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Abstract

In this vignette, we give a brief description about the portmanteau test statistics
given in the portes package. Some applications, including two examples from Mahdi and
McLeod (2011) are given in this vignette as well.
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1. Box and Pierce portmanteau test

In the univariate time series, Box and Pierce (1970) introduced the portmanteau statistic

Qm = n

m∑
`=1

r̂2` (1)

where r̂` =
∑n

t=`+1 âtât−`/
∑n

t=1 â
2
t , and â1, . . . , ân are the residuals. This test statistic is

implemented in the R function BoxPierce() and can be used in the multivariate case as well.
It has a chi-square distribution with k2(m − (p + q)) degrees of freedom where k represents
the dimension of the time series. The usage of this function is extremely simple:

BoxPierce(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where obj is a univariate or multivariate series with class "numeric", "matrix", "ts", or
("mts" "ts"). It can be also an object of fitted time-series model with class "ar", "arima0",
"Arima", "varest", "FitAR", or "FitFGN". lags is a vector of numeric integers represents
the lag values, m, at which we need to check the adequacy of the fitted model. The argument
order is used for degrees of freedom of asymptotic chi-square distribution. If obj is a fitted
time-series model with class "ar", "arima0", "Arima", "varest", "FitAR", or "FitFGN" then
no need to enter the value of order as it will be automatically determined. In general order =

p + q, where p and q are the orders of the autoregressive (or vector autoregressive) and moving
average (or vector moving average) models respectively. order = 0 is used for testing random
series, fractional gaussian noise, or generalized autoregressive conditional heteroscedasticity.
Finally, when SquaredQ = TRUE, then apply the test on the squared values. This checks for
Autoregressive Conditional Heteroscedastic, ARCH, effects. When SquaredQ = FALSE, then
apply the test on the usual residuals.

Note that the function portest() with the arguments test = "BoxPierce", MonteCarlo =

FALSE, and order = 0 will gives the same results of the function BoxPierce(). The Monte-
Carlo version of this test statistic is implemented in the function portest() as an argument
test = "BoxPierce" provided that MonteCarlo = TRUE is selected.
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portest(obj, lags = seq(5, 30, 5), order = 0, test = "BoxPierce", MonteCarlo = TRUE,

nslaves = 1, NREP = 1000, InfiniteVarianceQ = FALSE, SquaredQ = FALSE)

1.1. Example 1

First a simple univariate example is provided. We fit an ar (2) model to the logarithms of
Canadian lynx trappings from 1821 to 1934. Data is available from the R package datasets
under the name lynx. This model was selected using the bic criterion. The asymptotic
distribution and the Monte-Carlo version of Qm statistic are given in the following R code for
lags m = 5, 10, 15, 20, 25, 30 with snow package using PC with two CPU’s.

R> library("portes")

R> library("snow")

R> nslaves <- 2

R> lynxData <- log(lynx)

R> p <- SelectModel(lynxData, ARModel = "AR", Criterion = "BIC",

+ Best = 1)

R> Fitlynx <- FitAR(lynxData, p, ARModel = "AR")

R> BoxPierce(Fitlynx)

Lags Statistic df p-value

5 6.748225 3 0.08037069

10 15.856081 8 0.04448698

15 22.631444 13 0.04631764

20 30.304179 18 0.03459211

25 34.157210 23 0.06291892

30 37.963103 28 0.09909886

R> portest(Fitlynx, test = "BoxPierce", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 6.748225 3 0.08491508

10 15.856081 8 0.03296703

15 22.631444 13 0.02597403

20 30.304179 18 0.02197802

25 34.157210 23 0.03296703

30 37.963103 28 0.04395604

For lags m ≥ 10, the Monte-Carlo version of Box and Pierce test is more decisively suggests
model inadequacy, whereas the asymptotic chi-square suggests inadequacy at lags 10 to 20
and adequacy otherwise. Fitting a subset autoregressive using the bic (McLeod and Zhang
2008), the portmanteau test based on both methods, Monte-Carlo and asymptotic distribution
suggest model adequacy.

R> SelectModel(log(lynx), lag.max = 15, ARModel = "ARp", Criterion = "BIC",

+ Best = 1)
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[1] 1 2 4 10 11

R> FitsubsetAR <- FitARp(log(lynx), c(1, 2, 4, 10, 11))

R> BoxPierce(FitsubsetAR)

Lags Statistic df p-value

5 2.382300 0 NA

10 4.258836 0 NA

15 6.532786 4 0.1627363

20 9.887818 9 0.3596432

25 13.258935 14 0.5062439

30 16.172499 19 0.6457394

R> portest(FitsubsetAR, test = "BoxPierce", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 2.382300 0 0.5224775

10 4.258836 0 0.7742258

15 6.532786 4 0.8311688

20 9.887818 9 0.7992008

25 13.258935 14 0.7852148

30 16.172499 19 0.7752248

1.2. Example 2

In this example we consider the monthly log stock returns of Intel corporation data from
January 1973 to December 2003. First we apply the Qm statistic directly on the returns
using the asymptotic distribution and the Monte-Carlo significance test. The results suggest
that returns data behaves like white noise series as no significant serial correlations found.

R> monthintel <- as.ts(monthintel)

R> BoxPierce(monthintel)

Lags Statistic df p-value

5 4.666889 5 0.45786938

10 14.364748 10 0.15699489

15 23.120348 15 0.08161787

20 24.000123 20 0.24238680

25 29.617977 25 0.23891229

30 31.943703 30 0.37015020

R> portest(monthintel, test = "BoxPierce", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value
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5 4.666889 5 0.4385614

10 14.364748 10 0.1518482

15 23.120348 15 0.0979021

20 24.000123 20 0.2157842

25 29.617977 25 0.2307692

30 31.943703 30 0.3166833

After that we apply the Qm statistic on the squared returns. The results suggest that the
monthly returns are not serially independent and the return series may suffers of arch effects.

R> BoxPierce(monthintel, SquaredQ = TRUE)

Lags Statistic df p-value

5 40.78073 5 1.039009e-07

10 49.57872 10 3.189915e-07

15 81.90133 15 3.131517e-11

20 86.50575 20 3.006796e-10

25 87.54737 25 7.161478e-09

30 88.55017 30 1.087505e-07

R> portest(monthintel, test = "BoxPierce", nslaves = nslaves, SquaredQ = TRUE)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 40.78073 5 0.000999001

10 49.57872 10 0.000999001

15 81.90133 15 0.000999001

20 86.50575 20 0.000999001

25 87.54737 25 0.000999001

30 88.55017 30 0.000999001

2. Ljung and Box portmanteau test

Ljung and Box (1978) modified Box and Pierce (1970) test statistic by

Q̂m = n(n+ 2)
m∑
`=1

(n− `)−1r̂2` . (2)

This test statistic is is also asymptotically chi-square with degrees of freedom k2(m− p− q)
and implemented in the R function LjungBox(),

LjungBox(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function are described as before.
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In R, the function Box.test() was built to compute the Box and Pierce (1970) and Ljung
and Box (1978) test statistics only in the univariate case where we can not use more than
one single lag value at a time. The functions BoxPierce() and LjungBox() are more general
than Box.test() and can be used in the univariate or multivariate time series at vector of
different lag values as well as they can be applied on an output object from a fitted model.

Note that the function portest() with the arguments test = "LjungBox", MonteCarlo =

FALSE, and order = 0 will gives the same results of the function LjungBox(). The Monte-
Carlo version of this test statistic is implemented in the function portest() as an argument
test = "LjungBox" provided that MonteCarlo = TRUE is selected.

portest(obj, lags = seq(5, 30, 5), order = 0, test = "LjungBox", MonteCarlo = TRUE,

nslaves = 1, NREP = 1000, InfiniteVarianceQ = FALSE, SquaredQ = FALSE)

2.1. Example 3

The built in R function auto.arima() in the package forecast is used to fit the best arimamodel
based on the aic criterion to the measurements of the annual flow of the river Nile at Aswan
from the years 1871 to 1970,

R> library("forecast")

R> FitNile <- auto.arima(Nile)

Then the LjungBox portmanteau test is applied on the residuals of the fitted model at lag
values 5, 10, 15, 20, 25, and 30 which yields that the assumption of the adequacy in the fitted
model is fail to reject.

R> LjungBox(FitNile)

Lags Statistic df p-value

5 1.257698 3 0.7392018

10 9.705584 8 0.2863011

15 11.415751 13 0.5760319

20 12.861450 18 0.7997373

25 14.437766 23 0.9136466

30 17.395015 28 0.9403734

R> portest(FitNile, test = "LjungBox", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 1.257698 3 0.8521479

10 9.705584 8 0.3256743

15 11.415751 13 0.6023976

20 12.861450 18 0.8211788

25 14.437766 23 0.9200799

30 17.395015 28 0.9370629
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3. Hosking portmanteau test

Hosking (1980) generalized the univariate portmanteau test statistics given in eqns. (1, 2) to
the multivariate case. He suggested the modified multivariate portmanteau test statistic

Q̃m = n2
m∑
`=1

(n− `)−1r̂′`(R̂−10 ⊗ R̂−10 )r̂` (3)

where r̂` = vecR̂′` is a 1×k2 row vector with rows of R̂` stacked one next to the other, and m
is the lag order. The ⊗ denotes the Kronecker product (http://en.wikipedia.org/wiki/
Kronecker_product), R̂` = L′Γ̂`L, LL′ = Γ̂−10 where Γ̂` = n−1

∑n
t=`+1 âtâ

′
t−` is the lag `

residual autocovariance matrix.

The asymptotic distributions of Q̃m is chi-squared with k2(m− p− q) degrees of freedom. In
portest package, this statistic is implemented in the function Hosking():

Hosking(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function is described as before. Note that the function portest()

with the arguments test = "Hosking", MonteCarlo = FALSE, and order = 0 will gives the
same results of the function Hosking(). The Monte-Carlo version of this test statistic is
implemented in the function portest() as an argument test = "Hosking" provided that
MonteCarlo = TRUE is selected.

portest(obj, lags = seq(5, 30, 5), order = 0, test = "Hosking", MonteCarlo = TRUE,

nslaves = 1, NREP = 1000, InfiniteVarianceQ = FALSE, SquaredQ = FALSE)

3.1. Example 4

In this example, we consider fitting a var (k), k = 1, 2, 3 model to the monthly log returns of
the IBM stock and the S&P 500 index from January 1926 to December 1999 with 888 observa-
tions (Tsay 2005, p. 356). The p-values for the modified portmanteau test of Hosking (1980),
Q̃m, are computed using the Monte-Carlo test procedure with 103 replications. For additional
comparisons, the p-values for Q̃m are also evaluated using asymptotic approximations.

R> IBMSP500 <- monthibmspln

R> FitIBMSP5001 <- ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 1)

R> Hosking(FitIBMSP5001)

Lags Statistic df p-value

5 38.33044 16 0.0013574550

10 61.42150 36 0.0051949240

15 72.97170 56 0.0633819777

20 118.87159 76 0.0012179623

25 152.37966 96 0.0002208340

30 171.72563 116 0.0006001655

http://en.wikipedia.org/wiki/Kronecker_product
http://en.wikipedia.org/wiki/Kronecker_product
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R> portest(FitIBMSP5001, test = "Hosking", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 38.33044 16 0.002997003

10 61.42150 36 0.003996004

15 72.97170 56 0.072927073

20 118.87159 76 0.003996004

25 152.37966 96 0.000999001

30 171.72563 116 0.002997003

R> FitIBMSP5002 <- ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 2)

R> Hosking(FitIBMSP5002)

Lags Statistic df p-value

5 28.12271 12 0.005307838

10 50.23144 32 0.021174563

15 61.53279 52 0.171676954

20 104.28887 72 0.007697842

25 138.24856 92 0.001303988

30 156.56512 112 0.003487092

R> portest(FitIBMSP5002, test = "Hosking", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 28.12271 12 0.003996004

10 50.23144 32 0.020979021

15 61.53279 52 0.145854146

20 104.28887 72 0.013986014

25 138.24856 92 0.001998002

30 156.56512 112 0.005994006

R> FitIBMSP5003 <- ar.ols(IBMSP500, aic = TRUE, intercept = F, order.max = 3)

R> Hosking(FitIBMSP5003)

Lags Statistic df p-value

5 18.08797 8 0.020576519

10 40.78971 28 0.056135837

15 52.21967 48 0.313383239

20 93.82650 68 0.020716599

25 124.25318 88 0.006631765

30 142.81916 108 0.013972657

R> portest(FitIBMSP5003, test = "Hosking", nslaves = nslaves)
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2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 18.08797 8 0.029970030

10 40.78971 28 0.053946054

15 52.21967 48 0.307692308

20 93.82650 68 0.023976024

25 124.25318 88 0.004995005

30 142.81916 108 0.018981019

All results reject the fitted var (1), var (2) and var (3) models.

3.2. Example 5

The trivariate quarterly time series, 1960–1982, of West German investment, income, and
consumption was discussed by Lütkepohl (2005, §3.23). So n = 92 and k = 3 for this series.
As in Lütkepohl (2005, §4.24) we model the logarithms of the first differences. Using the
aic and fpe , Lütkepohl (2005, Table 4.25) selected a var (2) for this data. All diagnostic
tests reject simple randomness, var (0). The asymptotic distribution and the Monte-Carlo
tests for var (1) suggests model inadequacy supports the choice of the var (2) model.

R> data("WestGerman")

R> DiffData <- matrix(numeric(3 * 91), ncol = 3)

R> for (i in 1:3) DiffData[, i] <- diff(log(WestGerman[, i]), lag = 1)

R> FitWestGerman <- ar.ols(DiffData, aic = FALSE, order.max = 2,

+ intercept = FALSE)

R> Hosking(FitWestGerman)

Lags Statistic df p-value

5 30.36128 27 0.2981674

10 71.94191 72 0.4797610

15 122.49894 117 0.3455266

20 171.96132 162 0.2811881

25 209.45688 207 0.4391932

30 254.48482 252 0.4443308

R> portest(FitWestGerman, test = "Hosking", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 30.36128 27 0.3796204

10 71.94191 72 0.5064935

15 122.49894 117 0.3546454

20 171.96132 162 0.2667333

25 209.45688 207 0.4265734

30 254.48482 252 0.4235764
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4. Li and McLeod portmanteau test

Li and McLeod (1981) suggested the multivariate modified portmanteau test statistic

Q̃(L)
m = n

m∑
`=1

r̂′`(R̂
−1
0 ⊗ R̂−10 )r̂` +

k2m(m+ 1)

2n
(4)

which is distributed as chi-squared with k2(m− p− q) degrees of freedom. In portes package,

the test statistic Q̃
(L)
m is implemented in the function LiMcLeod(),

LiMcLeod(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function is described as before.

Note that the function portest() with the arguments test = "LiMcLeod", MonteCarlo =

FALSE, and order = 0 will gives the same results of the function LiMcLeod(). The Monte-
Carlo version of this test statistic is implemented in the function portest() as an argument
test = "LiMcLeod" provided that MonteCarlo = TRUE is selected.

portest(obj, lags = seq(5, 30, 5), order = 0, test = "LiMcLeod", MonteCarlo = TRUE,

nslaves = 1, NREP = 1000, InfiniteVarianceQ = FALSE, SquaredQ = FALSE)

5. Generalized variance portmanteau test

Peňa and Rodriguez (2002) proposed a univariate portmanteau test of goodness-of-fit test
based on the m-th root of the determinant of the m-th Toeplitz residual autocorrelation
matrix

R̂m =


r̂0 r̂1 . . . r̂m
r̂−1 r̂0 . . . r̂m−1

... . . .
. . .

...
r̂−m r̂−m+1 . . . r̂0

 (5)

where r̂0 = 1 and r̂−` = r̂`, for all `. They approximated the distribution of their proposed
test statistic by the gamma distribution and provided simulation experiments to demonstrate
the improvement of their statistic in comparison with the one that is given in Eq. (2).

Peňa and Rodriguez (2006) suggested to modify this test by taking the log of the (m + 1)-
th root of the determinant in Eq. (5). They proposed two approximations by using the
Gamma and Normal distributions to the asymptotic distribution of this test and indicated
that the performance of both approximations for checking the goodness-of-fit in linear models
is similar and more powerful for small sample size than the previous one. Lin and McLeod
(2006) introduced the Monte-Carlo version of this test as they noted that it is quite often
that the generalized variance portmanteau test does not agree with the suggested Gamma
approximation. Mahdi and McLeod (2011) generalized both methods to the multivariate time
series,

Dm =
−3n

2m+ 1
log | R̂m |, (6)
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where

R̂m =


Ik R̂1 . . . R̂m

R̂−1 Ik . . . R̂m−1
... . . .

. . .
...

R̂−m R̂−m+1 . . . Ik

 . (7)

The null distribution is approximately χ2 with k2(1.5m(m+ 1)(2m+ 1)−1 − p− q) degrees
of freedom and it is implemented in the R function gvtest(),

gvtest(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function are described as before.

Note that the function portest() with the arguments test = "gvtest", MonteCarlo =

FALSE, and order = 0 will gives the same results of the function gvtest(). The Monte-
Carlo version of this test statistic is implemented in the function portest() as an argument
test = "gvtest" provided that MonteCarlo = TRUE is selected.

portest(obj, lags = seq(5, 30, 5), order = 0, test = "gvtest", MonteCarlo = TRUE,

nslaves = 1, NREP = 1000, InfiniteVarianceQ = FALSE, SquaredQ = FALSE)

5.1. Example 6

Consider again the log numbers of Canadian lynx trappings univariate series from 1821
to 1934, where the ar (2) model is selected based on the bic criterion using the function
SelectModel in the R package FitAR as a first step in the analysis. Now, we apply the
statistic Dm on the fitted model based on the asymptotic distribution and the Monte-Carlo
significance test,

R> gvtest(Fitlynx)

Lags Statistic df p-value

5 5.984989 2.090909 0.054687987

10 10.036630 5.857143 0.115222212

15 21.447021 9.612903 0.014964682

20 31.810564 13.365854 0.003100578

25 38.761595 17.117647 0.002040281

30 43.936953 20.868852 0.002252062

R> portest(Fitlynx, test = "gvtest", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 5.984989 2.090909 0.063936064

10 10.036630 5.857143 0.080919081

15 21.447021 9.612903 0.006993007

20 31.810564 13.365854 0.002997003

25 38.761595 17.117647 0.000999001

30 43.936953 20.868852 0.000999001
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After that, we fit the subset autoregressive ar (1,2,4,10,11) using the bic and then we apply Dm

as before,

R> gvtest(FitsubsetAR)

Lags Statistic df p-value

5 2.374225 0.0000000 NA

10 3.598248 0.0000000 NA

15 5.661285 0.6129032 0.008190694

20 8.590962 4.3658537 0.090004731

25 11.462473 8.1176471 0.184353957

30 13.900470 11.8688525 0.297764350

R> portest(FitsubsetAR, test = "gvtest", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 2.374225 0.0000000 0.3476523

10 3.598248 0.0000000 0.6703297

15 5.661285 0.6129032 0.7152847

20 8.590962 4.3658537 0.6953047

25 11.462473 8.1176471 0.6663337

30 13.900470 11.8688525 0.6793207

However the approximation asymptotic distribution of the statistic Dm suggests that the
subset armodel is an adequate model for lags m ≥ 20, the Monte-Carlo portmanteau test is
clearly suggest that the subset armodel is an adequate model.

5.2. Example 7

consider again fitting a var (k), k = 1, 2, 3 model to the monthly log returns of the IBM stock
and the S&P 500 index from January 1926 to December 1999 with 888 observations (Tsay
2005, p. 356).

R> gvtest(FitIBMSP5001)

Lags Statistic df p-value

5 26.73298 12.36364 0.010069145

10 50.16580 27.42857 0.005076554

15 66.95921 42.45161 0.009606334

20 87.59443 57.46341 0.006384252

25 108.82328 72.47059 0.003699716

30 128.30068 87.47541 0.002940363

R> portest(FitIBMSP5001, test = "gvtest", nslaves = nslaves)
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2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 26.73298 12.36364 0.002997003

10 50.16580 27.42857 0.003996004

15 66.95921 42.45161 0.006993007

20 87.59443 57.46341 0.004995005

25 108.82328 72.47059 0.005994006

30 128.30068 87.47541 0.003996004

R> gvtest(FitIBMSP5002)

Lags Statistic df p-value

5 16.24518 8.363636 0.04647938

10 38.00564 23.428571 0.02910435

15 54.26122 38.451613 0.04688480

20 74.35787 53.463415 0.03091912

25 95.55057 68.470588 0.01701104

30 114.96754 83.475410 0.01272103

R> portest(FitIBMSP5002, test = "gvtest", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 16.24518 8.363636 0.006993007

10 38.00564 23.428571 0.007992008

15 54.26122 38.451613 0.016983017

20 74.35787 53.463415 0.017982018

25 95.55057 68.470588 0.008991009

30 114.96754 83.475410 0.008991009

R> gvtest(FitIBMSP5003)

Lags Statistic df p-value

5 6.914649 4.363636 0.16977954

10 24.655501 19.428571 0.18989321

15 39.324113 34.451613 0.26078729

20 58.297021 49.463415 0.18238250

25 79.102500 64.470588 0.10384117

30 98.361967 79.475410 0.07416598

R> portest(FitIBMSP5003, test = "gvtest", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 6.914649 4.363636 0.05394605

10 24.655501 19.428571 0.06493506
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15 39.324113 34.451613 0.11488511

20 58.297021 49.463415 0.08891109

25 79.102500 64.470588 0.06093906

30 98.361967 79.475410 0.04995005

While the fitted var (1) and var (2) models are rejected, the Dm diagnostic suggests that the
fitted var (3) maybe consider to be an adequate model.

5.3. Example 8

In this example, we consider the quarterly time series, 1960–1982, of West German investment,
income, and consumption studied before.

We apply the statistic Dm on the fitted var (2) model based on the asymptotic distribution
and the Monte-Carlo significance test,

R> gvtest(FitWestGerman)

Lags Statistic df p-value

5 20.90960 18.81818 0.3310522834

10 52.17337 52.71429 0.4951413528

15 91.80348 86.51613 0.3283404972

20 135.40962 120.29268 0.1637652676

25 195.17389 154.05882 0.0139543395

30 257.76048 187.81967 0.0005343724

R> portest(FitWestGerman, test = "gvtest", nslaves = nslaves)

2 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 20.90960 18.81818 0.3116883

10 52.17337 52.71429 0.5424575

15 91.80348 86.51613 0.5624376

20 135.40962 120.29268 0.5954046

25 195.17389 154.05882 0.4005994

30 257.76048 187.81967 0.3486513

Using the asymptotic distribution, results suggest that the var (2) model is adequate at lags
m < 25 and inadequate at lags m ≥ 25, whereas Monte-Carlo test supports the choice of the
var (2) model.
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