
An overview of psd: Adaptive sine multitaper power spectral
density estimation in R

Andrew J. Barbour and Robert L. Parker

March 18, 2015

Abstract

This vignette provides an overview of some features included in the package psd, designed to compute estimates
of power spectral density (PSD) for a univariate series in a sophisticated manner, with very little tuning effort. The sine
multitapers are used, and the number of tapers varies with spectral shape, according to the optimal value proposed by
Riedel and Sidorenko (1995). The adaptive procedure iteratively refines the optimal number of tapers at each frequency
based on the spectrum from the previous iteration. Assuming the adaptive procedure converges, this produces power
spectra with significantly lower spectral variance relative to results from less-sophisticated estimators. Sine tapers
exhibit excellent leakage suppression characteristics, so bias effects are also reduced. Resolution and uncertainty
vary with the number of tapers, which means we do not need to resort to either (1) windowing methods, which
inherently degrade resolution at low-frequency (e.g. Welch’s method); or (2) smoothing kernels, which can badly
distort important features without careful tuning (e.g. the Daniell kernel in stats::spectrum). In this regards psd
is best suited for data having large dynamic range and some mix of narrow and wide-band structure, features typically
found in geophysical datasets.

Contents
1 Quick start: A minimal example. 2

2 Comparisons with other methods 5
2.1 stats::spectrum . 5
2.2 RSEIS::mtapspec . 7
2.3 multitaper::spec.mtm . 16
2.4 sapa::SDF . 16
2.5 bspec::bspec . 16

3 Can AR prewhitening improve the spectrum? 18

4 Assessing spectral properties 20
4.1 Spectral uncertainties . 20
4.2 Spectral resolution . 23
4.3 Visualizing the adaptive history . 24

5 Call overview 27

1

http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/

1 Quick start: A minimal example.
First, we load the package into the namespace:

library(psd)

Loaded psd (1.0.0) � Adaptive multitaper spectrum estimation

For a series to analyze, we can use magnet, included in psd, which represents along-track measurements of hor-
izontal magnetic-field strength from a gimbaled, airborne magnetometer. These data are a small subset of the full
Project MAGNET series (Coleman, 1992), which has provided insight into the history of the Earth’s oceanic crust
(Parker and O’Brien, 1997; O’Brien et al., 1999; Korte et al., 2002). The sampling interval is once every kilometer
(km), so the data will represent crustal magnetization with wavelengths longer than 2 km.

data(magnet)

The format of the data set is a data.frame with four sets of information:

names(magnet)

[1] "km" "raw" "clean" "mdiff"

The raw and clean names represent raw and edited intensities respectively, expressed in units of nanotesla; mdiff
is the difference between them. The difference between them is a matter of just a few points attributable to instrumental
malfunction; but, as we will see, the outliers adversely affect the accuracy of any type PSD estimate, regardless of the
level of sophistication of the method.

subset(magnet, abs(mdiff) > 0)

km raw clean mdiff
403 402 209.1 -3.6355 -212.7355
717 716 -248.7 -9.7775 238.9225

These are readily apparent in the timeseries:

0 500 1000 1500 2000

−200

−100

0

100

200

Along−track distance, km

M
ag

ne
tic

 a
no

m
al

y

Raw

Clean (+75)

2

http://www.github.com/abarbour/psd/

We can find power spectral density (PSD) estimates for the two series quite simply with pspectrum:

psdr <- pspectrum(magnet$raw)

Stage 0 est. (pilot)
environment ** .psdEnv ** refreshed
detrending (and demeaning)
Stage 1 est. (Ave. S.V.R. -13.0 dB)
Stage 2 est. (Ave. S.V.R. -27.2 dB)
Stage 3 est. (Ave. S.V.R. -44.4 dB)
Stage 4 est. (Ave. S.V.R. -47.4 dB)
Stage 5 est. (Ave. S.V.R. -47.1 dB)
Normalized single-sided psd estimates (psd) for sampling-freq. 1

psdc <- pspectrum(magnet$clean)

Stage 0 est. (pilot)
environment ** .psdEnv ** refreshed
detrending (and demeaning)
Stage 1 est. (Ave. S.V.R. -13.1 dB)
Stage 2 est. (Ave. S.V.R. -27.8 dB)
Stage 3 est. (Ave. S.V.R. -44.9 dB)
Stage 4 est. (Ave. S.V.R. -48.9 dB)
Stage 5 est. (Ave. S.V.R. -48.0 dB)
Normalized single-sided psd estimates (psd) for sampling-freq. 1

Each application of pspectrum calculates a pilot PSD, followed by niter iterations of refinement. With each
iteration the number of tapers is adjusted based on the proposed optimal number from Riedel and Sidorenko (1995),
which depends on spectral shape; we use quadratically weighted spectral derivatives (Prieto et al., 2007) to estimate
this shape. Note that if the user forgets to assign the results of pspectrum to the global environment, the result can be
recovered with the psd_envGet function:

psdc_recovered <- psd_envGet("final_psd")
all.equal(psdc, psdc_recovered)

[1] TRUE

In general, spectral variance is reduced with sequential refinements1, but is not necessarily guaranteed to reduce
monotonically.

Figure 1 compares power spectra for the raw and clean series produced by stats::spectrum and pspectrum2

using default settings. We expect the Project MAGNET data to be linear in the space of linear-frequencies and
logarithmic-power; in fact there is a clear improvement in spectral shape between the two series, simply because
the large outliers have been removed. The PSD of the clean series shows the type of spectrum typical of geophysical
processes (Agnew, 1992), and a rolloff in signal for 10 kilometer wavelengths and longer; whereas, the PSD for the raw
series looks somewhat unrealistic at shorter wavelengths – features which could be difficult to judge with high spectral
variance.

1 Messages are given by default; ones which read “Ave. S.V.R." are in reference to average spectral-variance reduction, which we define here as
the variance of the double-differenced spectra at each stage, relative to the spectral variance in the pilot estimate.

2 Note that pspectrum returns an object with class spec (and amt), so we have access to methods within stats, including plot.spec.

3

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

25

30

frequency

sp
ec

tr
um

 (
dB

)

Raw and cleaned Project MAGNET power spectral density estimates

bandwidth = 0.000141, 95% C.I. is (−6.26,16.36)dB

Clean

Raw

Figure 1: Power spectral density estimates for the raw and cleaned Project MAGNET
data bundled with psd: see ?magnet. Points are estimates produced by spectrum and
dashed lines are estimates produced by pspectrum, using the default settings. Note
that because the objects class includes ‘spec’, we have utilized existing methods in
the stats namespace. The bandwidth and confidence interval estimates are for the
spectrum-based result.

4

http://www.github.com/abarbour/psd/

2 Comparisons with other methods
As we have shown in the Project MAGNET example, a more accurate estimate of the power spectrum can help improve
understanding of the physics behind the signals in the data. But, assuming a sample is free of non-physical points,
how do PSD estimates from psd compare with other methods? Unfortunately the suite of extensions with similar
functionality is relatively limited, but hopefully we have summarized most, if not all, the available functions in Table
1.

Table 1: A comparison of power spectral density estimators in R, excluding extensions
which only estimate raw-periodograms. Normalizations are shown as either “single" or
“double" for either single- or double-sided spectra, and “various" if there are multiple,
optional normalizations. A (∗) denotes the default for a function having an option for
either single or double.

Function Namespace Sine m.t.? Adaptive? Norm. Reference
bspec bspec No No single∗ Röver et al. (2011)

mtapspec RSEIS Yes No various Lees and Park (1995)
pspectrum psd Yes Yes single Barbour and Parker (2014, 2015)
spectrum stats No No double R Core Team (2014)
spec.mtm multitaper Yes Yes double Rahim et al. (2014)

SDF sapa Yes No single∗ Percival and Walden (1993)

We compare results from psd with those from a few of the methods in Table 1, using the same data: the cleaned
Project MAGNET series.

2.1 stats::spectrum

Included in the core distribution of R is stats::spectrum, which accesses stats::spec.ar or stats::spec.pgram
(which was used for the estimates in Figure 1) for either parametric and non-parametric estimation, respectively. The
user can optionally apply a single cosine taper, and/or a smoothing kernel. Our method is non-parametric; hence, we
will compare to the latter.

Included in psdcore is an option to compare the results with cosine-tapered periodogram, found with a command
equivalent to this:

spec.pgram(X, pad = 1, taper = 0.2, detrend = FALSE, demean = FALSE, plot = FALSE)

Within psdcore the comparison is made with the logical argument preproc passed to spec.pgram, which is True
by default.

As a matter of bookkeeping and good practice, we should consider the working environment accessed by psd
functions. To ensure psdcore does not access any inappropriate information leftover from the previous calculations,
we can set refresh=TRUE; we then re-calculate the multitaper PSD and the raw periodogram with plot=TRUE; these
results are shown in Figure 2.

5

http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/

ntap <- psdc[["taper"]] # get the previous vector of tapers
psdcore(magnet$clean, ntaper = ntap, refresh = TRUE, plot = TRUE)

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
−20

−10

0

10

20

30

40

dB
 r

el
.

un
its

2
×

δt

spec.pgram (20% cosine taper)
psdcore (165 − 262 tapers)

log10 frequency

Spectral density estimates

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

50

100

150

200

250

taper index

nu
m

be
r

of
 ta

pe
rs

Sine−tapers

un
its

500 1000 1500 2000

−30

−20

−10

0

10

20

30

Modified even−length series
(dem. TRUE detr. TRUE)

time
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

lag, time

Auto−correlation function

Sine−multitaper PSD vs. Tapered Periodogram

Figure 2: A summary plot produced by psdcore when plot=TRUE. Top: Comparison
between PSD estimators for the cleaned Project MAGNET data. The frequency axis
is in units of log10 km−1, and power axis is in decibels. Middle: The number of tapers
applied as a function of frequency from the plot.tapersmethod. Bottom: The spatial
series used to estimate the PSDs and a subset of the full autocorrelation function.

6

2.2 RSEIS::mtapspec

In RSEIS the spectrum estimation tool is mtapspec, which calls the program of Lees and Park (1995). There are
numerous optional tuning parameters, including flags for normalization and taper averaging, but for our purpose the
correct normalization for mtapspec is found by using MTP=list(kind=2, inorm=3) and scaling the results by 2 (to
convert double-sided spectra to single-sided spectra).

We assume mtapspec doesn’t remove a mean and trend from the input series. We can do this easily with the
prewhiten methods:

library(RSEIS)
dt = 1 # km
prewhiten the data after adding a linear trend + offset
summary(prewhiten(mc <- ts(magnet$clean + 1000, deltat = dt) + seq_along(magnet$clean),

plot = FALSE))

detrending (and demeaning)

Length Class Mode
lmdfit 12 lm list
ardfit 0 -none- NULL
prew_lm 2048 ts numeric
prew_ar 0 -none- NULL
imputed 1 -none- logical

Although the default operation of prewhiten is to fit a linear model of the form f (x) = αx + β + ε using ordinary
linear least squares, setting AR.max higher than zero to fit an auto-regressive (AR) model to the data3. This fit uses the
Akaike Infomation Criterion (AIC) to select the highest order appropriate for the data.

summary(atsar <- prewhiten(mc, AR.max = 100, plot = FALSE))

detrending (and demeaning)
autoregressive model fit (returning innovations)

Length Class Mode
lmdfit 12 lm list
ardfit 14 ar list
prew_lm 2048 ts numeric
prew_ar 2048 ts numeric
imputed 1 -none- logical

linear model:
str(atsar[["lmdfit"]])

List of 12
$ coefficients : Named num [1:2] 1000 1
..- attr(*, "names")= chr [1:2] "(Intercept)" "xr"
$ residuals : Named num [1:2048] -16.23 -14.56 -12.02 -7.21 -3.13 ...
..- attr(*, "names")= chr [1:2048] "1" "2" "3" "4" ...
$ effects : Named num [1:2048] -91608.19 26761.6 -11.16 -6.35 -2.27 ...
..- attr(*, "names")= chr [1:2048] "(Intercept)" "xr" "" "" ...

3Note that the linear trend fitting is removed from the series prior to AR estimation, and the residuals from this fit are also returned.

7

$ rank : int 2
$ fitted.values: Named num [1:2048] 1001 1002 1003 1004 1005 ...
..- attr(*, "names")= chr [1:2048] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:2048, 1:2] -45.2548 0.0221 0.0221 0.0221 0.0221 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:2048] "1" "2" "3" "4" ...
..$: chr [1:2] "(Intercept)" "xr"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.02 1.04
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
$ df.residual : int 2046
$ xlevels : Named list()
$ call : language lm(formula = y ~ xr, data = fit.df)
$ terms :Classes 'terms', 'formula' length 3 y ~ xr
.. ..- attr(*, "variables")= language list(y, xr)
.. ..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "y" "xr"
..$: chr "xr"
.. ..- attr(*, "term.labels")= chr "xr"
.. ..- attr(*, "order")= int 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: 0x7fc1bbbff440>
.. ..- attr(*, "predvars")= language list(y, xr)
.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "y" "xr"
$ model :'data.frame': 2048 obs. of 2 variables:
..$ y : num [1:2048] 984 987 990 996 1001 ...
..$ xr: int [1:2048] 1 2 3 4 5 6 7 8 9 10 ...
..- attr(*, "terms")=Classes 'terms', 'formula' length 3 y ~ xr
..- attr(*, "variables")= language list(y, xr)
..- attr(*, "factors")= int [1:2, 1] 0 1
..- attr(*, "dimnames")=List of 2
..$: chr [1:2] "y" "xr"
..$: chr "xr"
..- attr(*, "term.labels")= chr "xr"
..- attr(*, "order")= int 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: 0x7fc1bbbff440>
..- attr(*, "predvars")= language list(y, xr)
..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
..- attr(*, "names")= chr [1:2] "y" "xr"
- attr(*, "class")= chr "lm"

8

ats_lm <- atsar[["prew_lm"]]
AR model:
str(atsar[["ardfit"]])

List of 14
$ order : int 6
$ ar : num [1:6] 1.513 -1.104 0.672 -0.388 0.211 ...
$ var.pred : num 19.5
$ x.mean : num 1.4e-16
$ aic : Named num [1:101] 3598.8 872.8 258.2 81 26.3 ...
..- attr(*, "names")= chr [1:101] "0" "1" "2" "3" ...
$ n.used : int 2048
$ order.max : num 100
$ partialacf : num [1:100, 1, 1] 0.8579 -0.5099 0.2894 -0.1653 0.0925 ...
$ resid : Time-Series [1:2048] from 1 to 2048: NA NA NA NA NA ...
$ method : chr "Yule-Walker"
$ series : chr "tser_prew_lm"
$ frequency : num 1
$ call : language ar.yw.default(x = tser_prew_lm, aic = TRUE, order.max = AR.max, demean = TRUE)
$ asy.var.coef: num [1:6, 1:6] 0.000487 -0.000733 0.000526 -0.000304 0.000148 ...
- attr(*, "class")= chr "ar"

ats_ar <- atsar[["prew_ar"]]

9

plot(ts.union(orig.plus.trend = mc, linear = ats_lm, ar = ats_ar), yax.flip = TRUE,
main = sprintf("Prewhitened Project MAGNET series"), las = 0)

mtext(sprintf("linear and linear+AR(%s)", atsar[["ardfit"]][["order"]]),
line = 1.1)

1000

1500

2000

2500

3000

or
ig

.p
lu

s.
tr

en
d

−30

−20

−10

0

10

20

30

lin
ea

r

−15

−10

−5

0

5

10

15

0 500 1000 1500 2000

ar

Time

Prewhitened Project MAGNET series
linear and linear+AR(6)

Figure 3: Pre-whitening of the Project MAGNET series (with a synthetic linear model
superimposed on it) assuming linear and linear-with-AR models.

10

We didn’t necessarily need to deal with the sampling information since it is just 1 per km; but, supposing the
sampling information was based on an interval, we could have used a negative value for X.frq, with which psdcore
would interpret as an interval (instead of a frequency). A quick example highlights the equivalency:

a <- rnorm(32)
all.equal(psdcore(a, 1), psdcore(a, -1))

[1] TRUE

Returning the the RSEIS comparison, we first estimate the PSD from mtapspec with 10 tapers:

tapinit <- 10
Mspec <- mtapspec(ats_lm, deltat(ats_lm), MTP = list(kind = 2, inorm = 3,

nwin = tapinit, npi = 0))

where nwin is the number of tapers taken and npi is, from the documentation, the “number of Pi-prolate functions"
(we leave it out for the sake of comparison). Note that the object returned is not of class ‘spec’:

str(Mspec)

List of 12
$ dat : Time-Series [1:2048] from 1 to 2048: -16.23 -14.56 -12.02 -7.21 -3.13 ...
$ dt : num 1
$ spec : num [1:4096] 528 557 600 595 615 ...
$ dof : num [1:4096] 20 20 20 20 20 20 20 20 20 20 ...
$ Fv : num [1:4096] 4.45e-20 4.78e-02 5.36e-01 1.54 1.15 ...
$ Rspec : num [1:2049, 1:10] 1.86e-07 -9.32e+01 6.05e+02 1.16e+03 -2.97e+02 ...
$ Ispec : num [1:2049, 1:10] 0 -227 -569 665 1157 ...
$ freq : num [1:2049] 0 0.000244 0.000488 0.000732 0.000977 ...
$ df : num 0.000244
$ numfreqs: num 2049
$ klen : num 4096
$ mtm :List of 4
..$ kind : num 2
..$ nwin : num 10
..$ npi : num 0
..$ inorm: num 3

We will calculate the comparative spectra from

1. spectrum (20% cosine taper),

2. psdcore (with fixed tapers), and

3. pspectrum (allowing adaptive taper refinement)

and we will need to correct for normalization factors, as necessary, with normalize. Note that by default the normal-
ization is set within pspectrum (with normalize) once the adaptive procedure is finished.

Xspec <- spec.pgram(ats_lm, pad = 1, taper = 0.2, detrend = TRUE, demean = TRUE,
plot = FALSE)

Pspec <- psdcore(ats_lm, ntaper = tapinit)
Aspec <- pspectrum(ats_lm, ntap.init = tapinit)

11

Stage 0 est. (pilot)
environment ** .psdEnv ** refreshed
detrending (and demeaning)
Stage 1 est. (Ave. S.V.R. -12.6 dB)
Stage 2 est. (Ave. S.V.R. -28.3 dB)
Stage 3 est. (Ave. S.V.R. -40.2 dB)
Stage 4 est. (Ave. S.V.R. -41.1 dB)
Stage 5 est. (Ave. S.V.R. -42.4 dB)
Normalized single-sided psd estimates (psd) for sampling-freq. 1

Correct for double-sidedness of spectrum and mtapspec results
class(Mspec)

[1] "list"

Mspec <- normalize(Mspec, dt, "spectrum")

Normalized double-sided psd estimates (spectrum) for sampling-freq. 1

nt <- seq_len(Mspec[["numfreqs"]])
mspec <- Mspec[["spec"]][nt]
class(Xspec)

[1] "spec"

Xspec <- normalize(Xspec, dt, "spectrum")

Normalized double-sided psd estimates (spectrum) for sampling-freq. 1

These estimates are shown on the same scale in Figure 4.

12

library(RColorBrewer)
cols <- c("dark grey", brewer.pal(8, "Set1")[c(5:4, 2)])
lwds <- c(1, 2, 2, 5)
plot(Xspec, log = "dB", ylim = 40 * c(-0.4, 1), ci.col = NA, col = cols[1],

lwd = lwds[1], main = "PSD Comparisons")
pltf <- Mspec[["freq"]]
pltp <- dB(mspec)
lines(pltf, pltp, col = cols[2], lwd = lwds[2])
plot(Pspec, log = "dB", add = TRUE, col = cols[3], lwd = lwds[3])
plot(Aspec, log = "dB", add = TRUE, col = cols[4], lwd = lwds[4])
legend("topright", c("spec.pgram", "RSEIS::mtapspec", "psdcore", "pspectrum"),

title = "Estimator", col = cols, lwd = lwds, bg = "grey95", box.col = NA,
cex = 0.8, inset = c(0.02, 0.03))

0.0 0.1 0.2 0.3 0.4 0.5

−10

0

10

20

30

40

frequency

sp
ec

tr
um

 (
dB

)

PSD Comparisons

bandwidth = 7.05e−05, 95% C.I. is (−8.25,33.98)dB

Estimator

spec.pgram
RSEIS::mtapspec
psdcore
pspectrum

Figure 4: Comparisons of estimations of Project MAGNET power spectral densities.

13

Because we did not specify the length of the FFT in mtapspec we end up with different length spectra. So, to form
some statistical measure of the results, we can interpolate PSD levels onto the psd-based frequencies (or reciprocally):

library(signal, warn.conflicts = FALSE)
pltpi <- interp1(pltf, pltp, Pspec[["freq"]])

We regress the spectral values from mtapspec against the psdcore results because we have used them to produce
uniformly tapered spectra with an equal number of sine tapers.

df <- data.frame(x = dB(Pspec[["spec"]]), y = pltpi, tap = unclass(Aspec[["taper"]]))
summary(dflm <- lm(y ~ x + 0, df))

##
Call:
lm(formula = y ~ x + 0, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-2.2855 -0.3041 0.1996 0.9356 5.5479
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x 0.991899 0.002067 479.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.208 on 1023 degrees of freedom
Multiple R-squared: 0.9956,Adjusted R-squared: 0.9956
F-statistic: 2.302e+05 on 1 and 1023 DF, p-value: < 2.2e-16

df$res <- residuals(dflm)

We show the regression residuals in Figure 5. The structure visible at low power levels might be from curvature
bias in the mtapspec results, which manifests at short wavelengths in Figure 4.

14

http://www.github.com/abarbour/psd/

library(ggplot2)
gr <- ggplot(df, aes(x = x, y = res)) + geom_abline(intercept = 0, slope = 0,

size = 2, color = "salmon") + geom_point(aes(color = tap))
print(gr + theme_bw() + ggtitle("Regression residuals, colored by optimized tapers") +

xlab("Power levels, dB") + ylab(""))

−2

0

2

4

0 10 20 30
Power levels, dB

175

200

225

250

tap

Regression residuals, colored by optimized tapers

Figure 5: Linear regression residuals of mtapspec against psdcore for Project MAG-
NET PSD estimates.

15

2.3 multitaper::spec.mtm

The function with the highest similarity to psd is spec.mtm in the multitaper package: it uses the sine multitapers,
and can adaptively refine the spectrum. In fact, this function calls source code of a Fortran equivalent to psd authored
by R.L. Parker (2015) to do these operations.

There are some notable differences, though. By default spec.mtm uses the Discrete Prolate Spheroidal Sequences
(dpss) of Thomson (1982), which can have very good spectral leakage suppression (assuming the number of tapers used
is appropriate for the desired resolution, which varies inversely with the time-bandwidth product). Spectral analyses
using dpss can have superior results if the series is relatively short (e.g. N < 1000), or has inherent spectra with sharply
changing features or deep wells. Improper usage of the dpss, however, can lead to severe bias. Thus, considerable care
should be given to parameter choices, which translates practicably to having many more knobs to turn.

2.4 sapa::SDF

This package was previously orphaned but, as of this writing, the package has a new maintainer, so we may add a
comparison in future versions of this document.

2.5 bspec::bspec

An intriguing method for producing power spectral density estimates using Bayesian inference is presented by Röver
et al. (2011) and included in the bspec package. Simplistically, the method uses a Student’s t likelihood function to
estimate the distribution of spectral densities at a given frequency. We will use the spectra from the previous calculation
to compare with bspec results. For this comparison we use the default settings for the a priori distribution scale and
degrees of freedom. In Figure 6 we have used the plot.bspec method and overlain the results found previously by
psdcore.

library(bspec)

##
Attaching package: ’bspec’
##
The following object is masked from ’package:stats’:
##
acf
##
The following object is masked from ’package:base’:
##
sample

print(Bspec <- bspec(ts(magnet$clean)))

'bspec' posterior spectrum (one-sided).
frequency range : 0--0.5
number of parameters: 1025
finite expectations : none
finite variances : none
call: bspec.default(x = ts(magnet$clean))

16

http://www.github.com/abarbour/psd/
http://www.github.com/abarbour/psd/

par(las = 0)
Bspec_plt <- plot(Bspec)
with(Pspec, lines(freq, spec, col = "red", lwd = 2))

0.0 0.1 0.2 0.3 0.4 0.5

frequency f

1e
−

03
1e

−
01

1e
+

01
1e

+
03

1e
+

05

(o
ne

−
si

de
d)

 p
os

te
rio

r
sp

ec
tr

um
 S

(f)

(0
.1

)2
(1

0)
2

Figure 6: Project MAGNET PSD estimates from bspec, a Bayesian method, com-
pared to the psdcore results shown in Figure 4.

17

3 Can AR prewhitening improve the spectrum?
This question must be addressed on a case-by-base basis; but, if there is significant auto-regressive structure in the
series then the answer is likely Yes. The MAGNET dataset is an example where the structure of the series is nicely
represented by an AR model with a random noise component.

Recall the results of the prewhitening in Section 2.2. While AR.max was set relatively high, only an AR(6) model
was fit significantly, according to the AIC requirements. The estimated variance of the innovations is about 20 nT2. If
the innovation spectrum is flat (as we expect), this variance translates to power levels of about 16 decibels for a 1 km
sampling interval.

ntap <- 7
psd_ar <- psdcore(ats_ar, ntaper = ntap, refresh = TRUE)
dB(mean(psd_ar$spec))

[1] 15.82754

In Figure 7 we have used pilot_spec to model the spectral response of the AR component of the series (solid
black line). The non-AR component (labelled "AR-innovations") contributes approximately ±3 dB to the original
spectrum. Overlain on these series is the adaptive spectrum found previously.

18

pilot_spec(ats_lm, ntap = ntap, remove.AR = 100, plot = TRUE)
plot(Aspec, log = "dB", add = TRUE, col = "grey", lwd = 4)
plot(Aspec, log = "dB", add = TRUE, lwd = 3, lty = 3)
spec.ar(ats_lm, log = "dB", add = TRUE, lwd = 2, col = "grey40")

0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

frequency

sp
ec

tr
um

 (
dB

)

Pilot spectrum estimation

bandwidth = 0.00781, 95% C.I. is (−2.77, 3.87)dB

(with AR(6) response)

original PSD
AR−innovations PSD
(mean 15.8 +− 3.0 dB)
AR−filter response

Figure 7: AR response spectrum for the MAGNET dataset produced by pilot_spec.
Overlain on the figure is the adaptive estimation from Figure 4 (dotted line), and the
results from spec.ar in dark grey; the shift is due to a normalization difference.

19

4 Assessing spectral properties

4.1 Spectral uncertainties
It is important to place bounds on the uncertainties associated with a spectral estimate. In a multitaper algorithm the
uncertainty is distributed as a χ2

ν variate where ν is the number of degrees of freedom, which is twice the number of
tapers applied. A proxy for this is simply 1/

√
ν − 1. Using ν = 2 ∗ K we can approximate the distribution of uncer-

tainties from the tapers alone; however, a more rigorous estimate comes from evaluating the appropriate distribution
for a coverage probability (e.g. p = 0.95). Among other calculations, spectral_properties returns the χ2

ν based
confidence intervals for p = 0.95, as well as the approximate uncertainties.

To illustrate, we plot the uncertainties for an integer sequence4 of tapers [0, 50], shown in Figure 8. The benefits of
having more than just a few tapers becomes obvious, though the spectral uncertainty is asymptotically decreasing with
taper numbers and yields only slight improvements with logarithmic number of tapers.

Returning to the Project MAGNET spectra, we will compare the spectral uncertainties from psd to the those from
bspec, the Bayesian method, for a coverage probability of 95%. Figure 9 shows the uncertainties as bounded polygons,
which we calculate here:

spp <- spectral_properties(Pspec[["taper"]], db.ci = TRUE)
spa <- spectral_properties(Aspec[["taper"]], db.ci = TRUE)
str(spa)

'data.frame': 1024 obs. of 8 variables:
$ taper : int 170 170 170 170 170 170 171 171 171 171 ...
$ stderr.chi.lower : num -0.632 -0.632 -0.632 -0.632 -0.632 ...
$ stderr.chi.upper : num 0.676 0.676 0.676 0.676 0.676 ...
$ stderr.chi.median: num 0.23 0.23 0.23 0.23 0.23 ...
$ stderr.chi.approx: num 0.23 0.23 0.23 0.23 0.23 ...
$ resolution : num 0.334 0.334 0.334 0.334 0.334 ...
$ dof : num 340 340 340 340 340 340 342 342 342 342 ...
$ bw : num 0.167 0.167 0.167 0.167 0.167 ...

psppu <- with(Pspec, create_poly(freq, dB(spec), spp$stderr.chi.upper))
pspau <- with(Aspec, create_poly(freq, dB(spec), spa$stderr.chi.upper))
and the Bayesian spectrum 95% posterior distribution range
pspb <- with(Bspec_plt, create_poly(freq, spectrum[, 1], spectrum[, 3], from.lower = TRUE))

4 Note the χ2
ν distribution is defined for non-negative, non-integer degrees of freedom, but we cannot apply fractions of tapers.

20

http://www.github.com/abarbour/psd/

sp <- spectral_properties(as.tapers(1:50), p = 0.95, db.ci = TRUE)
plot(stderr.chi.upper ~ taper, sp, type = "s", ylim = c(-10, 20), yaxs = "i",

xaxs = "i", xlab = expression("number of tapers (" * nu/2 * ")"), ylab = "dB",
main = "Spectral uncertainties")

mtext("(additive factors)", line = 0.3, cex = 0.8)
lines(stderr.chi.lower ~ taper, sp, type = "s")
lines(stderr.chi.median ~ taper, sp, type = "s", lwd = 2)
lines(stderr.chi.approx ~ taper, sp, type = "s", col = "red", lwd = 2)
to reach 3 db width confidence interval at p=.95
abline(v = 33, lty = 3)
abline(h = 0, lty = 3)
legend("topright", c(expression("Based on " * chi^2 * "(p," * nu * ") and (1-p," *

nu * ")"), expression("" * chi^2 * "(p=0.5," * nu * ")"), "approximation"),
lwd = c(1, 3, 3), col = c("black", "black", "red"), bg = "white")

10 20 30 40 50

−10

−5

0

5

10

15

20

Spectral uncertainties

number of tapers (ν 2)

dB

(additive factors)

Based on χ2(p,ν) and (1−p,ν)
χ2(p=0.5,ν)
approximation

Figure 8: Additive spectral uncertainties by number of tapers needed to create 95%
confidence intervals. These quantized curves are found by evaluating the χ2

ν distribu-
tion, where ν is the number of degrees of freedom (two per taper). The thick, red line
shows an approximation to these uncertainties based on 1/

√
ν − 1, which is accurate

to within a few percent in most cases. The vertical dotted-line shows the number of
tapers need to make the width less than 3 decibels.

21

plot(c(-0.005, 0.505), c(-5, 40), col = NA, xaxs = "i", main = "Project MAGNET Spectral Uncertainty (p > 0.95)",
ylab = "", xlab = "spatial frequency, 1/km", yaxt = "n", frame.plot = FALSE)

lines(c(2, 1, 1, 2) * 0.01, c(0, 0, 7, 7))
text(0.04, 3.5, "7 dB")
with(pspb, polygon(x.x, dB(y.y), col = "light blue", border = NA))
text(0.26, 37, "Posterior distribution\n(bspec)", col = "#0099FF", cex = 0.8)
with(psppu, polygon(x.x, y.y, col = "dark grey", border = "black", lwd = 0.2))
text(0.15, 6, "Light: adaptive\ntaper refinement\n(pspectrum)", cex = 0.8)
with(pspau, polygon(x.x, y.y, col = "light grey", border = "black", lwd = 0.2))
text(0.4, 22, "Dark: Uniform\ntapering (psdcore)", cex = 0.8)
box()

0.0 0.1 0.2 0.3 0.4 0.5

Project MAGNET Spectral Uncertainty (p > 0.95)

spatial frequency, 1/km

7 dB

Posterior distribution
(bspec)

Light: adaptive
taper refinement

(pspectrum)

Dark: Uniform
tapering (psdcore)

Figure 9: Project MAGNET spectral uncertainties for 95% coverage probability. The
filled regions encompass the spectral uncertainties values based on the upper χ2

ν curve
shown in Figure 8, light and dark for PSDs with and without adaptive taper optimiza-
tion, respectively. The results from Figure 6 (Bayesian method) are shown in blue.

22

4.2 Spectral resolution
There is an inherent tradeoff between the number of tapers applied and the spectral resolution (effectively, the spectral
bandwidth). In general, the greater the number of tapers applied, the lower the spectral resolution. We can use the
information returned from spectral_properties to visualize the actual differences in resolution for the Project
MAGNET PSD estimates; these are shown in Figure 10.

frq <- Aspec[["freq"]]
relp <- (spa$resolution - spp$resolution)/spp$resolution
yl <- range(pretty(relp))
par(las = 1, oma = rep(0, 4), omi = rep(0, 4), mar = c(4, 3, 2, 0))
layout(matrix(c(1, 2), 1), heights = c(2, 2), widths = c(3, 0.5), respect = TRUE)
plot(frq, relp, main = "Percent change in spectral resolution", col = "light grey",

ylim = yl, yaxs = "i", type = "h", ylab = "dB", xlab = "frequency, 1/km")
lines(frq, relp)
text(0.25, 45, "Adaptive relative to fixed", cex = 0.9)
par(mar = c(4, 0, 2, 2))
empirical distribution of values
boxplot(relp, range = 0, main = sprintf("%.01f", median(relp)), axes = FALSE,

ylim = yl, yaxs = "i", notch = TRUE)
axis(4)

0.0 0.1 0.2 0.3 0.4 0.5

14

16

18

20

22

24
Percent change in spectral resolution

frequency, 1/km

dB

15.0

14

16

18

20

22

24

Figure 10: Relative changes in resolution of the adaptive method relative to the fixed
multitaper method, plotted as a function of spatial frequency in units of percent. The
non-zero median value implies the pilot spectrum was found using too-few tapers,
according to the optimization algorithm. Positive values indicate broadening resolution
bandwidth.

23

4.3 Visualizing the adaptive history
One might be curious to study how the uncertainties change with each iteration. pspectrum saves an array of “histor-
ical" data in its working environment. Specifically, it saves the frequencies, spectral values, and number of tapers at
each stage of the adaptive procedure, accessible with get_adapt_history. To ensure a fresh calculation and to add
a few more iterations to visualize, we repeat the adaptive spectral analysis, and then bring the stage history into the
.GlobalEnv environment:

pspectrum(ats_lm, niter = 4, plot = FALSE)

Stage 0 est. (pilot)
environment ** .psdEnv ** refreshed
detrending (and demeaning)
Stage 1 est. (Ave. S.V.R. -13.1 dB)
Stage 2 est. (Ave. S.V.R. -27.8 dB)
Stage 3 est. (Ave. S.V.R. -44.9 dB)
Stage 4 est. (Ave. S.V.R. -48.9 dB)
Normalized single-sided psd estimates (psd) for sampling-freq. 1

str(AH <- get_adapt_history())

List of 3
$ freq : num [1:1024] 0 0.000489 0.000978 0.001466 0.001955 ...
$ stg_kopt:List of 5
..$:Class 'tapers' atomic [1:1024] 7 7 7 7 7 7 7 7 7 7 ...
..- attr(*, "last_recorded")= logi NA
..- attr(*, "n_taper_limits_orig")= num [1:2] 1 7
..- attr(*, "taper_positions")= logi NA
..- attr(*, "span_was_set")= logi FALSE
..- attr(*, "n_taper_limits")= int [1:2] 7 7
..$:Class 'tapers' atomic [1:1024] 19 20 21 22 23 24 24 25 26 27 ...
..- attr(*, "last_recorded")= logi NA
..- attr(*, "n_taper_limits_orig")= num [1:2] 1 36
..- attr(*, "taper_positions")= logi NA
..- attr(*, "span_was_set")= logi FALSE
..- attr(*, "n_taper_limits")= int [1:2] 14 36
..$:Class 'tapers' atomic [1:1024] 63 63 64 65 66 67 68 69 70 71 ...
..- attr(*, "last_recorded")= logi NA
..- attr(*, "n_taper_limits_orig")= num [1:2] 1 98
..- attr(*, "taper_positions")= logi NA
..- attr(*, "span_was_set")= logi FALSE
..- attr(*, "n_taper_limits")= int [1:2] 29 98
..$:Class 'tapers' atomic [1:1024] 169 168 167 166 165 164 163 162 161 160 ...
..- attr(*, "last_recorded")= logi NA
..- attr(*, "n_taper_limits_orig")= num [1:2] 1 209
..- attr(*, "taper_positions")= logi NA
..- attr(*, "span_was_set")= logi FALSE
..- attr(*, "n_taper_limits")= int [1:2] 75 209
..$:Class 'tapers' atomic [1:1024] 165 164 164 164 163 163 163 163 163 163 ...
..- attr(*, "last_recorded")= logi NA
..- attr(*, "n_taper_limits_orig")= num [1:2] 1 236
..- attr(*, "taper_positions")= logi NA

24

..- attr(*, "span_was_set")= logi FALSE
..- attr(*, "n_taper_limits")= int [1:2] 136 236
$ stg_psd :List of 5
..$: num [1:1024] 1181 1228 1318 1363 1377 ...
..$: num [1:1024] 1138 1130 1133 1146 1165 ...
..$: num [1:1024] 1232 1231 1232 1237 1245 ...
..$: num [1:1024] 1271 1271 1272 1272 1273 ...
..$: num [1:1024] 1273 1274 1274 1274 1275 ...

Followed by some trivial manipulation:

Freqs <- AH[["freq"]]
Dat <- AH[["stg_psd"]]
numd <- length(Freqs)
numit <- length(Dat)
StgPsd <- dB(matrix(unlist(Dat), ncol = numit))
Dat <- AH[["stg_kopt"]]
StgTap <- matrix(unlist(Dat), ncol = numit)

We can plot these easily with matplot or other tools. We show the adaptive history in Figure 11.

25

Adaptive estimation history

0
1
2
3
4

7 dB

(a) PSDs by stage

0

50

100

150

200

250
43210

(b) Tapers by stage

0.0 0.1 0.2 0.3 0.4 0.5

7 dB

(c) Uncertainties by stage

Spatial frequency, km−1

(pilot spectrum −− uniform tapers)

Figure 11: Adaptive spectral estimation history. (A) PSD series for each stage of the
adaptive method, offset by a few decibels for visualization purposes. Filled polygons
are shown in (B) for the number of tapers at each stage, and (C) the relative uncer-
tainties of the PSDs. 26

5 Call overview
Shown in Figure 12 is a flow chart highlighting the essential functions involved in the adaptive estimation process. The
primary function is pspectrum, which calls psdcore followed by riedsid repeatedly (niter times) to produce the
final result.

Figure 12: Simplified call graph for psd. The dashed lines show a simplified circuit
which the spectra and its tapers make during the iterative process.

27

http://www.github.com/abarbour/psd/

Session Info

utils::sessionInfo()

R version 3.1.3 (2015-03-09)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.9.5 (Mavericks)
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base
##
other attached packages:
[1] bspec_1.4 ggplot2_1.0.0 signal_0.7-4
[4] RColorBrewer_1.1-2 RSEIS_3.3-3 psd_1.0-0
[7] knitr_1.9
##
loaded via a namespace (and not attached):
[1] colorspace_1.2-5 digest_0.6.8 evaluate_0.5.5 formatR_1.0
[5] grid_3.1.3 gtable_0.1.2 highr_0.4 labeling_0.3
[9] lattice_0.20-30 MASS_7.3-39 munsell_0.4.2 plyr_1.8.1
[13] proto_0.3-10 Rcpp_0.11.5 reshape2_1.4.1 RPMG_2.1-5
[17] Rwave_2.2 scales_0.2.4 stringr_0.6.2 tcltk_3.1.3
[21] tools_3.1.3 zoo_1.7-11

28

References
Agnew, D. C. (1992). The time-domain behavior of power-law noises. Geophysical Research Letters, 19:333–336.

Barbour, A. J. and Parker, R. L. (2014). psd: Adaptive, sine multitaper power spectral density estimation for R.
Computers & Geosciences, 63:1–8.

Barbour, A. J. and Parker, R. L. (2015). psd: Adaptive, sine-multitaper power spectral density estimation. R package
version 0.5.

Coleman, R. J. (1992). Project Magnet high-level vector survey data reduction. In Types and Characteristics of Data
for Geomagnetic Field Modeling, volume 3153, pages 215–248.

Korte, M., Constable, C., and Parker, R. (2002). Revised magnetic power spectrum of the oceanic crust. Journal of
Geophysical Research, 107(B9):2205.

Lees, J. M. and Park, J. (1995). Multiple-taper spectral analysis: A stand-alone C-subroutine. Computers & Geo-
sciences, 21(2):199–236.

O’Brien, M. S., Parker, R. L., and Constable, C. G. (1999). Magnetic power spectrum of the ocean crust on large
scales. Journal of Geophysical Research, 104(B12):29189–29.

Parker, R. L. (2015). PSD. http://igppweb.ucsd.edu/%7Eparker/Software/. Maintained software (last ac-
cessed March 2015).

Parker, R. L. and O’Brien, M. S. (1997). Spectral analysis of vector magnetic field profiles. Journal of Geophysical
Research, 102(B11):24815–24.

Percival, D. and Walden, A. (1993). Spectral analysis for physical applications. Cambridge University Press.

Prieto, G. A., Parker, R. L., Thomson, D. J., Vernon, F. L., and Graham, R. L. (2007). Reducing the bias of multitaper
spectrum estimates. Geophysical Journal International, 171(3):1269–1281.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria. ISBN 3-900051-07-0.

Rahim, K. J., Burr, W. S., and Thomson, D. J. (2014). Applications of Multitaper Spectral Analysis to Nonstationary
Data. PhD thesis, Queen’s University. R package version 1.0-11.

Riedel, K. S. and Sidorenko, A. (1995). Minimum bias multiple taper spectral estimation. IEEE Trans. SP, 43(1):188–
195.

Röver, C., Meyer, R., and Christensen, N. (2011). Modelling coloured residual noise in gravitational-wave signal
processing. Classical and Quantum Gravity, 28(1):015010.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9):1055–1096.

29

http://igppweb.ucsd.edu/%7Eparker/Software/

	Quick start: A minimal example.
	Comparisons with other methods
	stats::spectrum
	RSEIS::mtapspec
	multitaper::spec.mtm
	sapa::SDF
	bspec::bspec

	Can AR prewhitening improve the spectrum?
	Assessing spectral properties
	Spectral uncertainties
	Spectral resolution
	Visualizing the adaptive history

	Call overview

