effects
with minor effects such as A2B1, A1B2, A2B2. The corresponding model and part to be
estimated are specified under the title “search nb 2” in table 36. The study of aliases for
the solutions obtained shows that there is in fact only one solution defined by the relation
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A2B2 = 1. For this solution, the basic estimable linear combinations are

E (〈y,1〉 /8) = e(1) + e(A2.B2)
E (〈y, A1〉 /8) = e(A1) + e(A1.A2.B2)
E (〈y, A2〉 /8) = e(A2) + e(B2)
E (〈y, A1.A2〉 /8) = e(A1.A2) + e(A1.B2)
E (〈y,B1〉 /8) = e(B1) + e(A2.B1.B2)
E (〈y, A1.B1〉 /8) = e(A1.B1) + e(A1.A2.B1.B2)
E (〈y, A2.B1〉 /8) = e(A2.B1) + e(B1.B2)
E (〈y, A1.A2.B1〉 /8) = e(A1.A2.B1) + e(A1.B1.B2) ,

(7)

where y is the vector of the 8 observations and 〈 〉 denotes the usual scalar product of R8.
The vectors 1, A1, . . . , A1A2, . . . appearing in the scalar products are the vectors of 1 and
−1 naturally associated in multiplicative notation with the corresponding pseudofactors
or products of pseudofactors.

In view of the equalities in table 35 and since pseudofactorial effects including 3 or
4 symbols are zero, the system (7) is rewritten in the form

E (〈y,1〉 /8) = e(1) + linA linB/5

E (〈y, A1〉 /8) = 2 linA/
√

5

E (〈y, A2〉 /8) = linA/
√

5 + linB/
√

5
E (〈y, A1.A2〉 /8) = quadA + 2 linA linB/5

E (〈y,B1〉 /8) = 2 linB/
√

5
E (〈y, A1.B1〉 /8) = 4 linA linB/5
E (〈y, A2.B1〉 /8) = 2 linA linB/5 + quadB
E (〈y, A1.A2.B1〉 /8) = 0

(8)

The scalar products between y and A1, B1, A1.B1 enable direct estimation of the linear
effects linA and linB and the interaction linA linB. The estimates of the general mean
and of the two quadratic effects are inferred from these estimates and of the scalar products
with 1, A1.A2, A2.B1.

Table 37 provides the estimates thus obtained, together with their associated vari-
ances and efficiencies. The calculation of variances is based on the fact that the scalar
products on the left-hand side of (8), 〈y,1〉 /8, 〈y, A1〉 /8, 〈y, A2〉 /8, . . . are uncorrelated,
with a variance σ2/8. The comparison of variances thus obtained with variance σ2/16 of
the polynomial effects in the full factorial design provides - after adjustment for the fact
that there are half as many observations in the fraction - the efficiencies appearing on the
right-hand side of table 37.

The notation e() is used to represent polynomial effects in this table. Thus the
linear effect linA, the interaction linA linB are represented in the table by e(linA),
e(linA linB). This notation, adopted in [7] to distinguish polynomial pseudofactors from
their effects, is also convenient to represent the estimates by placing a circumflex or tilde
over the e.

The information provided by 〈y, A2〉 /8 on linA and linB has not been used. It may
be used to obtain the least square estimators of these two parameters. For the purpose
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estimation variance factor efficiency

ê(linA) = (
√

5/2) 〈y, A1〉 /8 (5/4) σ2/8 4/5

ê(linB) = (
√

5/2) 〈y,B1〉 /8 (5/4) σ2/8 4/5
ê(linA linB) = (5/4) 〈y, A1B1〉 /8 (25/16) σ2/8 16/25

ê(1) =
(
〈y,1〉 − (1/4) 〈y, A1B1〉

)
/8 (17/16) σ2/8 16/17

ê(quadA) =
(
〈y, A1A2〉 − (1/2) 〈y, A1B1〉

)
/8 (5/4) σ2/8 4/5

ê(quadB) =
(
〈y, A2B1〉 − (1/2) 〈y, A1B1〉

)
/8 (5/4) σ2/8 4/5

Table 37: Estimates of polynomial effects in the fraction 42/2

of the calculation, only the lines associated with the scalar products 〈y, A1〉 /8, 〈y, A2〉 /8,
〈y,B1〉 /8 need to be taken into account in the system (8). They are rewritten in the
following matrix form

E

 〈y, A1〉 /8
〈y, A2〉 /8
〈y,B1〉 /8

 =
1√
5

 2 0
1 1
0 2

[ linA
linB

]
,

and lead to the estimates provided in table 38.

estimation variance factor efficiency

ẽ(linA)=(
√

5/12)
(

5 〈y, A1〉+ 2 〈y, A2〉 − 〈y,B1〉
)
/8 (25/24)σ2/8 24/25

ẽ(linB)=(
√

5/12)
(
−〈y, A1〉+ 2 〈y, A2〉+ 5 〈y,B1〉

)
/8 (25/24)σ2/8 24/25

Table 38: Least square estimates of the linear effects in the fraction 42/2

Instead of improving the estimation of linA and linB with the information provided
by 〈y, A2〉 /8, the pseudofactor A2 can be used to divide the design into two blocks. If the
block factor is denoted by C, we obtain C = A2 and the row associated with A2 in the
system (8) becomes

E (〈y, A2〉 /8) = linA/
√

5 + linB/
√

5 + e(C) .

The information provided by 〈y, A2〉 /8 can thus be used to estimate the block effect e(C):

ê(C) = 〈y, A2〉 /8−
(
ê(linA) + ê(linB)

)
/
√

5

This distribution into two blocks is useful if the loss of information on the linear effects
which is induced is offset by the reduction in the residual variance σ2.

The pseudofactor A1A2B1 can also be used to define a second two-block system
crossed with the former system. The drawback, then, is that there are no degrees of
freedom left to estimate the error.
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The practical relevance of this small example is limited, but it effectively shows the
flexibility of this construction method. The example in the following paragraph, taken
from [7], illustrates the use of this method to create a design that is considerably smaller
in size.

4.2.3.2 1/16 fraction of a 4324 with two quantitative factors With a view to op-
timizing the culture medium of a rhizobial symbiont of soya (Bradyrhizobium japonicum),
7 composition factors from this medium are studied, including three 4-level factors and 4
2-level factors. Out of the three 4-level factors, A is qualitative, and the two others, B
and C are quantitative. Table 39 specifies the search performed.

name : RHIZO6
nb. of units : 64
Selection of basic factors : user
(which define the unit)
factor decomposition type : maximum
(en pseudofacteurs)
Backtrack search – time limit : 20 mn
- max. nb. sol. : 999
- random link : 0
Inclusion of factors in the : yes
ineligible set

Basic factors

fac. nb.
niv.

A 4
B 4
C 4

Added factors

fac. nb.
niv.

D 2
E 2
F 2
G 2

Model parts
1 p: A+B1+C1+D+E+F+G
2 q: A+B+C+D+E+F+G

Models
1 p.p
2 q.q

Part to be estimated
1 p.p
2 q

Table 39: 1/16 fraction of a 4324 including 2 quant. 4-lev. fact.

The first couple model, part to be estimated ensures that the main effects and major
interactions between two factors are not confounded among themselves. All the inter-
actions which exhibit neither of the two pseudofactors B2 and C2 are considered to be
major.

The second couple model, part to be estimated, in addition, requires that the design
be of resolution 4, that is to say, which enables the estimation of all the main effects in a
model containing all the two-factor interactions. The quantitative aspect is not taken into
account in this second couple, introduced to ensure maximum robustness in estimating
main effects of all degrees.

The full, exhaustive search, requested by giving 999 as the maximum number of
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solutions, generates a set of 1152 solutions. The analysis of these solutions, conducted by
a specific program, showed that they were all derived from 6 basic solutions by switching
factors or pseudofactors with symmetric roles, that is to say, D, E, F , G first, then B
and C, and finally, A1, A2, A1A2. These 6 basic solutions are provided in table 40, where
three overall efficiency measurements are also reported, so that these solutions may be
compared with regard to variance.

Table 41 specifies the efficiencies, for each effect, of the best three designs for overall
efficiency. In the third design, interactions including A, each of which have three degrees
of freedom, are characterized by three efficiencies, referred to as main efficiencies. The
specific definition of these efficiencies is given in [17] and [18]. The lowest of these 3 effi-
ciencies is the lower bound of efficiencies for all the contrasts belonging to this interaction.

plan defining relations trace det min. eigenval.

1
A1B1B2C1D = 1; A2B1B2C2E = 1
A2B1C1C2F = 1; A1B2C1C2G = 1

0.948 0.976 0.434

2
A1B1B2C1D = 1; A2B1B2C2E = 1
A1B1C1C2F = 1; A1A2B2C1C2G = 1

0.934 0.969 0.460

3
A1B2C1D = 1; A2B2C2E = 1
A1B1C1C2F = 1; A1A2B1B2C1C2G = 1

0.912 0.958 0.460

4
A1B2C1D = 1; A2B2C2E = 1
A1B1C1C2F = 1; A1A2B2C1C2G = 1

0.900 0.956 0.330

5
A1B2C1D = 1; A2B1C2E = 1
A1B1B2C2F = 1; A2B2C1C2G = 1

0.883 0.946 0.400

6
A1B2C1D = 1; A1B1C2E = 1
A2B1B2C2F = 1; A1A2B2C1C2G = 1

0.874 0.944 0.330

Table 40: Global factor efficiencies for the 6 solutions
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Effet Factor efficiency
Design 1 Design 2 Design 3

A 1 1 1
lin B, lin C 1 1 1
quad B, quad C 1 1 1
D,E, F, G 1 1 1
A. lin B 1 1 1 0.840 0.800
A. lin C 1 1 1 0.960 0.840
AD 1 1 1 1 0.833
AE 1 1 1 1 0.952
AF,AG 1 1 1 1 0.800
lin B. lin C 0.640 0.960 0.800
lin B.D 0.840 0.800 0.840
lin B.G 0.840 0.800 0.800
lin B.E 0.840 0.800 0.960
lin B.F 0.840 0.960 0.800
lin C.D 0.840 0.960 0.840
lin C.E, lin C.F, lin C.G 0.840 0.800 0.800
DE 1 0.800 1
DF 1 0.960 1
DG 0.810 0.800 1
EG 1 0.667 0.800
EF 0.810 0.800 0.800
FG 1 0.800 0.667

Table 41: Factor efficiencies in the 3 optimal solutions for the trace
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5 Use of the program

5.1 System requirement

planor is a R package that includes routines written in C. It runs under Linux or Windows
systems and requires the conf.design, bigmemory and biganalytics packages.

5.2 Help

The user can have access to online assistance by using the help function. The distribution
includes a reference manual and a vignette, in addition to the present document.

The design search and some summary functions can be very long to execute. So we
advise the user to start with small examples and to ensure he or she knows how to stop
the execution of a R function in his or her R environment. At present, no result is saved
when a planor function is stopped, but information is given on how far the design search
succeeded.

5.3 Typical usage

This subsection describes shortly different possible options when using the planor pack-
age. More details are given in the next subsections on

� the creation or modification of a regular design (subsection 5.4);

� randomization (subsection 5.5);

� the study of aliases (subsection 5.6).

During the creation of a regular design, the user introduces the parameters defining
the search in three steps:

� parameters related to the factors (function planor.factors);

� parameters related to the model(s) (function planor.model);

� parameters related to the experimental units (function planor.designkey).

All the information may also be provided directly to the latter function, which starts the
design search. The parameters are stored in R objects. The results of the search, once
it is completed, are stored in a list of key matrices. All these R objects belong to classes
which are specific to planor .

By default of the argument max.sol of planor.designkey), only a single key matrix
solution is required. The user may then proceed directly to the design creation by using
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the function planor.design. The design can be randomized at this stage, or later by
using the function planor.randomize.

Whether one or several matrices are sought, the solutions obtained may be examined
by the study of aliases. This can be done by applying the summary function to the design
key objects. The systematic or randomized designs corresponding to the solution adopted
are then constructed by using planor.design.

Several subsidiary operations may prove to be necessary in order to develop – from
one or several regular designs - the appropriate design for a particular situation. The
module Recoding, selection of factors, sorting, ... of the planor original version made it
possible to perform several of these operations simply: creation of a new factor produced
from pseudofactors, recoding of levels, elimination of useless factors, repetition of certain
units, merging of certain designs, sorting. These possibilities are not implemented in the
planor R package, but most of them can be managed by using the basic R functions.

5.4 Creation or modification of a regular design

5.4.1 Main steps

See Section 2.1.2.

5.4.2 Selection of basic factors

The base argument of the function planor.designkey allows to define basic factors,
whose combinations of levels serve to identify the different experimental units. These
basic factors can be pseudofactors used only to identify the units, but which have no real
physical sense and do not appear in any model. This is the default option, in which case
the program introduces a pseudofactor for each prime appearing in the decomposition of
the number of units into primes. The program gives these pseudofactors the standard *U*

name.

This default option provides considerable flexibility since it does not predetermine
any of the factors (except the first one, which is forced to be identified to the first unit
factor). Instead, it determines them freely as a combination of the basic factors. However,
for the same reason, this is also the option which leads to the longest searches. Therefore,
in many cases, the preferred option should consist in a selection of basic factors among the
really active factors corresponding to treatments or blocks and appearing in the model
or hierarchies. The basic factors are then entered using an additive formula such as
base= A+B+C.

By definition, all the combinations of levels of basic factors appear in the design, as
a result of which there cannot be any defining relation in which only these factors appear.
The selection of basic factors by the user thus excludes certain defining relations and is
likely to restrict the overall number of achievable solutions.

Consequently, when this option is selected, efforts are made from the outset to choose
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basic factors for which all the combinations of levels are sought to appear in the design.
The fact that these factors are chosen as basic factors does not therefore introduce any
additional constraint.

For instance, if the units are structured by block systems (blocks, sub-blocks, rows,
columns, etc . . . ), the corresponding block factors may be introduced as basic factors,
potentially completed by a pseudofactor associated with the repetition number. Similarly,
in the search for a distribution into blocks of a full factorial design, the treatment factors
may be taken as basic factors, potentially completed by a pseudofactor associated with
the repetition number if the treatments are repeated.

In all cases, if only one solution is required, any choice of basic factors for which the
search completes is acceptable. It is only when the search fails that the question should
sometimes be raised as to whether such failure is not the result of a flawed selection of
basic factors.

5.4.3 Factor decomposition

The factors which do not have a prime number of levels are decomposed into products of
several pseudofactors. In the planor R package, this decomposition leads to pseudofactors
whose numbers of levels are all prime. This is more restrictive than in the original planor
version, which could also handle decompositions into prime powers with powers larger
than one. More precisely, the planor R package behaviour corresponds to the maximum
option of the factor decomposition type defined in the original planor version.

For example, Table 42 provides the possible decompositions of a 24-level factor A in
the original planor version. The most comprehensive decomposition was obtained with

maximum minimum free choice
A1 (2) A1 (8) A1 (4)
A2 (2) A2 (3) A2 (2)
A3 (2) A3 (3)
A4 (3)

Table 42: Pseudofactor decomposition of a 24-level factor A

option maximum, the standard option then proposed by the program. All the pseudo-
factors obtained in this decomposition have a prime number of levels. On the contrary,
option minimum provided the most restricted number of pseudofactors. The numbers of
pseudofactor levels obtained in this option were the highest prime powers dividing the
number of levels of the decomposed factor. Option free choice allowed to choose the
decomposition used for each factor, freely and independently.

From a practical point of view, the maximum option retained in the planor R
package provides the greatest flexibility. This can be observed empirically and it has been
demonstrated for certain classes of full factorial designs distributed into blocks [29], [30].
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5.4.4 Backtrack search

To explain the meaning of the two arguments randomsearch and max.sol, we concisely
describe this search in a case when the numbers of levels are all powers of the same
prime. A detailed description of the general case is presented in [19]. Note that the time
limit parameter of the original planor version has not (yet?) been implemented in the R
package.

The program initially establishes the lists L1, L2, . . . , Ls of possible vectors for each
of the columns 1, 2, . . . s of the key matrix.

It then successively searches the columns of the key matrix so as to respect the
constraints imposed. Once columns 1 to i which are compatible with the constraints
have been selected, the permissible vectors are then inferred from list Li+1. If this set of
vectors is non-empty, the program selects the first vector as column i + 1 and continues
in a sequence. If this set is empty, it selects the next permissible element, if there is one,
from list Li. If there is none, it reverts to the column i− 1 choice, and so forth.

When there is no solution, the procedure terminates when list L1 is exhausted, which
means that all the possible choices have been examined. As this exhaustive analysis may,
in some cases, take a considerable time to achieve, a time limit was provided in the initial
planor version beyond which the program terminated. The user then had the possibility
of either continuing the search by increasing the time limit or of effectively stopping the
search. This is not implemented in the planor R package.

It is clear that the order in which the lists Li are classified have a determining
influence on the choice of the key matrix in cases in which only one solution is sought.
To avoid obtaining the same solution systematically, it is possible to reorder these lists
randomly by specifying randomsearch=TRUE in the function planor.designkey. This
generates random reordering of these lists and thus the solution obtained is random too.
Note that the same search performed with the same seed value of the random number
generator of R always leads to the same solution (see the help of function set.seed for
more information).

In many cases, it is appropriate to search the best possible solution among all solu-
tions satisfying the constraints, with respect to a criterion not taken into account in the
search. For instance, among all the fractions of resolution 4, that which has the smallest
possible number of interactions confounded may be sought. In this case, it would be
appropriate to first obtain all the possible solutions. For this purpose, a comprehensive
search can be initiated by specifying max.sol=Inf in the function planor.designkey.
In order to find all the solutions, the program then continues the search after obtaining
a solution, by moving to the next permissible element in list Ls associated with the last
column s of the key matrix. If there is none, it returns to column s − 1 and selects the
next permissible element, and so forth. It terminates either when list L1 is exhausted (or
after the time limit was reached in the initial version).

The disadvantage of this comprehensive search procedure is that it can take a very
long time to achieve (particularly since, in this version of the program, symmetries between
factors are not taken into account to reduce the search time). Moreover, the solutions
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obtained are often very close and quite often differ only by one of the columns of the key
matrix. Premature termination of the searches thus leads to an insufficiently diversified
set of solutions.

In order to obtain a range of markedly different solutions without performing the
comprehensive search, it is sufficient to request a reduced number of solutions (strictly
below infinity in any case, which can be specified by max.sol=Inf) and a random search.
In this case, the search procedure is restarted after each solution, with random re-
ordering of the lists Li4. The solutions obtained are stored in the output of function
planor.designkey, a solution can be selected by its number to explicitly construct the
design.

The backtrack search thus uses the following two arguments :

� randomsearch It determines the order in which possible solutions are explored for
each column of the key matrix : lexicographic order if randomsearch=TRUE and
random order if randomsearch=TRUE.

� max.sol If it is equal to Inf, the backtrack search continues until all the solutions
are obtained (or until the time limit was reached). Such a comprehensive search has
a chance of being completed only for small-scale problems.

There is presently no time limit parameter in the R planor package. When no
solution actually exists, continuation of the search can take a considerable length of time
because it is necessary to explore all the possibilities in order to prove the absence of a
solution. In practice, it is therefore not advised to continue a search for too long.

5.4.5 Inclusion of factors in the ineligible set

The data for the model and part to be estimated makes certain defining relations ineligible,
that is to say, prevents these relations from being used to define the design. Nevertheless,
if the main effect of a factor does not appear in the part to be estimated, the search may
produce a defining relation in which only this single factor appears, in which case only a
fraction of the levels then appears in the design. In certain cases this is not acceptable,
for instance if it is a block factor in which all the levels must be present.

Forcing the systematic inclusion of factors in the ineligible set was optional in the
original planor version but it is imposed in the planor R package. This makes any
defining relation involving only a single factor ineligible and thus ensures that each factor
assumes all its levels in the design.

5.4.6 Factors and models

5.4.6.1 Basic factors and added factors It is possible to indicate that a factor
is a block factor by using the block argument of the function planor.designkey. This

4actually this is not the present behaviour in the R planor package because there is presently no
random reordering after each solution
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indication is not used in the backtrack search. It is only used to distinguish between block
effects and treatment effects in the study of aliases. In the initial planor , it was also
used in the randomization phase, but in the planor R package the factorial structure to
be used for randomization has to be defined explicitly and it can be independent of the
block factor declarations.

The levels of the defined factors are deduced from those of the basic factors by using
the rules defined by the key matrix. This key matrix is sought through the backtrack
procedure so as to make the parts to be estimated in the associated models estimable and
to respect the potential hierarchies. Some of these factors can be predetermined by the
user. The associated columns of the key matrix are then predetermined in the search (not
yet implemented).

The remainder of this paragraph briefly recalls the functions and syntaxes associated
with the arguments model, resolution and hierarchy of the function planor.designkey.
A more pedagogical introduction to these notions through examples is featured in Sec-
tion 2 and more general descriptions may be found in [18], [19].

5.4.6.2 Models and parts to be estimated Usually, a single model providing the
non-negligible factorial effects is introduced. The “part to be estimated” of this model is
then specified in the estimate argument, if different from the model. This is done using
the R syntax for writing model formulae. Alternatively, the resolution argument can
be used as a short-hand declaration when the problem is symmetric with respect to the
factors.

It may be necessary to introduce several models and corresponding parts to be
estimated, to deal with cases in which block systems induce several strata for instance.

It is also possible to indicate hierarchy constraints among factors by using the
hierarchy argument.

A model in planor must be complete with respect to marginality between factorial
effects. Thus if the model includes the interaction A.B, then it must also include the
main effects A, B and the general mean. This is not necessarily true for the “part to be
estimated”. If it contains the term A.B but not the terms A and B, this indicates that
the interaction A.B is sought to be estimated, but not necessarily the main effects A and
B.

When the estimate argument is restricted to the general mean (estimate=~1), it
follows that the terms of the associated completed model cannot be confounded with the
general mean, which precludes any defining relation based only on the factors of one of
these terms. These defining relations are ineligible. The use of a part to be estimated
limited to the general mean particularly ensures that the products of factors that appear
in the associated model take all their levels in the design.

Similarly, when the model argument is restricted to the general mean (model=~1),
the terms of the associated part to be estimated cannot be confounded with the general
mean and result in ineligible defining relations. Since the part to be estimated may be
incomplete with respect to marginality, this use of estimate=~1 provides greater flexibility
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in introducing ineligible defining relations than the use of model=~1 .

5.4.6.3 Hierarchies If the level of a factor A must remain constant for each combi-
nation of levels of certain other factors, say B, C, D, this is considered as a hierarchical
constraint between factors. Such a constraint can be specified by the argument hierarchy
=~A/(B*C*D) in the function planor.designkey. It is then said that the product factor
B × C ×D is nested within A or, alternately, that A is marginal to this factor.

Example. In a design containing blocks –BL– and sub-blocks –SBL–, the factor VAR is
constant for each block and the factor DOSE is constant for each sub-block. This double
constraint can be indicated by

hierarchy=list(~VAR/BL, ~DOSE/(BL*SBL)

where SBL provides the number of the sub-block within the block.

5.4.6.4 Example with several models and hierarchies In a block design in which
certain factors cannot vary within blocks, it is often indispensable to introduce several
models and parts to be estimated as illustrated in the following, typical example :

> typical <- planor.designkey(

+ factors=c(LETTERS[1:8], "BL"),

+ nlevels=c(rep(2,8),8),

+ hierarchy=list(~A/BL, ~B/BL, ~C/BL, ~D/BL),

+ listofmodels=list(

+ noblock.model=c(~(A+B+C+D)^2, ~A+B+C+D),

+ block.model=c(~BL + (A+B+C+D+E+F+G+H)^2,

+ ~(A+B+C+D+E+F+G+H) : (E+F+G+H))),

+ nunits=64, base=~BL+E+F+G)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

=> search for columns 7 to 11

first visit to column 7

first visit to column 8

--- col. 8 ( j = 2) 6 selected candidates

first visit to column 9

--- col. 9 ( j = 3) 4 selected candidates

first visit to column 10

--- col. 10 ( j = 4) 1 selected candidates

first visit to column 11

--- col. 11 ( j = 5) 16 selected candidates

The search is closed: max.sol = 1 solution(s) found
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> print(typical)

An object of class listofkeyrings

********** Prime 2 design **********

--- Solution 1 for prime 2 ---

E F G BL_1 BL_2 BL_3 A B C D H

E 1 0 0 0 0 0 0 0 0 0 1

F 0 1 0 0 0 0 0 0 0 0 1

G 0 0 1 0 0 0 0 0 0 0 1

BL_1 0 0 0 1 0 0 1 0 0 1 1

BL_2 0 0 0 0 1 0 0 1 0 1 0

BL_3 0 0 0 0 0 1 0 0 1 1 0

The part to be estimated (E + F +G+H) in the so-called “block model” includes
the main effects of E, F , G, H and their interactions with each of the 8 treatment factors
A, B, C, D, E, F , G, H (i.e. 26 terms in developed form).

The main effects A, B, C, D cannot be estimated in the model including the block
effect (BL) since they cannot vary within blocks. The so-called “noblock model” never-
theless ensures their estimability in an inter-block model including all the interactions
between two of these factors.

5.4.6.5 How to force a product of factors to assume all its levels As has been
indicated, a product of factors can be forced to assume all its levels in the design by
making it appear as the term of a model associated with an estimate part reduced to the
general mean.

As an example let us consider a situation in which there are three treatment factors
A, B, C with 6, 6 and 2 levels. We further assume that the 72 treatments of the full
factorial design must be distributed within a cube containing 6 positions on the X-axis,
3 on the Y-axis and 2 heights –factors X, Y , Z–. To illustrate this, we may imagine we
are cultivating 6 strains of champignons de Paris (button mushrooms) (factor A) with 6
different composts (B) with 2 pH values (C)and that these mushrooms are distributed
in the growth chamber over two overlapping trays (Z), each containing 6 rows (X), 3
columns (Y ) with two containers in each location defined by X, Y , Z.

Taking into consideration the ventilation system and the position of the growth
chamber door, it is estimated that the three factors X, Y , Z are likely to have an effect.
We wish to be able to estimate the main effects A, B, C and interactions A.C, B.C in a
model containing the additive effects X, Y , Z and all the interactions between treatment
factors.

If the basic factors used are X, Y , Z and U is the container number in the pair, we
can be sure that each of the 36 triplets of coordinates X, Y , Z appears twice. However,

82



if we use A, B, C as the basic factors, the following pair model, estimate:

model part to be estimated
[1] X + Y + Z + A.B.C [1] A+B + C + A.C +B.C

may result in defining relations in which all the triplets of coordinates X, Y , Z do not
appear, such as those in table 43.

2-lev. factor
X1 Z

A1 1 1
B1 1 1
C 1 0

X1 = A1B1C
Z = A1B1

3-lev. factor
X2 Y

A2 2 2
B2 2 2

X2 = A2
2B

2
2

Y = A2
2B

2
2

Table 43: An inappropriate solution to dispatch in 3 crossed block systems

In order to avoid such inappropriate relations, we introduce a model including the
term X.Y.Z associated with a blank (empty) “part to be estimated”:

model part to be estimated

[2] X.Y.Z [2] 1 (general mean)
(9)

The choice of A, B, C as basic factors is quite natural. Firstly, it does not make
the introduction of an additional pseudofactor such as U compulsory. Secondly, this is
the option which is spontaneously used when seeking to find out, independently of any
program, the possible constructions. The question is then raised as to which interactions
between treatment factors each of the three block systems should be confused with, which
results in the block pseudofactors being defined from the treatments rather than the
reverse.

5.4.6.6 Predetermined factors (not yet implemented in the planor R package)
The following lines:

Bl_1 : A_1 + B_1 + C_1

Bl_2 : A_2 + 2B_2

E : 2A_2 + D

in the window with the predetermined factors set the way in which the pseudofactors Bl1,
Bl2 inferred from factor Bl and factor E are calculated from the pseudofactors A1, B1,
C1, A2, B2 inferred from the basic factors A, B, C and from factor D.
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After checking that these definitions verify the constraints, the program takes them
into account in the search for the other factors.

It is possible to define all the factors in this way. This makes it possible to study of
aliases in a predetermined design or to construct and randomize this design.

5.5 Randomization

In agricultural experiments, which have prompted the development of experimental de-
signs and the theory of randomization, it is generally recognized that the observation
is the sum of a treatment effect and of an uncontrolled effect of the experimental unit.
In order to prevent the effects of the experimental units from systematically overlapping
with the effects of the treatments being compared and from skewing the comparisons, the
experimental unit allocated to each treatment is chosen randomly: this is referred to as
randomization.

In the planor R package, randomization can be performed either by using the
randomize argument of the function planor.design, or by using the function planor.-

randomize on a design. In both cases, randomization is specified by a model formula
which essentially describes the block structure of the experiment.

When all the units are equivalent, randomization is totally free. This is called
complete randomization. It consists of determining by random draw without replacement
the real unit (a plot in the field of agriculture, an animal in animal science, etc . . . )
allocated to each unit of the systematic design. Such a randomization is obtained by
using formula ~UNITS for the randomization model. An example is provided in table 1.
The numbers resulting from the draw are called repetition indices and appear in a column
identified by the heading ind-rep.

In this example, the number of units in the systematic design is equal to the max-
imum number of available units and randomization equates to randomly selecting a per-
mutation of numbers from 0 to 7, with the same probability of selecting each of the !8
permutations.

When the experimental units are structured into blocks, randomization must com-
ply with this structure. This block structure is specified by the block factors. However,
the levels given to the latter factors in the systematic design are unrelated to the labels
or numbers of the real experimental units. Randomization, described below, results pre-
cisely in replacing these levels of the systematic design by the levels identifying the real
experimental units. This is achieved in such a way that all the units with the same block
factor level in the systematic design have the same level in the randomized design as a
result of this substitution. Randomization of the ROBOT1 design in § 3.1.3 provides an
example (table 10).

Specification of the block factors is achieved through the randomization model.
These factors must have the ability to be expressed from a set of basic pseudofactors,
denoted block pseudofactors, which are such that the number of units per combination of
levels of these pseudofactors is constant. If this number of units is k > 1, the user can
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(and should, usually) introduce an additional block pseudofactor UNIT in the blockstruc-
ture model formula, to specify that randomization must be performed also at the unit
level.

The randomization block structure is introduced as a model formula. A random
seed can be introduced prior to the randomization by the base R command set.seed. In
that case, the randomization performed is entirely determined by the random seed, which
enables the same randomization to be performed again, identically: this only requires
keeping the same random seed. It should be noted that if the randomized file is lost, it
can only be identically recreated if the corresponding random seed is known.

In the example in 5.5, the plate factor coincides with pseudofactor pl. Nevertheless,
pseudofactor col has no significance in this example if it is separated from factor pl. The
columns are considered here as a subdivision of the plates. There is a total of 6 × 4
columns. Each column is specified by the number of the plate to which it belongs pl
and its number col in this plate. The randomization model thus comprises two terms, pl
and pl.col, with the second term corresponding to the column factor. Randomization is
described for this particular example in paragraph 3.1.3.

Another example in a similar situation would include the following four block factors:
rows (LIG) crossed with columns (COL), mini-rows nested within rows (MINILIG) and
micro-columns (MICROCOL) subdividing the cells formed by intersection of the rows and
columns (figure 3). In this example, the units are defined by the quadruplet of levels of
the 4 pseudofactors LIG, COL, MINILIG, MICROCOL. The factors row, column coincide
with the pseudofactors LIG, COL respectively. The factors mini-row and micro-column
are defined by the products MINILIG.LIG and MICROCOL.LIG.COL, respectively.

In the general case, the model is thus formed by the list of block factors which are
defined as products of the block pseudofactors.

> set.seed(123)

> bprs.key <- planor.designkey(factors=list(LIG=c("L1","L2","L3"),

+ MINILIG=1:2,

+ COL=c("C1","C2"),

+ MICROCOL=1:2),

+ model=~LIG*COL*MINILIG*COL*MICROCOL,

+ estimate=~1,

+ nunits=24,

+ base=~LIG+MINILIG+COL+MICROCOL)

Preliminary step 1 : processing the model specifications

Preliminary step 2 : performing prime decompositions on the factors

Main step for prime p = 2 : key-matrix search

no need (all columns are predefined)

Main step for prime p = 3 : key-matrix search

no need (all columns are predefined)

> unrand <- planor.design(bprs.key)@design

> unrand <- unrand[order(unrand$LIG,unrand$MINILIG,
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LIG
(0)6
?

COL
(1)

-�

� MINILIG
(2)

� MICROCOL
(3)

Randomization model
LIG+COL+MINILIG.LIG+MICROCOL.LIG.COL

Partial order between pseudofactors
MINILIG < LIG {(2)< (0)}
MICROCOL < LIG {(3)< (0)}
MICROCOL < COL {(3)< (1)}

q
2
q
3

q0 q1
@

@
@@

Figure 3: Example of block structure (extracted from [4])
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+ unrand$COL,unrand$MICROCOL),]

> unrand$U <- letters[1:24]

> cat("\n The unrandomized design\n")

The unrandomized design

> print(t(matrix(unrand$U,4,6)))

[,1] [,2] [,3] [,4]

[1,] "a" "b" "c" "d"

[2,] "e" "f" "g" "h"

[3,] "i" "j" "k" "l"

[4,] "m" "n" "o" "p"

[5,] "q" "r" "s" "t"

[6,] "u" "v" "w" "x"

> rand <- planor.randomize(

+ blockformula=~LIG+COL+LIG:MINILIG+COL:LIG:MICROCOL,

+ data=unrand)

> rand <- rand[order(rand$LIG,rand$MINILIG,rand$COL,rand$MICROCOL),]

> cat("\n The randomized design\n")

The randomized design

> print(t(matrix(rand$U,4,6)))

[,1] [,2] [,3] [,4]

[1,] "r" "q" "t" "s"

[2,] "v" "u" "x" "w"

[3,] "i" "j" "l" "k"

[4,] "m" "n" "p" "o"

[5,] "e" "f" "h" "g"

[6,] "a" "b" "d" "c"

When the number of units per combination of levels of pseudofactors is strictly
greater than 1 (k ≥ 1), the initial planor used to automatically add a unit factor to the
model used for randomization. In the planor R package, the user must include explicitly
a UNIT term in the randomization block formula to ensure that randomization occurs at
the finest level.

From the randomization block formula, a partial order is immediately inferred be-
tween the block pseudofactors. By definition, A ≤ B is obtained if every factor of the
model containing A also contains B. In particular, the repetition index, when it is intro-
duced, is lower than all the other pseudofactors. This order is often represented in the
form of a diagram, termed Hasse diagram, such as that which appears in figure 3.
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In fact it is more precisely a preorder rather than an order because two distinct pseudofactors A1

and A2 can be systematically associated thereby giving us both A1 ≤ A2 and A2 ≤ A1 without the
equality. However this situation, processed by the program by simply replacing each set of constantly
associated pseudofactors by their product pseudofactor, may be ignored.

The structure of the block system for the example represented in figure 2, may be
described by model col1 + col1.col2 + row1 + row1.row2 to which the order col2<col1,
row2<row1 corresponds. The randomization program renumbers the pseudofactors in
a manner compatible with this order. More precisely, in cases in which certain factors
emerge as systematically associated in the terms of the model, first it determines the
classes of associated pseudofactors, then it renumbers these classes. Each class is here
reduced to a factor and the internal numbering used is 0 for col1, 1 for row1, 2 for col2, 3
for row2. Note that if a class comprised more than one pseudofactor, the program would
replace the factors of this class by their product. It may thus always be considered in the
following that there is a single pseudofactor per class.

For each pseudofactor j, the list ]j) = {i/i > j} of pseudofactors which are strictly
above it is determined. In the example, lists ]0) and ]1) associated with pseudofactors 0
(col1) and 1 (row1) are empty. Lists ]2) and ]3) associated with pseudofactors 2 (col2)
and 3 (row2) contain factors 0 (col1) and 1 (row1), respectively.

For each block pseudofactor j, the actual levels are determined by random drawing
without replacement performed independently for each of the combinations of levels of
the higher pseudofactors, that is to say, the pseudofactors of ]j). Thus for the column
pseudofactor col2, a separate draw is performed for each of the two macro-columns col1
= 0 and col1 = 1.

Determination of the actual level of the block pseudofactors for a unit of the system-
atic design is based on an ad hoc draw. The latter depends, for each pseudofactor, on the
levels of the higher pseudofactors. For instance, for the systematic design unit defined by
col1 = 1, row1 = 1, col2 = 0, row2= 0, determination of col2 in the randomized design is
based on the permutation of macro-column 1 since col1 = 1. The information in table 12
reveals that the levels of the four pseudofactors in the randomized design are col1 = 0,
row1 = 0, col2 = 1, row2 = 0.

The theory underlying this type of randomization is described in [4]. A simplified
description appears in [3]). From the results appearing in [4], it is easily inferred that
such randomization induces a covariance structure of the random effects of the units
identical to that of a classic model with random effects containing a random block effect
for each ancestral term (see [15]). Any product of pseudofactors which, when it contains
a pseudofactor A, also contains all the higher pseudofactors - i.e. all the B such as A ≤ B
- is ancestral. In the classic model in question, the effects are all uncorrelated, and their
variance is constant for each effect.

To illustrate the latter point, let us consider again the different randomization models
already considered in this paragraph.

� Model pl + pl.col. Each column of each plate contains 2 units and the model
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thus must be completed by the term pl.col.UNIT. The three terms of the model pl
+ pl.col + pl.col.UNIT thus completed are the only ancestral terms. The model
derived from randomization thus has a covariance structure analogous to that of a
model containing random effects of the plate, of the column in the plate plus an
error associated with each unit. The analysis of variance of regular design normally
includes a strata for each of these effects.

� Model LIG+COL+MINILIG.LIG+MICROCOL.LIG.COL. The ancestral terms mak-
ing up the model which provides the covariance structure are the following:
LIG+COL+COL.LIG+MINILIG.LIG+MINILIG.LIG.COL+
+MICROCOL.LIG.COL+MICROCOL.LIG.COL.MINILIG

� Model col1+row1+col1.col2+row1.row2. The ancestral terms are:
col1 + row1 + row1.col1 + col2.col1 + col2.col1.row1 +
row2.row1 + row2.row1.col1 + row2.row1.col2.col1

Remark. Any addition or removal of factors in the randomization model which does not
modify the partial order between pseudofactors induces the same randomization. The
largest model that follows this order is that which contains all the ancestral terms. It
may be obtained by forming all the possible intersections between terms, to begin with,
followed by all the unions.

It should be noted that in principle the model may contain less terms than pseudo-
factors. Thus factor LIG may be removed from model LIG + COL + MINILIG.LIG +
MICROCOL.LIG.COL. The new model, COL + MINILIG.LIG + MICROCOL.LIG.COL,
induces the same partial order. In fact, the initial model is reobtained by adding the term
LIG, the only term common to the last two terms and therefore equal to their intersection:
LIG = {MINILIG, LIG} ∩ {MICROCOL, LIG, COL}.

5.6 Study of aliases

Once the key matrices responding to specifications are obtained, the aliased effects for all
or part of the solutions may be found through the study of aliases by the alias method.
The default model is that which was previously introduced for searching the design, but
it is possible to specify another one.

The study of aliases differentiates the treatment factors from the block factors. It
is thus important, in order to have outputs adapted to the problem posed, to indicate
beforehand which are the block factors. This is done by using the argument block of the
planor.factors, planor.designkey or regular.design functions.

Examples of outputs in the study of aliases abound in this manual. We will refer in
particular to § 2.2.2, 2.3.2. The example of § 3.3.2 illustrates how knowledge of aliases is
used to choose a good solution.

89



References

[1 ] Agrawal V., Dey A. (1983). Orthogonal Resolution-IV Designs for Some Asym-
metrical Factorials. Technometrics, 25, n◦ 2, 197-199.

[2 ] Ankenman B.E. (1999). Design of experiments with Two- and Four-level factors.
J. Quality Technology, 31, n0 4, 363-375.

[3 ] Bailey R.A. (1981). A Unified Approach to Design of Experiments. J. Roy. Statist.
Soc. A, 144, Part 2, 214-223.

[4 ] Bailey R.A., Praeger C.E., Rowley C.A., Speed T.P. (1983). Generalized wreath
products of permutation groups. Proc. London Math. Soc., (3), 47, 69-82.

[5 ] Bailey R.A. (1985). Factorial Design and Abelian groups. Linear Algebra Appl.,70,
349-368.

[6 ] Brouillaud-Delattre A., Kobilinsky A., Cerf O. (1994). Méthode de mesure de
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