
An Object Oriented Framework for Robust

Multivariate Analysis

Valentin Todorov
UNIDO

Peter Filzmoser
Vienna University of Technology

Abstract

This introduction to the R package rrcov is a (slightly) modified version of Todorov and
Filzmoser (2009), published in the Journal of Statistical Software.
Taking advantage of the S4 class system of the programming environment R, which facil-
itates the creation and maintenance of reusable and modular components, an object ori-
ented framework for robust multivariate analysis was developed. The framework resides
in the packages robustbase and rrcov and includes an almost complete set of algorithms
for computing robust multivariate location and scatter, various robust methods for princi-
pal component analysis as well as robust linear and quadratic discriminant analysis. The
design of these methods follows common patterns which we call statistical design patterns
in analogy to the design patterns widely used in software engineering. The application of
the framework to data analysis as well as possible extensions by the development of new
methods is demonstrated on examples which themselves are part of the package rrcov.

Keywords: robustness, multivariate analysis, MCD, R, statistical design patterns.

1. Introduction

Outliers are present in virtually every data set in any application domain, and the identifica-
tion of outliers has a hundred years long history. Many researchers in science, industry and
economics work with huge amounts of data and this even increases the possibility of anomalous
data and makes their (visual) detection more difficult. Taking into account the multivariate
aspect of the data, the outlyingness of the observations can be measured by the Mahalanobis
distance which is based on location and scatter estimates of the data set. In order to avoid
the masking effect, robust estimates of these parameters are called for, even more, they must
possess a positive breakdown point. The estimates of the multivariate location vector µ and
the scatter matrix Σ are also a cornerstone in the analysis of multidimensional data, since
they form the input to many classical multivariate methods. The most common estimators
of multivariate location and scatter are the sample mean x̄ and the sample covariance matrix
S, i.e., the corresponding MLE estimates. These estimates are optimal if the data come from
a multivariate normal distribution but are extremely sensitive to the presence of even a few
outliers (atypical values, anomalous observations, gross errors) in the data. If outliers are
present in the input data they will influence the estimates x̄ and S and subsequently worsen
the performance of the classical multivariate procedure based on these estimates. Therefore
it is important to consider robust alternatives to these estimators and actually in the last
two decades much effort was devoted to the development of affine equivariant estimators

2 OOF for Robust Multivariate Analysis

possessing a high breakdown point. The most widely used estimators of this type are the
minimum covariance determinant (MCD) estimator of Rousseeuw (1985) for which also a fast
computing algorithm was constructed—Rousseeuw and Van Driessen (1999), the S estimators
(Davies 1987) and the Stahel-Donoho estimator introduced by Stahel (1981a,b) and Donoho
(1982) and studied by Maronna and Yohai (1995). If we give up the requirement for affine
equivariance, estimators like the one of Maronna and Zamar (2002) are available and the re-
ward is an extreme gain in speed. Substituting the classical location and scatter estimates by
their robust analogues is the most straightforward method for robustifying many multivariate
procedures like principal components, discriminant and cluster analysis, canonical correlation,
etc. The reliable identification of multivariate outliers which is an important task in itself, is
another approach to robustifying many classical multivariate methods.

Some of these estimates and procedures became available in the popular statistical packages
like S-PLUS, SAS, MATLAB as well as in R but nevertheless it is recognized that the robust
methods have not yet replaced the ordinary least square techniques as it could be expected
(Morgenthaler 2007; Stromberg 2004). One reason is the lack of easily accessible and easy
to use software, that is software which presents the robust procedures as extensions to the
classical ones—similar input and output, reasonable defaults for most of the estimation options
and visualization tools. As far as the easiness of access is concerned, the robust statistical
methods should be implemented in the freely available statistical software package R, (R
Development Core Team 2009), which provides a powerful platform for the development of
statistical software. These requirements have been defined in the project “Robust Statistics
and R”, see http://www.statistik.tuwien.ac.at/rsr/, and a first step in this direction was
the initial development of the collaborative package robustbase, (Rousseeuw et al. 2009), with
the intention that it becomes the essential robust statistics R package covering the methods
described in the recent book Maronna et al. (2006).

During the last decades the object oriented programming paradigm has revolutionized the
style of software system design and development. A further step in the software reuse are the
object oriented frameworks (see Gamma et al. 1995) which provide technology for reusing both
the architecture and the functionality of software components. Taking advantage of the new
S4 class system (Chambers 1998) of R which facilitate the creation of reusable and modular
components an object oriented framework for robust multivariate analysis was implemented.
The goal of the framework is manyfold:

1. to provide the end-user with a flexible and easy access to newly developed robust meth-
ods for multivariate data analysis;

2. to allow the programming statisticians an extension by developing, implementing and
testing new methods with minimum effort, and

3. to guarantee the original developers and maintainer of the packages a high level of
maintainability.

The framework includes an almost complete set of algorithms for computing robust multi-
variate location and scatter, such as minimum covariance determinant, different S estima-
tors (SURREAL, FAST-S, Bisquare, Rocke-type), orthogonalized Gnanadesikan–Kettenring
(OGK) estimator of Maronna and Zamar (2002). The next large group of classes are the
methods for robust principal component analysis (PCA) including ROBPCA of Hubert et al.

http://www.statistik.tuwien.ac.at/rsr/

Valentin Todorov, Peter Filzmoser 3

(2005), spherical principal components (SPC) of Locantore et al. (1999), the projection pur-
suit algorithms of Croux and Ruiz-Gazen (2005) and Croux et al. (2007). Further applications
implemented in the framework are linear and quadratic discriminant analysis (see Todorov
and Pires 2007, for a review), multivariate tests (Willems et al. 2002; Todorov and Filzmoser
2010) and outlier detection tools.

The application of the framework to data analysis as well as the development of new methods
is illustrated on examples, which themselves are part of the package. Some issues of the object
oriented paradigm as applied to the R object model (naming conventions, access methods,
coexistence of S3 and S4 classes, usage of UML, etc.) are discussed. The framework is
implemented in the R packages robustbase and rrcov, (Todorov 2009), which are available
from Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org under the
GNU General Public License.

The rest of the paper is organized as follows. In the next Section 2 the design principles and
the structure of the framework is presented as well as some related object oriented concepts
are discussed. As a main tool for modeling of the robust estimation methods a statistical
design pattern is proposed. Section 3 facilitates the quick start by an example session giving
a brief overview of the framework. Section 4 describes the robust multivariate methods,
their computation and implementation. The Sections 4.1, 4.2 and 4.3 are dedicated to the
estimation of multivariate location and scatter, principal component analysis and discriminant
analysis, respectively. For each domain the object model, the available visualization tools,
an example, and other relevant information are presented. We conclude in Section 5 with
discussion and outline of the future work.

2. Design approach and structure of the framework

In classical multivariate statistics we rely on parametric models based on assumptions about
the structural and the stochastic parts of the model for which optimal procedures are derived,
like the least squares estimators and the maximum likelihood estimators. The corresponding
robust methods can be seen as extensions to the classical ones which can cope with deviations
from the stochastic assumptions thus mitigating the dangers for classical estimators. The
developed statistical procedures will remain reliable and reasonably efficient even when such
deviations are present. For example in the case of location and covariance estimation the
classical theory yields the sample mean x̄ and the sample covariance matrix S, i.e., the
corresponding MLE estimates as an optimal solution. One (out of many) robust alternatives
is the minimum covariance determinant estimator. When we consider this situation from
an object oriented design point of view we can think of an abstract base class representing
the estimation problem, a concrete realization of this object—the classical estimates, and a
second concrete derivative of the base class representing the MCD estimates. Since there exist
many other robust estimators of multivariate location and covariance which share common
characteristics we would prefer to add one more level of abstraction by defining an abstract
“robust” object from which all other robust estimators are derived. We encounter a similar
pattern in most of the other multivariate statistical methods like principal component analysis,
linear and quadratic discriminant analysis, etc. and we will call it a statistical design pattern.
A schematic representation as an UML diagram is shown in Figure 2. The following simple
example demonstrates the functionality. We start with a generic object model of a robust
and the corresponding classical multivariate method with all the necessary interfaces and

http://CRAN.R-project.org

4 OOF for Robust Multivariate Analysis

AMethod

show() : void

plot() : void

summary() : Summary

predict() : Predict

attr1 : vector

attr2 : matrix

AClassicMethod

AClassicMethod() : AClassicMethod

ARobustMethod

r_attr1 : numeric

r_attr2 : numeric

ARobMethod1

ARobMethod1() : ARobMethod1

ARobMethod2

ARobMethod1() : ARobMethod2

Abstract base class for a statistical

 method - i.e. for classical as well

as different robust estimates. The

accessor methods are not shown.

Each of the derived classes can

reimplement the generic functions

show() plot(), summary() and predict()

Abstract Robust estimator.

Cannot be instantiated,

used only for polymorphic

treatment of the other

concrete robust estimates

Concrete Robust estimators

Figure 1: Class diagram of the statistical design pattern for robust estimation methods.

functionalities and then concretize it to represent the desired class hierarchy. The basic idea
is to define an abstract S4 class which has as slots the common data elements of the result
of the classical method and its robust counterparts (e.g., Pca). For this abstract class we can
implement the standard in R generic functions like print(), summary(), plot() and maybe
also predict(). Now we can derive and implement a concrete class which will represent the
classical method, say PcaClassic. Further we derive another abstract class which represents
a potential robust method we are going to implement, e.g., PcaRobust—it is abstract because
we want to have a “placeholder” for the robust methods we are going to develop next. The
generic functions that we implemented for the class Pca are still valid for PcaRobust but
whenever necessary we can override them with new functionality. Now we have the necessary
platform and of course we have had diligently documented everything we have implemented
so far—this is our investment in the future development of robust methods from this family.
The framework at its current expansion stage provides such platform for several important
families of multivariate methods. It is time to dedicate our effort to the development and
implementation of our new robust method/class, say PcaHubert and only to this—here comes
the first obvious benefit from the framework—we do not need to care for the implementation
of print(), summary(), plot() and predict() neither for their documentation or testing.

In contrast to the S3 class system the S4 system requires the creation of objects to be done by
the new() function which will perform the necessary validity checks. We go one step further
and require that the new() function is not used directly but only through special functions
known in R as generating functions or as constructors in the conventional object oriented

Valentin Todorov, Peter Filzmoser 5

programming languages. A constructor function has the same name as the corresponding
class, takes the estimation options as parameters, organizes the necessary computations and
returns an object of the class containing the results of the computation. It can take as
a parameter also a control object which itself is an S4 object and contains the estimation
options. More details on the generating functions and their application for structuring the
user interface can be found in Ruckdeschel et al. (2009).

The main part of the framework is implemented in the package rrcov but it relies on code in
the packages robustbase and pcaPP (Filzmoser et al. 2009). The structure of the framework
and its relation to other R packages is shown in Figure 2. The framework can be used by other

robustbase pcaPP

rrcov

robust rrcovNA

Figure 2: Class diagram: structure of the framework and relation to other R packages.

packages, like for example by robust (see Wang et al. 2008) or can be further extended. In
Figure 2 a hypothetical package rrcovNA is shown, which could extend the available robust
multivariate methods with options for dealing with missing values.

In the rest of this section some object-oriented programming (OOP) concepts will be discussed
which are essential for understanding the framework.

6 OOF for Robust Multivariate Analysis

2.1. UML diagrams

Throughout this paper we exploit UML class diagrams to give a clear picture of the framework
and its components. UML stands for Unified Modeling Language—an object-oriented system
of notation which has evolved from previous works of Grady Booch, James Rumbaugh and
Ivar Jacobson to become a tool accepted by the Object Management Group (OMG) as the
standard for modeling object oriented programs (see OMG 2009a,b). A class diagram models
the structure and contents of a system by depicting classes, packages, objects and the relations
among them with the aim to increase the ease of understanding the considered application.
A class is denoted by a box with three compartments which contain the name, the attributes
(slots) and operations (methods) of the class, respectively. The class name in italics indicates
that the class is abstract. The bottom two compartments could be omitted or they can contain
only the key attributes and operations which are useful for understanding the particular
diagram. Each attribute is followed by its type and each operation—by the type of its return
value. We use the R types like numeric, logical, vector, matrix, etc. but the type can be
also a name of an S4 class.

Relationships between classes are denoted by lines or arrows with different form. The inher-
itance relationship is depicted by a large empty triangular arrowhead pointing to the base
class. Composition means that one class contains another one as a slot (not to be mistaken
with the keyword “contains” signalling inheritance in R). This relation is represented by an
arrow with a solid diamond on the side of the composed class. If a class “uses” another one
or depends on it, the classes are connected by a dashed arrow (dependence relation). Pack-
ages can also be present in a class diagram—in our case they correspond more or less to R
packages—and are shown as tabbed boxes with the name of the package written in the tab
(see Figure 2).

All UML diagrams of the framework were created with the open source UML tool ArgoUML
(Robbins 1999; Robbins and Redmiles 2000) which is available for download from http:

//argouml.tigris.org/.

2.2. Design patterns

Design patterns are usually defined as general solutions to recurring design problems and
refer to both the description of a solution and an instance of that solution solving a particular
problem. The current use of the term design patterns originates in the writings of the architect
Christopher Alexander devoted to urban planning and building architecture (Alexander et al.
1977) but it was brought to the software development community by the seminal book of
Gamma et al. (1995).

A design pattern can be seen as a template for how to solve a problem which can be used
in many different situations. Object-Oriented design patterns are about classes and the re-
lationships between classes or objects at abstract level, without defining the final classes or
objects of the particular application. In order to be usable, design patterns must be defined
formally and the documentation, including a preferably evocative name, describes the context
in which the pattern is used, the pattern structure, the participants and collaboration, thus
presenting the suggested solution.

Design patterns are not limited to architecture or software development but can be applied in
any domain where solutions are searched for. During the development of the here presented
framework several design patterns were identified, which we prefer to call statistical design

http://argouml.tigris.org/
http://argouml.tigris.org/

Valentin Todorov, Peter Filzmoser 7

patterns. The first one was already described earlier in this section and captures the relations
among a classical and one or more alternative robust multivariate estimators. Another can-
didate is the control object encapsulating the estimation parameters and a third one is the
factory-like construct which suggests selection of a robust estimation method and creation of
the corresponding objects based on the data set characteristics (see Section 4.1). The formal
description of these design patterns is beyond the scope of this work and we will limit the
discussion to several examples.

2.3. Accessor methods

One of the major characteristics and advantages of object oriented programming is the encap-
sulation. Unfortunately real encapsulation (information hiding) is missing in R, but as far as
the access to the member variables is concerned this could be mitigated by defining accessor
methods (i.e., methods used to examine or modify the slots (member variables) of a class)
and “advising” the users to use them instead of directly accessing the slots. The usual way
of defining accessor functions in R is to use the same name as the name of the corresponding
slot. For example for the slot a these are:

R> cc <- a(obj)

R> a(obj) <- cc

In many cases this is not possible, because of conflicts with other existing functions. For
example it is not possible to define an accessor function cov() for the slot cov of class Cov,
since the function cov() already exists in the base R. Also it is not immediately seen if a slot
is “read only” or can be modified by the user (unfortunately, as already mentioned, every slot
in R can be modified by simply using obj@a <- cc). In rrcov a notation was adopted, which
is usual in Java: the accessors are defined as getXxx() and setXxx() (if a setXxx() method
is missing, we are “not allowed” to change the slot). The use of accessor methods allows to
perform computations on demand (getMah(mcd) computes the Mahalanobis distances, stores
them into the object and returns them) or even have “virtual” slots which are not at all stored
in the object (e.g., getCorr(mcd) computes each time and returns the correlation matrix
without storing it).

2.4. Naming conventions

There is no agreed naming convention (coding rules) in R but to facilitate the framework
usage several simple rules are in order, following the recommended Sun’s Java coding style
(see http://java.sun.com/docs/codeconv/):

• Class, function, method and variable names are alphanumeric, do not contain “-” or “.”
but rather use interchanging lower and upper case.

• Class names start with an uppercase letter.

• Methods, functions, and variables start with a lowercase letter.

• Exceptions are functions returning an object of a given class (i.e., generating functions
or constructors)—they have the same name as the class.

http://java.sun.com/docs/codeconv/

8 OOF for Robust Multivariate Analysis

• Variables and methods which are not intended to be seen by the user—i.e., private
members—start with “.”.

• Violate these rules whenever necessary to maintain compatibility.

3. Example session

In this section we will introduce the base functionalities of the framework by an example
session. First of all we have to load the package rrcov which will cause all necessary packages
to be loaded too. The framework includes many example data sets but here we will load only
those which will be used throughout the following examples. For the rest of the paper it will
be assumed that the package has been loaded already.

R> ##

R> ## Load the 'rrcov' package and the first two data sets to be

R> ## used throughout the examples

R> ##

R> library("rrcov")

R> data("delivery")

R> delivery.x <- delivery[,1:2] # take only the X part

R> data("hbk")

R> hbk.x <- hbk[,1:3] # take only the X part

Most of the multivariate statistical methods are based on estimates of multivariate location
and covariance, therefore these estimates play a central role in the framework. We will
start with computing the robust minimum covariance determinant estimate for the data
set delivery from the package robustbase. The data set (see Rousseeuw and Leroy 1987,
Table 23, p. 155) contains delivery time data in 25 observations with 3 variables. The aim is to
explain the time required to service a vending machine (Y) by means of the number of products
stocked (X1) and the distance walked by the route driver (X2). For this example we will
consider only the X part of the data set. After computing its robust location and covariance
matrix using the MCD method implemented in the function CovMcd() we can print the
results by calling the default show() method on the returned object mcd as well as summary
information by the summary() method. The standard output contains the robust estimates
of location and covariance. The summary output contains additionally the eigenvalues of the
covariance matrix and the robust distances of the data items (Mahalanobis type distances
computed with the robust location and covariance instead of the sample ones).

R> ##

R> ## Compute MCD estimates for the delivery data set

R> ## - show() and summary() examples

R> ##

R> mcd <- CovMcd(delivery.x)

R> mcd

Call:

CovMcd(x = delivery.x)

Valentin Todorov, Peter Filzmoser 9

-> Method: Fast MCD(alpha=0.5 ==> h=14); nsamp = 500; (n,k)mini = (300,5)

Robust Estimate of Location:

n.prod distance

5.895 268.053

Robust Estimate of Covariance:

n.prod distance

n.prod 11.66 220.72

distance 220.72 53202.65

R> summary(mcd)

Call:

CovMcd(x = delivery.x)

Robust Estimate of Location:

n.prod distance

5.895 268.053

Robust Estimate of Covariance:

n.prod distance

n.prod 11.66 220.72

distance 220.72 53202.65

Eigenvalues of covariance matrix:

[1] 53203.57 10.74

Robust Distances:

[1] 1.6031 0.7199 1.0467 0.7804 0.2949 0.1391 1.4464 0.2321

[9] 60.8875 2.6234 9.8271 1.7949 0.3186 0.7526 1.1267 5.2213

[17] 0.1010 0.6075 1.3597 12.3162 2.3099 35.2113 1.1366 2.5625

[25] 0.4458

R> ##

R> ## Example plot of the robust against classical

R> ## distances for the delivery data set

R> ##

R> plot(mcd, which="dd")

Now we will show one of the available plots by calling the plot() method—in Figure 3 the
Distance-Distance plot introduced by Rousseeuw and van Zomeren (1991) is presented, which
plots the robust distances versus the classical Mahalanobis distances and allows to classify
the observations and identify the potential outliers. The description of this plot as well

10 OOF for Robust Multivariate Analysis

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0

2
4

6
8

Mahalanobis distance

R
ob

us
t d

is
ta

nc
e

11
20

22

9

Distance−Distance Plot

Figure 3: Example plot of the robust against classical distances for the delivery data set.

as examples of more graphical displays based on the covariance structure will be shown in
Section 4.1.

Apart from the demonstrated MCD method the framework provides many other robust es-
timators of multivariate location and covariance, actually almost all of the well established
estimates in the contemporary robustness literature. The most fascinating feature of the
framework is that one will get the output and the graphs in the same format, whatever esti-
mation method was used. For example the following code lines will compute the S estimates
for the same data set and provide the standard and extended output (not shown here).

R> ##

R> ## Compute the S-estimates for the delivery data set

R> ## and provide the standard and extended output

R> ##

R> est <- CovSest(delivery.x, method="bisquare")

R> est

R> summary(est)

Nevertheless, this variety of methods could pose a serious hurdle for the novice and could

Valentin Todorov, Peter Filzmoser 11

be quite tedious even for the experienced user. Therefore a shortcut is provided too—the
function CovRobust() can be called with a parameter set specifying any of the available
estimation methods, but if this parameter set is omitted the function will decide on the basis
of the data size which method to use. As we see in the example below, in this case it selects
the Stahel-Donoho estimates. For details and further examples see Section 4.1.

R> ##

R> ## Automatically select the appropriate estimator according

R> ## to the problem size - in this example the Stahel-Donoho estimates

R> ## will be selected.

R> ##

R> est <- CovRobust(delivery.x)

R> est

Call:

CovSde(x = x, control = obj)

-> Method: Stahel-Donoho estimator

Robust Estimate of Location:

n.prod distance

5.842 275.405

Robust Estimate of Covariance:

n.prod distance

n.prod 9.492 347.499

distance 347.499 46939.690

4. Robust multivariate methods

4.1. Multivariate location and scatter

The framework provides an almost complete set of estimators for multivariate location and
scatter with high breakdown point. The first such estimator was proposed by Stahel (1981a,b)
and Donoho (1982) and it is recommended for small data sets, but the most widely used high
breakdown estimator is the minimum covariance determinant estimate (Rousseeuw 1985).
Several algorithms for computing the S estimators (Davies 1987) are provided (Ruppert 1992;
Woodruff and Rocke 1994; Rocke 1996; Salibian-Barrera and Yohai 2006). The minimum
volume ellipsoid (MVE) estimator (Rousseeuw 1985) is also included since it has some desir-
able properties when used as initial estimator for computing the S estimates (see Maronna
et al. 2006, p. 198). In the rest of this section the definitions of the different estimators of
location and scatter will be briefly reviewed and the algorithms for their computation will
be discussed. Further details can be found in the relevant references. The object model is
presented and examples of its usage, as well as further examples of the graphical displays are
given.

12 OOF for Robust Multivariate Analysis

The Minimum covariance determinant estimator and its computation

The MCD estimator for a data set {x1, . . . ,xn} in <p is defined by that subset {xi1 , . . . ,xih}
of h observations whose covariance matrix has the smallest determinant among all possible
subsets of size h. The MCD location and scatter estimate TMCD and CMCD are then given
as the arithmetic mean and a multiple of the sample covariance matrix of that subset

TMCD =
1

h

h∑
j=1

xij

CMCD = cccfcsscf
1

h− 1

h∑
j=1

(xij −TMCD)(xij −TMCD)>. (1)

The multiplication factors cccf (consistency correction factor) and csscf (small sample cor-
rection factor) are selected so that C is consistent at the multivariate normal model and
unbiased at small samples (see Butler et al. 1993; Croux and Haesbroeck 1999; Pison et al.
2002; Todorov 2008). A recommendable choice for h is b(n+ p+ 1)/2c because then the BP
of the MCD is maximized, but any integer h within the interval [(n + p + 1)/2, n] can be
chosen, see Rousseeuw and Leroy (1987). Here bzc denotes the integer part of z which is not
less than z. If h = n then the MCD location and scatter estimate TMCD and CMCD reduce
to the sample mean and covariance matrix of the full data set.

The computation of the MCD estimator is far from being trivial. The naive algorithm would
proceed by exhaustively investigating all subsets of size h out of n to find the subset with the
smallest determinant of its covariance matrix, but this will be feasible only for very small data
sets. Initially MCD was neglected in favor of MVE because the simple resampling algorithm
was more efficient for MVE. Meanwhile several heuristic search algorithms (see Todorov 1992;
Woodruff and Rocke 1994; Hawkins 1994) and exact algorithms (Agulló 1996) were proposed
but now a very fast algorithm due to Rousseeuw and Van Driessen (1999) exists and this
algorithm is usually used in practice. The algorithm is based on the C-step which moves from
one approximation (T1,C1) of the MCD estimate of a data set X = {x1, . . . ,xn} to the next
one (T2,C2) with possibly lower determinant det(C2) ≤ det(C1) by computing the distances
d1, . . . , dn relative to (T1,C1), i.e.,

di =

√
(xi −T1)>C−11 (xi −T1) (2)

and then computing (T2,C2) for those h observations which have smallest distances. “C” in
C-step stands for “concentration” since we are looking for a more “concentrated” covariance
matrix with lower determinant. Rousseeuw and Van Driessen (1999) have proven a theorem
stating that the iteration process given by the C-step converges in a finite number of steps
to a (local) minimum. Since there is no guarantee that the global minimum of the MCD
objective function will be reached, the iteration must be started many times from different
initial subsets, to obtain an approximate solution. The procedure is very fast for small data
sets but to make it really “fast” also for large data sets several computational improvements
are used.

• initial subsets: It is possible to restart the iterations from randomly generated subsets
of size h, but in order to increase the probability of drawing subsets without outliers,

Valentin Todorov, Peter Filzmoser 13

p + 1 points are selected randomly. These p + 1 points are used to compute (T0,C0).
Then the distances d1, . . . , dn are computed and sorted in increasing order. Finally the
first h are selected to form the initial h−subset H0.

• reduced number of C-steps: The C-step involving the computation of the covariance
matrix, its determinant and the relative distances, is the most computationally intensive
part of the algorithm. Therefore instead of iterating to convergence for each initial subset
only two C-steps are performed and the 10 subsets with lowest determinant are kept.
Only these subsets are iterated to convergence.

• partitioning : For large n the computation time of the algorithm increases mainly be-
cause all n distances given by Equation (2) have to be computed at each iteration. An
improvement is to partition the data set into a maximum of say five subsets of approx-
imately equal size (but not larger than say 300) and iterate in each subset separately.
The ten best solutions for each data set are kept and finally only those are iterated on
the complete data set.

• nesting : Further decrease of the computational time can be achieved for data sets with n
larger than say 1500 by drawing 1500 observations without replacement and performing
the computations (including the partitioning) on this subset. Only the final iterations
are carried out on the complete data set. The number of these iterations depends on
the actual size of the data set at hand.

The MCD estimator is not very efficient at normal models, especially if h is selected so that
maximal BP is achieved. To overcome the low efficiency of the MCD estimator, a reweighed
version can be used. For this purpose a weight wi is assigned to each observation xi, defined
as wi = 1 if (xi−TMCD)>C−1MCD(xi−TMCD) ≤ χ2

p,0.975 and wi = 0 otherwise, relative to the
raw MCD estimates (TMCD ,CMCD). Then the reweighted estimates are computed as

TR =
1

ν

n∑
i=1

wixi,

CR = cr.ccfcr.sscf
1

ν − 1

n∑
i=1

wi(xi −TR)(xi −TR)>, (3)

where ν is the sum of the weights, ν =
∑n

i=1wi. Again, the multiplication factors cr.ccf and
cr.sscf are selected so that CR is consistent at the multivariate normal model and unbiased
at small samples (see Pison et al. 2002; Todorov 2008, and the references therein). These
reweighted estimates (TR,CR) which have the same breakdown point as the initial (raw)
estimates but better statistical efficiency are computed and used by default.

The Minimum volume ellipsoid estimates

The minimum volume ellipsoid estimator searches for the ellipsoid of minimal volume con-
taining at least half of the points in the data set X. Then the location estimate is defined as
the center of this ellipsoid and the covariance estimate is provided by its shape. Formally the
estimate is defined as these TMVE ,CMVE that minimize det(C) subject to

#{i : (xi −T)>C−1(xi −T) ≤ c2} ≥
⌊
n+ p+ 1

2

⌋
, (4)

14 OOF for Robust Multivariate Analysis

where # denotes the cardinality. The constant c is chosen as χ2
p,0.5.

The search for the approximate solution is made over ellipsoids determined by the covariance
matrix of p + 1 of the data points and by applying a simple but effective improvement of
the sub-sampling procedure as described in Maronna et al. (2006), p. 198. Although there
exists no formal proof of this improvement (as for MCD and LTS), simulations show that
it can be recommended as an approximation of the MVE. The MVE was the first popular
high breakdown point estimator of location and scatter but later it was replaced by the MCD,
mainly because of the availability of an efficient algorithm for its computation (Rousseeuw and
Van Driessen 1999). Recently the MVE gained importance as initial estimator for S estimation
because of its small maximum bias (see Maronna et al. 2006, Table 6.2, p. 196).

The Stahel-Donoho estimator

The first multivariate equivariant estimator of location and scatter with high breakdown point
was proposed by Stahel (1981a,b) and Donoho (1982) but became better known after the
analysis of Maronna and Yohai (1995). For a data set X = {x1, . . . ,xn} in <p it is defined
as a weighted mean and covariance matrix of the form given by Equation (3) where the
weight wi of each observation is inverse proportional to the “outlyingness” of the observation.
Let the univariate outlyingness of a point xi with respect to the data set X along a vector
a ∈ <p, ||a|| 6= 0 be given by

r(xi,a) =
|x>a−m(a>X)|

s(a>X)
i = 1, . . . , n (5)

where (a>X) is the projection of the data set X on a and the functions m() and s() are robust
univariate location and scale statistics, for example the median and MAD, respectively. Then
the multivariate outlyingness of xi is defined by

ri = r(xi) = max
a

r(xi,a). (6)

The weights are computed by wi = w(ri) where w(r) is a nonincreasing function of r and
w(r) and w(r)r2 are bounded. Maronna and Yohai (1995) use the weights

w(r) = min

(
1,
(c
t

)2)
(7)

with c =
√
χ2
p,β and β = 0.95, that are known in the literature as “Huber weights”.

Exact computation of the estimator is not possible and an approximate solution is found
by subsampling a large number of directions a and computing the outlyingness measures
ri, i = 1, . . . , n for them. For each subsample of p points the vector a is taken as the norm 1
vector orthogonal to the hyperplane spanned by these points. It has been shown by simulations
(Maronna et al. 2006) that one step reweighting does not improve the estimator.

Orthogonalized Gnanadesikan/Kettenring

The MCD estimator and all other known affine equivariant high-breakdown point estimates
are solutions to a highly non-convex optimization problem and as such pose a serious compu-
tational challenge. Much faster estimates with high breakdown point can be computed if one

Valentin Todorov, Peter Filzmoser 15

gives up the requirements of affine equivariance of the covariance matrix. Such an algorithm
was proposed by Maronna and Zamar (2002) which is based on the very simple robust bivari-
ate covariance estimator sjk proposed by Gnanadesikan and Kettenring (1972) and studied
by Devlin et al. (1981). For a pair of random variables Yj and Yk and a standard deviation
function σ(), sjk is defined as

sjk =
1

4

(
σ

(
Yj

σ(Yj)
+

Yk
σ(Yk)

)2

− σ
(

Yj
σ(Yj)

− Yk
σ(Yk)

)2
)
. (8)

If a robust function is chosen for σ() then sjk is also robust and an estimate of the covariance
matrix can be obtained by computing each of its elements sjk for each j = 1, . . . , p and
k = 1, . . . , p using Equation (8). This estimator does not necessarily produce a positive
definite matrix (although symmetric) and it is not affine equivariant. Maronna and Zamar
(2002) overcome the lack of positive definiteness by the following steps:

• Define yi = D−1xi, i = 1, . . . , n with D = diag(σ(X1), . . . , σ(Xp)) where Xl, l = 1, . . . , p
are the columns of the data matrix X = {x1, . . . ,xn}. Thus a normalized data matrix
Y = {y1, . . . ,yn} is computed.

• Compute the matrix U = (ujk) as ujk = sjk = s(Yj , Yk) if j 6= k or ujk = 1 otherwise.
Here Yl, l = 1, . . . , p are the columns of the transformed data matrix Y and s(., .) is a
robust estimate of the covariance of two random variables like the one in Equation (8).

• Obtain the “principal component decomposition” of Y by decomposing U = EΛE>

where Λ is a diagonal matrix Λ = diag(λ1, . . . , λp) with the eigenvalues λj of U and E
is a matrix with columns the eigenvalues ej of U .

• Define zi = E>yi = E>D−1xi and A = DE. Then the estimator of Σ is COGK =
AΓA> where Γ = diag(σ(Zj)

2), j = 1, . . . , p and the location estimator is TOGK = Am
where m = m(zi) = (m(Z1), . . . ,m(Zp)) is a robust mean function.

This can be iterated by computing COGK and TOGK for Z = {z1, . . . ,zn} obtained in the
last step of the procedure and then transforming back to the original coordinate system.
Simulations (Maronna and Zamar 2002) show that iterations beyond the second did not lead
to improvement.

Similarly as for the MCD estimator a one-step reweighting can be performed using Equa-
tions (3) but the weights wi are based on the 0.9 quantile of the χ2

p distribution (instead of
0.975) and the correction factors cr.ccf and cr.sscf are not used.

In order to complete the algorithm we need a robust and efficient location function m() and
scale function σ(), and one proposal is given in Maronna and Zamar (2002). Further, the
robust estimate of covariance between two random vectors s() given by Equation (8) can be
replaced by another one. In the framework two such functions are predefined but the user
can provide as a parameter an own function.

S estimates

S estimators of µ and Σ were introduced by Davies (1987) and further studied by Lopuhaä
(1989) (see also Rousseeuw and Leroy 1987, p. 263). For a data set of p-variate observations

16 OOF for Robust Multivariate Analysis

{x1, . . . ,xn} an S estimate (T,C) is defined as the solution of σ(d1, . . . , dn) = min where
di = (x − T)>C−1(x − T) and det(C) = 1. Here σ = σ(z) is the M-scale estimate of a
data set z = {z1, . . . , zn} defined as the solution of 1

nΣρ(z/σ) = δ where ρ is nondecreasing,
ρ(0) = 0 and ρ(∞) = 1 and δ ∈ (0, 1). An equivalent definition is to find the vector T and a
positive definite symmetric matrix C that minimize det(C) subject to

1

n

n∑
i=1

ρ(di) = b0 (9)

with the above di and ρ.

As shown by Lopuhaä (1989) S estimators have a close connection to the M estimators and
the solution (T,C) is also a solution to an equation defining an M estimator as well as a
weighted sample mean and covariance matrix:

dji = [(xi −T(j−1))>(C(j−1))−1(x−T(j−1))]1/2

T(j) =
Σw(d

(j)
i)xi

Σw(d
(j)
i)

C(j) =
Σw(d

(j)
i)(xi −T(j))(xi −T(j))>

Σw(d
(j)
i)

(10)

The framework implements the S estimates in the class CovSest and provides four different
algorithms for their computation.

1. SURREAL: This algorithm was proposed by Ruppert (1992) as an analog to the algo-
rithm proposed by the same author for computing S estimators of regression.

2. Bisquare S estimation with HBDP start : S estimates with the biweight ρ function can
be obtained using the Equations (10) by a reweighted sample covariance and reweighted
sample mean algorithm as described in Maronna et al. (2006). The preferred approach
is to start the iteration from a bias-robust but possibly inefficient estimate which is
computed by some form of sub-sampling. Since Maronna et al. (2006) have shown that
the MVE has smallest maximum bias (Table 6.2, p. 196) it is recommended to use it as
initial estimate.

3. Rocke type S estimates: In Rocke (1996) it is shown that S estimators in high dimensions
can be sensitive to outliers even if the breakdown point is set to 50%. Therefore they
propose a modified ρ function called translated biweight (or t-biweight) and replace
the standardization step given in Equation (9) with a standardization step consisting
of equating the median of ρ(di) with the median under normality. The estimator is
shown to be more outlier resistant in high dimensions than the typical S estimators.
The specifics of the iteration are given in Rocke and Woodruff (1996), see also Maronna
et al. (2006). As starting values for the iteration any of the available methods in the
framework can be used. The recommended (and consequently the default) one is the
MVE estimator computed by CovMve().

4. Fast S estimates: Salibian-Barrera and Yohai (2006) proposed a fast algorithm for re-
gression S estimates similar to the FAST-LTS algorithm of Rousseeuw and Van Driessen

Valentin Todorov, Peter Filzmoser 17

(2006) and borrowing ideas from the SURREAL algorithm of Ruppert (1992). Simi-
larly, the FAST-S algorithm for multivariate location and scatter is based on modifying
each candidate to improve the S-optimality criterion thus reducing the number of the
necessary sub-samples required to achieve desired high breakdown point with high prob-
ability.

Object model for robust location and scatter estimation

The object model for the S4 classes and methods implementing the different multivariate
location and scatter estimators follows the proposed class hierarchy given in Section 2 and is
presented in Figure 4.

Cov

show() : void

plot() : void

summary() : SummaryCov

center : vector

cov : matrix

n.obs : numeric

X : data.frame

mah : vector

method : character

CovMcd

CovMcd() : CovMcd

alpha : numeric

quan : numeric

best : vector

raw.center : vector

raw.cov : matrix

raw.mah : vector

raw.wt : vector

raw.cnp2 : vector

cnp2 : vector

CovRobust

show() : void

plot() : void

summary() : SummaryCovRobust

iter : numeric

crit : numeric

wt : vector

CovMest

CovMest() : CovMest

vt : vector

psix : PsiFun

CovOgk

CovOgk() : CovOgk

raw.center : vector

raw.cov : matrix

raw.mah : vector

raw.wt : vector

SummaryCov

show() : void

SummaryCovRobust

show() : void

CovControl

restimate(data : data.frame) : CovRobust

trace : logical

tolSolve : numeric

CovClassic

CovClassic() : CovClassic

CovMve

CovMve() : CovMve

alpha : numeric

raw.center : vector

quan : numeric

best : vector

raw.cov : matrix

raw.mah : vector

raw.wt : vector

CovSest

CovSest() : CovSest

CovSde

CovSde() : CovSde

Figure 4: Object model for robust location and scatter estimation.

The abstract class Cov serves as a base class for deriving all classes representing classical and
robust location and scatter estimation methods. It defines the common slots and the cor-
responding accessor methods, provides implementation for the general methods like show(),

18 OOF for Robust Multivariate Analysis

plot() and summary(). The slots of Cov hold some input or default parameters as well as
the results of the computations: the location, the covariance matrix and the distances. The
show() method presents brief results of the computations and the summary() method returns
an object of class SummaryCov which has its own show() method. As in the other sections
of the framework these slots and methods are defined and documented only once in this base
class and can be used by all derived classes. Whenever new data (slots) or functionality
(methods) are necessary, they can be defined or redefined in the particular class.

The classical location and scatter estimates are represented by the class CovClassic which
inherits directly from Cov (and uses all slots and methods defined there). The function
CovClassic() serves as a constructor (generating function) of the class. It can be called by
providing a data frame or matrix. As already demonstrated in Section 3 the methods show()
and summary() present the results of the computations. The plot() method draws different
diagnostic plots which are shown in one of the next sections. The accessor functions like
getCenter(), getCov(), etc. are used to access the corresponding slots.

Another abstract class, CovRobust is derived from Cov, which serves as a base class for all
robust location and scatter estimators.

The classes representing robust estimators like CovMcd, CovMve, etc. are derived from CovRobust

and provide implementation for the corresponding methods. Each of the constructor functions
CovMcd(), CovMve(),CovOgk(), CovMest() and CovSest() performs the necessary computa-
tions and returns an object of the class containing the results. Similarly as the CovClassic()

function, these functions can be called either with a data frame or a numeric matrix.

Controlling the estimation options

Although the different robust estimators of multivariate location and scatter have some con-
trolling options in common, like the tracing flag trace or the numeric tolerance tolSolve to
be used for inversion (solve) of the covariance matrix in mahalanobis(), each of them has
more specific options. For example, the MCD and MVE estimators (CovMcd() and CovMve())
can specify alpha which controls the size of the subsets over which the determinant (the vol-
ume of the ellipsoid) is minimized. The allowed values are between 0.5 and 1 and the default
is 0.5. Similarly, these estimators have parameters nsamp for the number of subsets used for
initial estimates and seed for the initial seed for R’s random number generator while the
M and S estimators (CovMest and CovSest) have to specify the required breakdown point
(allowed values between (n − p)/(2 ∗ n) and 1 with default 0.5) as well as the asymptotic
rejection point, i.e., the fraction of points receiving zero weight (Rocke and Woodruff 1996).

These parameters can be passed directly to the corresponding constructor function but ad-
ditionally there exists the possibility to use a control object serving as a container for the
parameters. The object model for the control objects shown in Figure 5 follows the proposed
class hierarchy—there is a base class CovControl which holds the common parameters and
from this class all control classes holding the specific parameters of their estimators are de-
rived. These classes have only a constructor function for creating new objects and a method
restimate() which takes a data frame or a matrix, calls the corresponding estimator to
perform the calculations and returns the created class with the results.

Apart from providing a structured container for the estimation parameters this class hierarchy
has the following additional benefits:

Valentin Todorov, Peter Filzmoser 19

CovControlMcd

restimate(data : data.frame) : CovMcd

alpha : numeric

nsamp : numeric

seed : vector

use.correction : logical

CovControl

restimate(data : data.frame) : CovRobust

trace : logical

tolSolve : numeric

CovControlMest

restimate(data : data.frame) : CovMest

r : numeric

arp : numeric

eps : double

maxiter : integer

CovControlOgk

restimate(data : data.frame) : CovOgk

mrob() : double

vrob() : double

niter : numeric

beta : numeric

smrob : character

svrob : character

CovControlMve

restimate(data : data.frame) : CovMve

alpha : double

nsamp : integer

seed : vector

CovControlSest

restimate(data : data.frame) : CovSest

bdp : double

nsamp : integer

seed : vector

method : character

CovControlSde

restimate(data : data.frame) : CovSde

nsamp : numeric

maxres : numeric

tune : numeric

eps : numeric

prob : numeric

seed : vector

Figure 5: Object model of the control classes for robust location and scatter estimation.

• the parameters can be passed easily to another multivariate method, for example the
principal components analysis based on a covariance matrix PcaCov() (see Section 4.2)
can take a control object which will be used to estimate the desired covariance (or
correlation) matrix. In the following example a control object holding the parameters
for S estimation will be created and then PcaCov() will be called with this object.

R> ##

R> ## Controlling the estimation options with a control object

R> ##

R> control <- CovControlSest(method="biweight")

R> PcaCov(hbk.x, cov.control=control)

Call:

PcaCov(x = hbk.x, cov.control = control)

Standard deviations:

[1] 1.467123 1.328905 1.199347

R>

• the class hierarchy of the control objects allows to handle different estimator objects
using a uniform interface thus leveraging one of the most important features of the
object oriented programming, the polymorphism. In the following example we create a
list containing different control objects and then via sapply we call the generic function
restimate() on each of the objects in the list. The outcome will be a list containing the

20 OOF for Robust Multivariate Analysis

objects resulting from these calls (all are derived from CovRobust). This looping over
the different estimation methods is very useful for implementing simulation studies.

R> ##

R> ## Controlling the estimation options: example

R> ## of looping through several estimators

R> ##

R> cc <- list(CovControlMcd(), CovControlMest(), CovControlOgk(), CovControlSest(), CovControlSest(method="rocke"))

R> clist <- sapply(cc, restimate, x=delivery.x)

R> sapply(clist, data.class)

[1] "CovMcd" "CovMest" "CovOgk" "CovSest" "CovSest"

R> sapply(clist, getMeth)

[1] "Fast MCD(alpha=0.5 ==> h=14); nsamp = 500; (n,k)mini = (300,5)"

[2] "M-Estimates"

[3] "Orthogonalized Gnanadesikan-Kettenring Estimator"

[4] "S-estimates: S-FAST"

[5] "S-estimates: Rocke type"

A generalized function for robust location and covariance estimation: CovRobust()

The provided variety of estimation methods, each of them with different parameters as well
as the object models described in the previous sections can be overwhelming for the user,
especially for the novice who does not care much about the technical implementation of
the framework. Therefore a function is provided which gives a quick access to the robust
estimates of location and covariance matrix. This function is loosely modeled around the
abstract factory design pattern (see Gamma et al. 1995, page 87) in the sense that it creates
concrete objects of derived classes and returns the result over a base class interface. The class
CovRobust is abstract (defined as VIRTUAL) and no objects of it can be created but any of
the classes derived from CovRobust, such as CovMcd or CovOgk, can act as an object of class
CovRobust. The function CovRobust() which is technically not a constructor function can
return an object of any of the classes derived from CovRobust according to the user request.
This request can be specified in one of three forms:

• If only a data frame or matrix is provided and the control parameter is omitted, the
function decides which estimate to apply according to the size of the problem at hand.
If there are less than 1000 observations and less than 10 variables or less than 5000
observations and less than 5 variables, Stahel-Donoho estimator will be used. Otherwise,
if there are less than 50000 observations, either bisquare S estimates (in case of less than
10 variables) or Rocke type S estimates (for 10 to 20 variables) will be used. In both
cases the S iteration starts at the initial MVE estimate. And finally, if there are more
than 50000 observations and/or more than 20 variables the Orthogonalized Quadrant
Correlation estimator (CovOgk with the corresponding parameters) is used. This is
illustrated by the following example.

Valentin Todorov, Peter Filzmoser 21

R> ##

R> ## Automatically select the appropriate estimator according

R> ## to the problem size.

R> ##

R> getMeth(CovRobust(matrix(rnorm(40), ncol=2))) # 20x2 - SDE

[1] "Stahel-Donoho estimator"

R> getMeth(CovRobust(matrix(rnorm(16000), ncol=8))) # 2000x8 - bisquare S

[1] "S-estimates: bisquare"

R> getMeth(CovRobust(matrix(rnorm(20000), ncol=10))) # 2000x10 - Rocke S

[1] "S-estimates: Rocke type"

R> getMeth(CovRobust(matrix(rnorm(200000), ncol=2))) # 100000x2 - OGK

[1] "Orthogonalized Gnanadesikan-Kettenring Estimator"

• The simplest way to choose an estimator is to provide a character string with the name
of the estimator—one of "mcd", "ogk", "m", "s-fast", "s-rocke", etc.

R> ##

R> ## Rocke-type S-estimates

R> ##

R> getMeth(CovRobust(matrix(rnorm(40), ncol=2), control="rocke"))

[1] "S-estimates: Rocke type"

• If it is necessary to specify also some estimation parameters, the user can create a
control object (derived from CovControl) and pass it to the function together with the
data. For example to compute the OGK estimator using the median absolute deviation
(MAD) as a scale estimate and the quadrant correlation (QC) as a pairwise correlation
estimate we create a control object ctrl passing the parameters s_mad and s_qc to the
constructor function and then call CovRobust with this object. The last command line
illustrates the accessor method for getting the correlation matrix of the estimate as well
as a nice formatting method for covariance matrices.

R> ##

R> ## Specify some estimation parameters through a control object.

R> ## The last command line illustrates the accessor method

R> ## for getting the correlation matrix of the estimate

R> ## as well as a nice formatting method for covariance

R> ## matrices.

R> ##

R> data("toxicity")

R> ctrl <- CovControlOgk(smrob = "s_mad", svrob = "qc")

R> est <- CovRobust(toxicity, ctrl)

R> round(getCenter(est),2)

22 OOF for Robust Multivariate Analysis

toxicity logKow pKa ELUMO Ecarb Emet RM IR

-0.20 1.40 0.40 4.01 16.99 3.25 35.41 1.46

Ts P

41.72 1.46

R> as.dist(round(getCorr(est), 2))

toxicity logKow pKa ELUMO Ecarb Emet RM IR Ts

logKow 0.72

pKa -0.41 -0.13

ELUMO -0.26 0.23 0.33

Ecarb 0.19 0.68 0.48 0.61

Emet 0.56 0.87 0.16 0.09 0.68

RM 0.37 0.81 0.35 0.30 0.90 0.88

IR -0.20 0.17 0.41 0.18 0.58 0.22 0.59

Ts -0.57 -0.49 0.45 -0.17 -0.04 -0.27 0.00 0.70

P -0.20 0.17 0.41 0.18 0.58 0.22 0.59 1.00 0.70

Visualization of the results

The default plot accessed through the method plot() of class CovRobust is the Distance-
Distance plot introduced by Rousseeuw and van Zomeren (1991). An example of this graph,
which plots the robust distances versus the classical Mahalanobis distances is shown in Fig-
ure 3. The dashed line represents the points for which the robust and classical distances are

equal. The horizontal and vertical lines are drawn at values x = y =
√
χ2
p,0.975. Points beyond

these lines can be considered as outliers and are identified by their labels.

The other available plots are accessible either interactively or through the which parameter of
the plot() method. The left panel of Figure 6 shows an example of the distance plot in which
robust and classical Mahalanobis distances are shown in parallel panels. The outliers have
large robust distances and are identified by their labels. The right panel of Figure 6 shows
a Quantile-Quantile comparison plot of the robust and the classical Mahalanobis distances
versus the square root of the quantiles of the chi-squared distribution.

The next plot shown in Figure 7 presents a scatter plot of the data on which the 97.5% robust
and classical confidence ellipses are superimposed. Currently this plot is available only for

bivariate data. The observations with distances larger than
√
χ2
p,0.975 are identified by their

subscript. In the right panel of Figure 7 a screeplot of the milk data set is shown, presenting
the robust and classical eigenvalues.

R> ##

R> ## a) scatter plot of the data with robust and classical confidence ellipses.

R> ## b) screeplot presenting the robust and classical eigenvalues

R> ##

R> data("milk")

Valentin Todorov, Peter Filzmoser 23

Distance Plot

Index

M
ah

al
an

ob
is

 d
is

ta
nc

e

0

2

4

6

8

0 5 10 15 20 25

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

11
20

22

9
Robust

0 5 10 15 20 25

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

22
9

Classical

Chi−Square QQ−Plot

Quantiles of the chi−squared distribution

M
ah

al
an

ob
is

 d
is

ta
nc

e

0

2

4

6

8

0.5 1.0 1.5 2.0 2.5

● ●
●●●

●
●●●●

●●●
●●●●

●●●

●

●

●

●

●

11
20

22

9

Robust

0.5 1.0 1.5 2.0 2.5

● ● ●

●●●●●●●●●●
●●●●●

●●

● ●
●

●

●

22
9

Classical

Figure 6: Distance plot and Chi-square Q-Q plot of the robust and classical distances.

R> usr<-par(mfrow=c(1,2))

R> plot(CovMcd(delivery[,1:2]), which="tolEllipsePlot", classic=TRUE)

R> plot(CovMcd(milk), which="screeplot", classic=TRUE)

R> par(usr)

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

−10 0 10 20 30

−
50

0
0

50
0

10
00

15
00

11
20 22

9

Tolerance ellipse (97.5%)

● robust
classical

1 2 3 4 5 6 7 8

0
5

10
15

Index

E
ig

en
va

lu
es

● robust
classical

●

●

●

● ● ● ● ●

Scree plot

Figure 7: Robust and classical tolerance ellipse for the delivery data and robust and classical
screeplot for the milk data.

24 OOF for Robust Multivariate Analysis

4.2. Principal component analysis

Principal component analysis is a widely used technique for dimension reduction achieved
by finding a smaller number q of linear combinations of the originally observed p variables
and retaining most of the variability of the data. Thus PCA is usually aiming at a graphical
representation of the data in a lower dimensional space. The classical approach to PCA mea-
sures the variability through the empirical variance and is essentially based on computation
of eigenvalues and eigenvectors of the sample covariance or correlation matrix. Therefore the
results may be extremely sensitive to the presence of even a few atypical observations in the
data. These discrepancies will carry over to any subsequent analysis and to any graphical
display related to the principal components such as the biplot.

The following example in Figure 8 illustrates the effect of outliers on the classical PCA. The
data set hbk from the package robustbase consists of 75 observations in 4 dimensions (one
response and three explanatory variables) and was constructed by Hawkins, Bradu and Kass
in 1984 for illustrating some of the merits of a robust technique (see Rousseeuw and Leroy
1987). The first 10 observations are bad leverage points, and the next four points are good
leverage points (i.e., their x are outlying, but the corresponding y fit the model quite well).
We will consider only the X-part of the data. The left panel shows the plot of the scores on
the first two classical principal components (the first two components account for more than
98% of the total variation). The outliers are identified as separate groups, but the regular
points are far from the origin (where the mean of the scores should be located). Furthermore,
the ten bad leverage points 1–10 lie within the 97.5% tolerance ellipse and influence the
classical estimates of location and scatter. The right panel shows the same plot based on
robust estimates. We see that the estimate of the center is not shifted by the outliers and
these outliers are clearly separated by the 97.5% tolerance ellipse.

●●
●

●●●●● ●●
●

●

●

●

●●●
●
●●●
●●●

●
●
●●

●
●

●
●●

● ●●
●●

●

●
●●

●

●
●

●● ●
●●●

●●

●●●

●
●
●●
●

●

●
●

●

●●
●● ●●●●

●

●

−40 −20 0 20 40

−
30

−
20

−
10

0
10

20
30

Classical

PC1

P
C

2

1−10

14

11−13

●
●

●

●
●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

● ●
●●

●

●●
●

●

●
●

●
●

●

●

●

●

● ●●
●

●
●
●

●

●

●
●●●

●
●●

●
●

●

●
●

●

●
● ●

●

●
●

●●
●

●

−10 0 10 20 30 40

−
20

−
10

0
10

Robust (MCD)

PC1

P
C

2

1−10
11

12

13

14

Figure 8: Plot of the first two principal components of the Hawkins, Bradu and Kass data
set: classical and robust.

Valentin Todorov, Peter Filzmoser 25

PCA was probably the first multivariate technique subjected to robustification, either by
simply computing the eigenvalues and eigenvectors of a robust estimate of the covariance
matrix or directly by estimating each principal component in a robust manner. Different
approaches to robust PCA are briefly presented in the next subsections with the emphasis
on those methods which are available in the framework. Details about the methods and
algorithms can be found in the corresponding references. The object model is described and
examples are given.

PCA based on robust covariance matrix (MCD, OGK, MVE, etc.)

The most straightforward and intuitive method to obtain robust PCA is to replace the classical
estimates of location and covariance by their robust analogues. In the earlier works M estima-
tors of location and scatter were used for this purpose (see Devlin et al. 1981; Campbell 1980)
but these estimators have the disadvantage of low breakdown point in high dimensions. To
cope with this problem Naga and Antille (1990) used the MVE estimator and Todorov et al.
(1994b) used the MCD estimator. Croux and Haesbroeck (2000) investigated the properties
of the MCD estimator and computed its influence function and efficiency.

The package stats in base R contains the function princomp() which performs a principal
components analysis on a given numeric data matrix and returns the results as an object
of S3 class princomp. This function has a parameter covmat which can take a covariance
matrix, or a covariance list as returned by cov.wt, and if supplied, it is used rather than the
covariance matrix of the input data. This allows to obtain robust principal components by
supplying the covariance matrix computed by cov.mve or cov.mcd from the package MASS.
One could ask why is it then necessary to include such type of function in the framework
(since it already exists in the base package). The essential value added of the framework,
apart from implementing many new robust multivariate methods is the unification of the
interfaces by leveraging the object orientation provided by the S4 classes and methods. The
function PcaCov() computes robust PCA by replacing the classical covariance matrix with
one of the robust covariance estimators available in the framework—MCD, OGK, MVE, M, S
or Stahel-Donoho, i.e., the parameter cov.control can be any object of a class derived from
the base class CovControl. This control class will be used to compute a robust estimate of
the covariance matrix. If this parameter is omitted, MCD will be used by default. Of course
any newly developed estimator following the concepts of the framework can be used as input
to the function PcaCov().

Projection pursuit methods

The second approach to robust PCA uses projection pursuit (PP) and calculates directly the
robust estimates of the eigenvalues and eigenvectors. Directions are seeked for, which max-
imize the variance (classical PCA) of the data projected onto them. Replacing the variance
with a robust measure of spread yields robust PCA. Such a method was first introduced
by Li and Chen (1985) using an M estimator of scale Sn as a projection index (PI). They
showed that the PCA estimates inherit the robustness properties of the scale estimator Sn.
Unfortunately, in spite of the good statistical properties of the method, the algorithm they
proposed was too complicated to be used in practice. A more tractable algorithm in these
lines was first proposed by Croux and Ruiz-Gazen (1996) and later improved by Croux and
Ruiz-Gazen (2005). To improve the performance of the algorithm for high dimensional data

26 OOF for Robust Multivariate Analysis

a new improved version was proposed by Croux et al. (2007). The latter two algorithms
are available in the package pcaPP (see Filzmoser et al. 2009) as functions PCAproj() and
PCAgrid().

In the framework these methods are represented by the classes PcaProj and PcaGrid. Their
generating functions provide simple wrappers around the original functions from pcaPP and
return objects of the corresponding class, derived from PcaRobust.

A major advantage of the PP-approach is that it searches for the eigenvectors consecutively
and in case of high dimensional data when we are interested in only the first one or two prin-
cipal components this results in reduced computational time. Even more, the PP-estimates
cope with the main drawback of the covariance-based estimates—they can be computed for
data matrices with more variables than observations.

Hubert method (ROBPCA)

The PCA method proposed by Hubert et al. (2005) tries to combine the advantages of both
approaches—the PCA based on a robust covariance matrix and PCA based on projection
pursuit. A brief description of the algorithm follows, for details see the relevant references
(Hubert et al. 2008).

Let n denote the number of observations, and p the number of original variables in the input
data matrix X. The ROBPCA algorithm finds a robust center m of the data and a loading
matrix P of dimension p×k. Its columns are orthogonal and define a new coordinate system.
The scores T, an n× k matrix, are the coordinates of the centered observations with respect
to the loadings:

T = (X− 1m>)P (11)

where 1 is a column vector with all n components equal to 1. The ROBPCA algorithm yields
also a robust covariance matrix (often singular) which can be computed as

S = PLP> (12)

where L is the diagonal matrix with the eigenvalues l1, . . . , lk. This is done in the following
three main steps:

Step 1: The data are preprocessed by reducing their data space to the subspace spanned
by the n observations. This is done by singular value decomposition of the input data matrix.
As a result the data are represented in a space whose dimension is rank(X), being at most
n− 1 without loss of information.

Step 2: In this step a measure of outlyingness is computed for each data point. For this
purpose the data points are projected on the n(n − 1)/2 univariate directions through each
two points. If n is too large, maxdir directions are chosen at random (maxdir defaults to
250 but can be changed by the user). On every direction the univariate MCD estimator of
location and scale is computed and the standardized distance to the center is measured. The
largest of these distances (over all considered directions) is the outlyingness measure of the
data point. The h data points with smallest outlyingness measure are used to compute the
covariance matrix Σh and to select the number k of principal components to retain. This is
done by finding k such that lk/l1 ≥ 10−3 and Σk

j=1lj/Σ
r
j=1lj ≥ 0.8. Alternatively the number

of principal components k can be specified by the user after inspecting the scree plot.

Valentin Todorov, Peter Filzmoser 27

Step 3: The data points are projected on the k-dimensional subspace spanned by the k
eigenvectors corresponding to the largest k eigenvalues of the matrix Σh. The location and
scatter of the projected data are computed using the reweighted MCD estimator, and the
eigenvectors of this scatter matrix yield the robust principal components.

Spherical principal components (SPC)

The spherical principal components procedure was first proposed by Locantore et al. (1999)
as a method for functional data analysis. The idea is to perform classical PCA on the data,
projected onto a unit sphere. The estimates of the eigenvectors are consistent if the data are
elliptically distributed (see Boente and Fraiman 1999) and the procedure is extremely fast.
Although not much is known about the efficiency of this method, the simulations of Maronna
(2005) show that it has very good performance. If each coordinate of the data is normalized
using some kind of robust scale, like for example the MAD, and then SPC is applied, we
obtain “elliptical PCA”, but unfortunately this procedure is not consistent.

Object model for robust PCA and examples

The object model for the S4 classes and methods implementing the principal component
analysis methods follows the proposed class hierarchy given in Section 2 and is presented in
Figure 9. The abstract class Pca serves as a base class for deriving all classes representing

Pca

show() : void

print() : void

plot() : void

summary() : SummaryPca

predict() : matrix

center : vector

loadings : matrix

eigenvalues : vector

scores : matrix

PcaClassic

PcaClassic() : PcaClassic
PcaRobust

getCov() : matrix

getPrcomp() : list

k : numeric

PcaHubert

PcaHubert() : PcaHubert

alpha : numeric

quan : numeric

PcaGrid

PcaGrid() : PcaGrid

method : character

maxit : numeric

PcaProj

PcaProj() : PcaProj

method : character

maxit : numeric

calcMethod : character

PcaControl

restimate() : PcaRobust

trace : logical

pcaPP

SummaryPca

show() : void

PcaLocantore

PcaLocantore() : PcaLocantore

PcaCov

PcaCov() : PcaCov

Figure 9: Object model for robust Principal Component Analysis.

classical and robust principal components analysis methods. It defines the common slots
and the corresponding accessor methods, provides implementation for the general methods

28 OOF for Robust Multivariate Analysis

like show(), plot(), summary() and predict(). The slots of Pca hold some input or default
parameters like the requested number of components as well as the results of the computations:
the eigenvalues, the loadings and the scores. The show() method presents brief results of the
computations, and the predict() method projects the original or new data to the space
spanned by the principal components. It can be used either with new observations or with
the scores (if no new data are provided). The summary() method returns an object of class
SummaryPca which has its own show() method. As in the other sections of the framework
these slots and methods are defined and documented only once in this base class and can be
used by all derived classes. Whenever new information (slots) or functionality (methods) are
necessary, they can be defined or redefined in the particular class.

Classical principal component analysis is represented by the class PcaClassic which inherits
directly from Pca (and uses all slots and methods defined there). The function PcaClassic()

serves as a constructor (generating function) of the class. It can be called either by providing
a data frame or matrix or a formula with no response variable, referring only to numeric
variables. Let us consider the following simple example with the data set hbk from the
package robustbase. The code line

R> PcaClassic(hbk.x)

can be rewritten as (and is equivalent to) the following code line using the formula interface

R> PcaClassic(~ ., data = hbk.x)

The function PcaClassic() performs the standard principal components analysis and returns
an object of the class PcaClassic.

R> ##

R> ## Classical PCA

R> ##

R> pca <- PcaClassic(~., data=hbk.x)

R> pca

Call:

PcaClassic(formula = ~., data = hbk.x)

Standard deviations:

[1] 14.7024532 1.4075073 0.9572508

R> summary(pca)

Call:

PcaClassic(formula = ~., data = hbk.x)

Importance of components:

PC1 PC2 PC3

Standard deviation 14.7025 1.40751 0.95725

Proportion of Variance 0.9868 0.00904 0.00418

Cumulative Proportion 0.9868 0.99582 1.00000

Valentin Todorov, Peter Filzmoser 29

R> plot(pca)

R> getLoadings(pca)

PC1 PC2 PC3

X1 0.2398767 -0.1937359 0.95127577

X2 0.5547042 0.8315255 0.02947174

X3 0.7967198 -0.5206071 -0.30692969

The show() method displays the standard deviations of the resulting principal components,
the loadings and the original call. The summary() method presents the importance of the
calculated components. The plot() draws a PCA diagnostic plot which is shown and de-
scribed later. The accessor functions like getLoadings(), getEigenvalues(), etc. are used
to access the corresponding slots, and predict() is used to rotate the original or new data
to the space of the principle components.

Another abstract class, PcaRobust is derived from Pca, which serves as a base class for all
robust principal components methods.

The classes representing robust PCA methods like PcaHubert, PcaLocantore, etc. are derived
from PcaRobust and provide implementation for the corresponding methods. Each of the
constructor functions PcaCov(), PcaHubert(), PcaLocantore(), PcaGrid() and PcaProj()

performs the necessary computations and returns an object of the class containing the results.
In the following example the same data are analyzed using the projection pursuit method
PcaGrid().

R> ##

R> ## Robust PCA

R> ##

R> rpca <- PcaGrid(~., data=hbk.x)

R> rpca

Call:

PcaGrid(formula = ~., data = hbk.x)

Standard deviations:

[1] 1.927383 1.785252 1.671368

R> summary(rpca)

Call:

PcaGrid(formula = ~., data = hbk.x)

Importance of components:

PC1 PC2 PC3

Standard deviation 1.9274 1.7853 1.6714

Proportion of Variance 0.3831 0.3287 0.2881

Cumulative Proportion 0.3831 0.7119 1.0000

Similar to the function PcaClassic(), these functions can be called either with a data frame
or matrix or by a formula interface.

30 OOF for Robust Multivariate Analysis

Visualization of PCA results

One of the most important applications of PCA, besides dimensionality reduction is data
visualization. In the framework several plots for visualizing the results of the analysis are
available. The plot() methods are implemented in the base class Pca and thus they are
available for all objects derived from the class Pca no matter if classical and robust. The
most straightforward plot is the screeplot which plots the variances against the number of
principal components (similar to the screeplot for the standard prcomp() and princomp()

functions). It is a useful tool for determining the number of relevant principal components.
An example of the classical and robust screeplot for the milk data from robustbase is shown
in Figure 10.

R> ##

R> ## Screeplot for classical and robust PCA of the milk data set.

R> ##

R> usr <- par(mfrow=c(1,2))

R> screeplot(PcaClassic(milk), type="lines",

+ main="Screeplot: classical PCA", sub="milk data")

R> screeplot(PcaHubert(milk), type="lines", main="Screeplot: robust PCA",

+ sub="milk data")

R> par(usr)

●

●

●
●

● ● ● ●

Screeplot: classical PCA

milk data

V
ar

ia
nc

es

0
5

10
15

1 2 3 4 5 6 7 8

●

●

Screeplot: robust PCA

milk data

V
ar

ia
nc

es

3
4

5
6

7

1 2

Figure 10: Screeplot for classical and robust PCA of the milk data set.

Another plot borrowed from standard R is the biplot. The biplot (Gabriel 1971) represents
both the observations and variables in the plane of (the first) two principal components
allowing the visualization of the magnitude and sign of each variable’s contribution to these

Valentin Todorov, Peter Filzmoser 31

principal components. Each observation (row of scores) is represented as a point in the biplot
and each variable is represented as an arrow. The arrows graphically indicate the proportion
of the original variance explained by the (first) two principal components and their direction
indicates the relative loadings on these components. Figure 11 shows an example of the
robust biplot of the un86 data set which contains seven socioeconomic variables observed
for 73 countries. The data set is from World Statistics in Brief, Number 10, a 1986 UN
publication. It was used in Daigle and Rivest (1992) to illustrate a robust biplot method.

R> ##

R> ## Robust biplot for the UN86 data

R> ##

R> data("un86")

R> set.seed(9)

R> usr<-par(mfrow=c(1,2))

R> biplot(PcaCov(un86, corr=TRUE, cov.control=NULL),

+ main="Classical biplot", col=c("gray55", "red"))

R> biplot(PcaCov(un86, corr=TRUE), main="Robust biplot",

+ col=c("gray55", "red"))

R> par(usr)

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Classical biplot

PC1

P
C

2

AfganistanArgentinaAustraliaAustria
Bangladesh

Barbados
Belgium

Brasil

BulgariaCameroonCanadaChile

China

CyprusDanmarkDominican_Rep.Ecuador
Egypt

El_Salvador
Ethiopia
Finland

France
GreeceGuatemalaHaitiHondurasHungaryIceland

India

Indonesia

IranIraqIrelandIsrael
Italy

Japan

Jordan KoreaMadagaskar

Malta

Mexico
Morocco

NetherlandsNew_Zeland

Nigeria

Norway

Pakistan

PanamaParaguayPolandPortugalEast_Germany
West_Germany

Saudi_ArabiaSenegalSomalia
Spain

SwedenSwitzerlandTanzaniaThailand
TogoTunisia
Turkey

Uganda United_KingdomUrugay

USA
USSR

VenezuelaYugoslaviaZambiaZimbabwe

0 500 1000 1500

0
50

0
10

00
15

00

POP

MOR
CARDRGNP

DEN
TB

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Robust biplot

PC1

P
C

2

Afganistan

Argentina
Australia

Austria

Bangladesh

Barbados

Belgium
Brasil

Bulgaria

Cameroon

CanadaChile

China

CyprusDanmark

Dominican_Rep.
Ecuador
EgyptEl_SalvadorEthiopia

Finland
FranceGreece

Guatemala

Haiti

HondurasHungary

Iceland

India

Indonesia
Iran
Iraq
Ireland

IsraelItaly

Japan

Jordan

Korea

Madagaskar

Malta

Mexico
Morocco

Netherlands

New_Zeland

Nigeria

Norway

Pakistan

PanamaParaguay
PolandPortugalEast_Germany
West_Germany

Saudi_Arabia
SenegalSomalia

Spain
Sweden

Switzerland
TanzaniaThailand

Togo
Tunisia
TurkeyUganda

United_Kingdom

UrugayUSAUSSR
Venezuela

YugoslaviaZambiaZimbabwe

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

POP

MOR

CARDRGNP

DEN

TB

Figure 11: Classical (left panel) and robust (right panel) biplot for the UN86 data.

In the context of PCA Hubert et al. (2005) defined a diagnostic plot or outlier map which
helps to distinguish between the regular observations and the different types of outliers. This
plot is based on the score distances and orthogonal distances computed for each observation.

32 OOF for Robust Multivariate Analysis

The score distances are given by

SDi =

√√√√ k∑
j=1

t2ij
lj
, i = 1, . . . , n (13)

where tij are the elements of the scores from (11) and lj are the eignevalues (the diagonal
elements of the matrix L in (12)). The orthogonal distances ODi of each observation to the
subspace spanned by the first k (1 ≤ k ≤ r, r is the rank of the data) principal components
are defined by

ODi = ||xi − µ̂−P(k)t
(k)
i ||, i = 1, . . . , n (14)

where xi denotes the ith observation, µ̂ is the estimated center of the data, t
(k)
i is the ith

score vector in the space of the first k principal components and the matrix P(k) contains the
first k estimated eigenvectors in its columns. The diagnostic plot is constructed by plotting
the score distances on the horizontal axis, the orthogonal distances on the vertical axis and
drawing two cutoff lines which will help to classify the observations. The cutoff value on the
horizontal axis (for the score distances) is taken as the 97.5% quantile of χ2

k distribution, i.e.,

ch =
√
χ2
k,0.975. For the cutoff value on the vertical axis (for the orthogonal distances) the

Wilson-Hilferty transformation for a χ2 distribution is used (which assumes that the ODi to
the power of 2/3 are approximately normally distributed). The parameters µ and σ of the

normal distribution can be estimated by the median and MAD of the values OD
2/3
i , and the

critical value can be taken as cv = (µ̂ + σ̂z0.975)
3/2 where z0.975 is the the 97.5% quantile of

the standard normal distribution.

An example of the classical and robust diagnostic plot for the hbk data set from robustbase
is shown in Figure 12.

R> ##

R> ## An example of the classical and robust diagnostic

R> ## plot for the hbk data set

R> ##

R> usr<-par(mfrow=c(1,2))

R> plot(PcaClassic(hbk.x, k=2), sub="data set: hbk, k=2")

R> plot(PcaHubert(hbk.x, k=2), sub="data set: hbk, k=2")

R> par(usr)

If k = p the orthogonal distances are not meaningful and the diagnostic plot shows a simple
distance plot of the score distances (distances vs index). An example is shown in Figure 13.

R> ##

R> ## If k=p the orthogonal distances are not meaningful and

R> ## simple distance plot of the score distances will be shown

R> ##

R> usr<-par(mfrow=c(1,2))

R> plot(PcaClassic(hbk.x, k=3), sub="data set: hbk.x, k=3")

Valentin Todorov, Peter Filzmoser 33

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

Classical PCA

data set: hbk, k=2
Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

53
52

16

13

12

14

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●●

●
●

●

●●
●

●
●

● ●●

●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

0 5 10 15 20 25 30

0
5

10
15

Robust PCA

data set: hbk, k=2
Score distance

O
rt

ho
go

na
l d

is
ta

nc
e

4

11

1212

13

14

Figure 12: Classical and robust diagnostic plot for the hbk data with k = 2.

R> plot(PcaHubert(hbk.x, k=3), sub="data set: hbk.x, k=3")

R> par(usr)

●●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

0 20 40 60

0
1

2
3

4
5

6

data set: hbk.x, k=3
Index

S
co

re
 d

is
ta

nc
e

13

12

14

Classical PCA

●
●

●
●

●

●●
●

●
●

●
●

●

●

●●●
●●

●
●

●
●●

●●●
●●

●●●●
●●

●
●●●

●
●●●●●●●●●●●

●●
●●●●●●

●●●●●●●
●

●●●●●●●
●

0 20 40 60

0
5

10
15

20
25

30
35

data set: hbk.x, k=3
Index

S
co

re
 d

is
ta

nc
e

1312

14

Robust PCA

Figure 13: Classical and robust diagnostic plot for the x-part of the hbk data set with k =
3 = p.

4.3. Linear and quadratic discriminant analysis

34 OOF for Robust Multivariate Analysis

The problem of discriminant analysis arises when one wants to assign an individual to one of
g populations at the basis of a p-dimensional feature vector x. Let the p-dimensional random
variable xk come from a population πk with underlying density fk. Further let the prior
probability of group k, i.e., the probability that an individual comes from population πk be
αk, Σg

k=1αk = 1. The prior probabilities αk are usually estimated by the empirical frequencies
nk in the k-th group of the training set, i.e., α̂k = nk/Σ

g
j=1nj . Then the Bayesian discriminant

rule assigns an observation x to that population πk for which the expression ln(αkfk(x)) is
maximal over all groups k = 1, . . . , g. Usually it is assumed that the k populations πk are
p-dimensional normally distributed,

πk ∼ N(µk,Σk) k = 1, . . . , g. (15)

With this assumption the discriminant rule is equivalent to maximizing the discriminant scores
Dk(x) given by

Dk(x) = −1

2
ln |Σk| −

1

2
(x− µk)>Σ−1k (x− µk) + ln(αk) (k = 1, . . . , g), (16)

and individual x is assigned to πk if

Dk(x) = arg max
j
Dj(x). (17)

The application of the discrimination rule given by Equations (16) and (17) is referred to as
quadratic discriminant analysis (QDA), since the groups are separated by quadratic bound-
aries.

If it is further assumed that all group covariance matrices are equal (Σ1 = . . . = Σg = Σ),
then the overall probability of misclassification is minimized by assigning a new observation
x to population πk which maximizes

dk(x) = x>Σ−1µk −
1

2
µ>k Σ−1µk + ln(αk) (k = 1, . . . , g). (18)

The application of the discriminant rule given by Equation (18) is referred to as linear dis-
criminant analysis (LDA), since the scores dk(x) are linear in x.

If the means µk, k = 1, . . . , g, and the common covariance matrix Σ are unknown, which
is usually the case, a training set consisting of samples drawn from each of the populations
is required. In classical QDA and LDA the sample group means and sample covariance
matrices are used to estimate µk, Σk and Σ. The prior probabilities can be estimated by the
relative frequencies of observations in each particular group. Both QDA and LDA using the
classical estimates in (16) and (18) are vulnerable to the presence of outliers. The problem
of the non-robustness of the classical estimates in the setting of the quadratic and linear
discriminant analysis has been addressed by many authors: Todorov, Neykov, and Neytchev
(1990, 1994a) replaced the classical estimates by MCD estimates; Chork and Rousseeuw
(1992) used MVE instead; Hawkins and McLachlan (1997) defined the minimum within-
group covariance determinant estimator (MWCD) especially for the case of linear discriminant
analysis; He and Fung (2000) and Croux and Dehon (2001) used S estimates; Hubert and
Van Driessen (2004) applied the MCD estimates computed by the FAST-MCD algorithm.
For a recent review and comparison of these methods see Todorov and Pires (2007).

Valentin Todorov, Peter Filzmoser 35

A robust version of quadratic discriminant analysis can be obtained by substituting the pa-
rameters µk, Σk by their robust estimates. For this purpose the reweighted MCD estimates,
S estimates or OGK can be used. In the case of linear discriminant analysis a robust version of
the common covariance matrix Σ is necessary. There are several methods for estimating the
common covariance matrix based on a high breakdown point estimator which are considered
in one of the next subsections.

Object model for robust LDA and QDA

The object model for the S4 classes and methods implementing the linear and quadratic
discriminant analysis methods follows the proposed class hierarchy given in Section 2 and is
presented in Figure 14.

Lda

show() : void

plot() : void

summary() : SummaryLda

predict() : PredictLda

prior : vector

counts : vector

center : matrix

cov : matrix

ldf : matrix

ldfconst : vector

X : data.frame

grp : factor

SummaryLda

SummaryLda() : SummaryLda

show() : void

LdaRobust

method : character

Linda

Linda() : Linda

LdaClassic

LdaClassic() : LdaClassic

PredictLda

PredictLda() : PredictLda

show() : void

Qda

show() : void

plot() : void

summary() : SummaryQda

predict() : PredictQda

prior : vector

counts : vector

center : matrix

cov : array

covinv : array

covdet : vector

X : data.frame

grp : factor

SummaryQda

SummaryQda() : SummaryQda

show() : void

PredictQda

PredictQda() : PredictQda

show() : void

QdaRobust

method : character

QdaCov

QdaCov() : QdaCov

QdaClassic

QdaClassic() : QdaClassic

Figure 14: Object models for robust linear discriminant analysis and quadratic discriminant
analysis.

The abstract classes Lda and Qda serve as base classes for deriving all classes representing
classical and robust methods for linear and quadratic discriminant analysis methods. They
define the common slots and the corresponding accessor methods, provide implementation for
the general methods like show(), plot(), summary() and predict(). This base classes also
host several utility functions which are not directly exported but are documented and can
be used by quoting the namespace. The slots of Lda hold some input or default parameters
like the prior probabilities, the original data matrix and the grouping variable as well as the
results of the computations: the group means and the common covariance matrix, the linear
discriminant functions and the corresponding constants. The show() method presents brief
results of the computations, and predict() can be used either for classifying new observations
or for the evaluation of the discriminant rules on the basis of the training sample. The method
predict() returns an object of class PredictLda which has its own show() method to print
the results of the classification or evaluation. The summary() method returns an object of class

36 OOF for Robust Multivariate Analysis

SummaryLda which has its own show() method. As in the other sections of the framework
these slots and methods are defined and documented only once in this base class and can
be used by all derived classes. Whenever new data (slots) or functionality (methods) are
necessary, they can be defined or redefined in the particular class.

Classical linear discriminant analysis is represented by the class LdaClassic which inherits
directly from Lda (and uses all slots and methods defined there). The function LdaClassic()

serves as a constructor (generating function) of the class. It can be called either by providing
a data frame or matrix and a grouping variable (factor) or a formula specifying the model
to be used. Let us consider the following simple example with the data set diabetes from
package mclust: the grouping variable is diabetes$class and all remaining variables are the
explanatory variables. The code

R> x <- diabetes[,-1]

R> grpvar <- diabetes$class

R> LdaClassic(x, grpvar)

can be rewritten as (and is equivalent to) the following code using the formula interface:

R> LdaClassic(class ~ ., data = diabetes)

The function LdaClassic() performs standard linear discriminant analysis and returns an
object of class LdaClassic. Another abstract class, LdaRobust is derived from Lda, which
serves as a base class for all robust linear discriminant analysis methods. The only slot added
in this class is a character variable specifying the robust method to be used.

The class Linda is derived from LdaRobust and provides implementation for all methods for
robust LDA currently available in the framework. If we wanted to be precisely object ori-
ented, we should define a separate class for each robust method—for example LdaRobustMcd,
LdaRobustFsa, etc. but this would lead to explosion of the necessary code and documenta-
tion. The constructor function Linda() takes a character parameter method specifying which
robust location and scatter estimator to use and how to compute the common covariance ma-
trix and returns an object of class Linda. Similarly as the function LdaClassic(), Linda()
can be called either with a data matrix and grouping variable or by a formula interface.

Computing the common covariance matrix

The easiest way to estimate the common covariance matrix Σ is to obtain the estimates
of the group means µk and group covariance matrices Σk from the individual groups as
(mk,Ck), k = 1, . . . , g, and then pool the estimates Ck, k = 1, . . . , g to yield the common
covariance matrix

C =

∑g
k=1 nkCk∑g
k=1 nk − g

. (19)

This method, using MVE and MCD estimates, was proposed by Todorov et al. (1990, 1994a)
and was also used, based on the MVE estimator by Chork and Rousseeuw (1992).
Croux and Dehon (2001) applied this procedure for robustifying linear discriminant analysis
based on S estimates. A drawback of this method is that the same trimming proportions are
applied to all groups which could lead to a loss of efficiency if some groups are outlier free.
We will denote this method as “A” and the corresponding estimator as XXX-A. For example,
in the case of the MCD estimator this will be MCD-A.

Valentin Todorov, Peter Filzmoser 37

Another method was proposed by He and Fung (2000) for the S estimates and was later
adapted by Hubert and Van Driessen (2004) for the MCD estimates. Instead of pooling the
group covariance matrices, the observations are centered and pooled to obtain a single sample
for which the covariance matrix is estimated. It starts by obtaining the individual group
location estimates tk, k = 1, . . . , g, as the reweighted MCD location estimates of each group.
These group means are swept from the original observations xik (i = 1, . . . , nk; k = 1, . . . , g)
to obtain the centered observations

Z = {zik}, zik = xik − tk. (20)

The common covariance matrix C is estimated as the reweighted MCD covariance matrix of
the centered observations Z. The location estimate δ of Z is used to adjust the group means
mk and thus the final group means are

mk = tk + δ. (21)

This process could be iterated until convergence, but since the improvements from such iter-
ations are negligible (see He and Fung 2000; Hubert and Van Driessen 2004) we are not going
to use it. This method will be denoted by “B” and as already mentioned, the corresponding
estimator as XXX-B, for example MCD-B.

The third approach is to modify the algorithm for high breakdown point estimation itself
in order to accommodate the pooled sample. He and Fung (2000) modified Ruperts’s SUR-
REAL algorithm for S estimation in case of two groups. Hawkins and McLachlan (1997)
defined the minimum within-group covariance determinant estimator which does not apply
the same trimming proportion to each group but minimizes directly the determinant of the
common within groups covariance matrix by pairwise swaps of observations. Unfortunately
their estimator is based on the Feasible Solution Algorithm (see Hawkins and McLachlan
1997, and the references therein), which is extremely time consuming as compared to the
FAST-MCD algorithm. Hubert and Van Driessen (2004) proposed a modification of this al-
gorithm taking advantage of the FAST-MCD, but it is still necessary to compute the MCD
for each individual group. This method will be denoted by MCD-C.

Using the estimates m0
k and C0 obtained by one of the methods, we can calculate the initial

robust distances (Rousseeuw and van Zomeren 1991)

RD0
ik =

√
(xik −m0

k)
>C−10 (xik −m0

k). (22)

With these initial robust distances we can define a weight for each observation xik, i =
1, . . . , nk and k = 1, . . . , g, by setting the weight to 1 if the corresponding robust distance is

less or equal to a suitable cut-off, usually
√
χ2
p,0.975, and to 0 otherwise, i.e.,

wik =

{
1 RD0

ik ≤
√
χ2
p,0.975

0 otherwise.
(23)

With these weights we can calculate the final reweighted estimates of the group means, mk,
and the common within-groups covariance matrix, C, which are necessary for constructing

38 OOF for Robust Multivariate Analysis

the robust classification rules,

mk = (

nk∑
i=1

wikxik)/νk,

C =
1

ν − g

g∑
k=1

nk∑
i=1

wik(xik −mk)(xik −mk)
>, (24)

where νk are the sums of the weights within group k, for k = 1, . . . , g, and ν is the total sum
of weights,

νk =

nk∑
i=1

wik, ν =

g∑
k=1

νk.

Evaluation of the discriminant rules

In order to evaluate and compare different discriminant rules, their discriminating power has
to be determined in the classification of future observations, i.e., we need an estimate of
the overall probability of misclassification. A number of methods to estimate this probability
exists in the literature—see for example Lachenbruch (1975). The apparent error rate (known
also as resubstitution error rate or reclassification error rate) is the most straightforward
estimator of the actual error rate in discriminant analysis and is calculated by applying
the classification criterion to the same data set from which it was derived. The number of
misclassified observations for each group is divided by the group sample size. An estimate of
the apparent error rate is calculated by the method predict() of the class Lda. Examples
are given in the next section.

It is well known that this method is too optimistic (the true error is likely to be higher). If
there are plenty of observations in each class, the error rate can be estimated by splitting the
data into training and validation set. The first one is used to estimate the discriminant rules
and the second to estimate the misclassification error. This method is fast and easy to apply
but it is wasteful of data. Another method is the leave-one-out cross-validation (Lachenbruch
and Michey 1968) which proceeds by removing one observation from the data set, estimating
the discriminant rule, using the remaining n− 1 observations and then classifying this obser-
vation with the estimated discriminant rule. For the classical discriminant analysis there exist
updating formulas which avoid the re-computation of the discriminant rule at each step, but
no such formulas are available for the robust methods. Thus the estimation of the error rate
by this method can be very time consuming depending on the size of the data set. Neverthe-
less, rrcov provides an (internal, not exported) function rrcov:::.CV() which calculates the
leave-one-out cross-validation error rate by“brute force”, but the user should be aware that its
usage is appropriate only for moderate data sets. An improvement will be the implementation
of a cross-validation technique similar to the one proposed by Hubert and Engelen (2007).

Example: Diabetes data

As an example for demonstrating the usage of the robust discriminant analysis classes and
methods we use the diabetes data set, which was analyzed by Reaven and Miller (1979) in
an attempt to examine the relationship between chemical diabetes and overt diabetes in 145
nonobese adult subjects. Their analysis was focused on three primary variables and the 145

Valentin Todorov, Peter Filzmoser 39

individuals were classified initially on the basis of their plasma glucose levels into three groups:
normal subjects, chemical diabetes and overt diabetes. This data set was also analyzed by
Hawkins and McLachlan (1997) in the context of robust linear discriminant analysis. The
data set is available in several R packages: diabetes in package mclust (Fraley and Raftery
2009), chemdiab in package locfit (Loader 2007) and diabetes.dat in Rfwdmv (Atkinson
et al. 2005). We are going to use the one from mclust in which the value of the second
variable, insulin, on the 104th observation, is 45 while for the other data sets this value is
455 (note that 45 is more likely to be an outlier in this variable than 455).

We start with bringing the data set diabetes from package mclust into the workspace by
typing

R> data("diabetes", package="mclust")

Using the package lattice (Sarkar 2008) we produce a three dimensional cloud plot of the data
(Figure 15).

R> library("lattice") # load the graphical library

R> ## set different plot symbols - important for black-and-white print

R> sup.sym <- trellis.par.get("superpose.symbol")

R> sup.sym$pch <- c(1,2,3,4,5)

R> trellis.par.set("superpose.symbol", sup.sym)

R> cloud.plt <- cloud(insulin ~ glucose + sspg, groups = class, data = diabetes, auto.key=TRUE)

We will first apply the classical linear discriminant analysis as implemented in LdaClassic()

by the formula interface of the function—the grouping variable is class and all the remaining
variables in diabetes are used as predictor variables. The show() method will present the
results of the computations: the group means, the (common) within group covariance ma-
trix, the linear discriminant functions together with the corresponding constants. The prior
probabilities (either provided by the user or estimated as a proportion of the groups) are also
presented.

R> lda <- LdaClassic(class~., data=diabetes)

R> lda

Call:

LdaClassic(class ~ ., data = diabetes)

Prior Probabilities of Groups:

Chemical Normal Overt

0.2482759 0.5241379 0.2275862

Group means:

glucose insulin sspg

Chemical 99.30556 482.5556 288.0000

Normal 91.18421 349.9737 172.6447

Overt 217.66667 1043.7576 106.0000

40 OOF for Robust Multivariate Analysis

R> print(cloud.plt)

●

●
●

●

●

●
●

●

●

●●
● ●●●
●

●
●

●
●

●●●

●

●
●
● ●

●
●

●

●

●

●

●

●

glucose
sspg

insulin

Chemical
Normal
Overt

●

Figure 15: Three dimensional scatter plot of the diabetes data.

Within-groups Covariance Matrix:

glucose insulin sspg

glucose 1378.9464 5292.673 -961.4298

insulin 5292.6732 24422.556 -4201.6529

sspg -961.4298 -4201.653 10610.8972

Linear Coeficients:

glucose insulin sspg

Chemical -0.01450687 0.02934485 0.03744731

Normal 0.07138094 0.00297536 0.02391635

Overt -0.03046774 0.05428174 0.02872334

Constants:

Chemical Normal Overt

Valentin Todorov, Peter Filzmoser 41

-13.145581 -6.485573 -28.015148

Now the predict() method can be used on the Lda object (Lda is the base class for both
LdaClassic and LdaRobust) in order to classify new observations. The method returns an
object of class PredictLda which has its own show() method. If no new data are supplied,
the training sample will be reclassified and a classification table will be produced to estimate
the apparent error rate of the classification rules.

R> predict(lda)

Apparent error rate 0.131

Classification table

Predicted

Actual Chemical Normal Overt

Chemical 26 10 0

Normal 2 74 0

Overt 5 2 26

Confusion matrix

Predicted

Actual Chemical Normal Overt

Chemical 0.722 0.278 0.000

Normal 0.026 0.974 0.000

Overt 0.152 0.061 0.788

Robust linear discriminant analysis can be performed in a similar way but using the function
Linda (which will create an object of class Linda). As before the predict() method called
without new data returns a classification table of the training subsample. Using the internal
convenience function rrcov:::.AER() we can calculate and print the apparent error rate
(which now is equal to 0.1103 and is lower than the obtained with the classical LDA 0.1310).

R> rlda <- Linda(class~., data=diabetes)

R> rlda

Call:

Linda(class ~ ., data = diabetes)

Prior Probabilities of Groups:

Chemical Normal Overt

0.2482759 0.5241379 0.2275862

Group means:

glucose insulin sspg

Chemical 98.58529 477.9854 244.60768

Normal 90.94158 348.6823 165.98744

Overt 225.66995 1092.5872 78.06138

42 OOF for Robust Multivariate Analysis

Within-groups Covariance Matrix:

glucose insulin sspg

glucose 123.26496 306.5219 81.95981

insulin 306.52193 3077.0303 609.83232

sspg 81.95981 609.8323 7371.84060

Linear Coeficients:

glucose insulin sspg

Chemical 0.5452972 0.09723903 0.01907471

Normal 0.6034830 0.05090294 0.01159600

Overt 1.2651099 0.23357147 -0.02279841

Constants:

Chemical Normal Overt

-53.84468 -37.92372 -270.93763

R> rlda.predict <- predict(rlda)

R> cat("\nApparent error rate: ", round(rrcov:::.AER(rlda.predict@ct),4))

Apparent error rate: 0.1034

In the above example we did not specify which method for computing the common covariance
matrix should be used (thus using the default method “MCD-B” described above). We could
choose the method by providing the method parameter to the function Linda(). For example
the following call

R> rlda <- Linda(class ~ ., data = diabetes, method = "fsa")

will use the Hawkins and McLachlan (1997) feasible solution algorithm method.

The variance-covariance structures of the three classes in the diabetes data set differ substan-
tially and we can expect improved results if quadratic discriminant analysis is used. Robust
quadratic discriminant analysis is performed by the function QdaCov() which will return an
object of class QdaCov.

R> rqda <- QdaCov(class~., data=diabetes)

R> rqda

Call:

QdaCov(class ~ ., data = diabetes)

Prior Probabilities of Groups:

Chemical Normal Overt

0.2482759 0.5241379 0.2275862

Group means:

glucose insulin sspg

Valentin Todorov, Peter Filzmoser 43

Chemical 99.62963 477.1481 243.2963

Normal 91.98592 347.8451 164.6761

Overt 226.71429 1091.7500 76.7500

Group: Chemical

glucose insulin sspg

glucose 131.1589 517.766 217.1186

insulin 517.7660 3083.794 880.0170

sspg 217.1186 880.017 16767.5321

Group: Normal

glucose insulin sspg

glucose 68.83554 132.3141 61.27949

insulin 132.31412 1621.7423 311.38160

sspg 61.27949 311.3816 3445.56538

Group: Overt

glucose insulin sspg

glucose 7373.007 28865.49 -3361.691

insulin 28865.486 123104.82 -13689.866

sspg -3361.691 -13689.87 3046.795

R> rqda.predict <- predict(rqda)

R> cat("\nApparent error rate: ", round(rrcov:::.AER(rqda.predict@ct),4))

Apparent error rate: 0.0759

The accuracy of the prediction improves compared to the linear discriminant analysis.

5. Conclusions

In this paper we presented an object oriented framework for robust multivariate analysis
developed in the S4 class system of the programming environment R. The main goal of the
framework is to support the usage, experimentation, development and testing of robust mul-
tivariate methods as well as simplifying comparisons with related methods. It minimizes the
effort for performing any of the following tasks:

• application of the already existing robust multivariate methods for practical data anal-
ysis;

• implementation of new robust multivariate methods or variants of the existing ones;

• evaluation of existing and new methods by carrying out comparison studies.

A major design goal was the openness to extensions by the development of new robust methods
in the package rrcov or in other packages depending on rrcov. Further classes implementing
robust multivariate methods like principal component regression and partial least squares

44 OOF for Robust Multivariate Analysis

will follow but the user is encouraged to develop own methods using the proposed reusable
statistical design patterns.

Acknowledgements

We wish to express our thanks to the organizers of and participants in the “Robust Statistics
and R” workshops for the valuable comments and suggestions which were a major input for
the development of this framework. We are also grateful to many people, notably Matias
Salibian-Barrera, Victor Yohai, Kjell Konis, and Christophe Croux for the provided code.
The careful review and constructive comments of the editor and the anonymous reviewers
helped us to substantially improve the manuscript.

The views expressed herein are those of the authors and do not necessarily reflect the views
of the United Nations Industrial Development Organization (UNIDO).

References

Agulló JJ (1996). “Exact Iterative Computation of the Multivariate Minimum Volume El-
lipsoid Estimator with a Branch and Bound Algorithm.” In A Prat (ed.), Proceedings in
Computational Statistics, COMPSTAT‘96, pp. 175–180. Physica Verlag, Heidelberg.

Alexander C, Ishikawa S, Silverstein M (1977). A Pattern Language: Towns, Buildings,
Construction (Center for Environmental Structure Series). Oxford University Press.

Atkinson A, Cerioli A, Riani M (2005). Rfwdmv: Forward Search for Multivariate Data.
R package version 0.72-2, URL http://CRAN.R-project.org/package=Rfwdmv.

Boente G, Fraiman R (1999). “Discussion of ’Robust principal components for functional
data’ by Locantore et al.” Test, 8, 1–28.

Butler R, Davies P, Jhun M (1993). “Asympthotic for the Minimum Covariance Determinant
Estimator.” The Annals of Statistics, 21, 1385–1401.

Campbell NA (1980). “Procedures in Multivariate Analysis I: Robust Covariance Estimation.”
Applied Statistics, 29, 231–237.

Chambers JM (1998). Programming with Data: A Guide to the S Language. Springer-Verlag,
New York.

Chork CY, Rousseeuw PJ (1992). “Integrating a High Beakdown Option into Discriminant
Analysis in Exploration Geochemistry.” Journal of Geochemical Exploration, 43, 191–203.

Croux C, Dehon C (2001). “Robust Linear Discriminant Analysis Using S-Estimators.” The
Canadian Journal of Statistics, 29, 473–492.

Croux C, Filzmoser P, Oliveira M (2007). “Algorithms for Projection-pursuit Robust Principal
Component Analysis.” Chemometrics and Intelligent Laboratory Systems, 87(218), 218–
225.

http://CRAN.R-project.org/package=Rfwdmv

Valentin Todorov, Peter Filzmoser 45

Croux C, Haesbroeck G (1999). “Influence Function and Efficiency of the Minimum Covariance
Determinant Scatter Matrix Estimator.” Journal of Multivariate Analysis, 71, 161–190.

Croux C, Haesbroeck G (2000). “Principal Components Analysis Based on Robust Estimators
of the Covariance or Correlation Matrix: Influence Functions and Efficiencies.” Biometrika,
87, 603–618.

Croux C, Ruiz-Gazen A (1996). “A Fast Algorithm for Robust Principal Components Based
on Projection Pursuit.” In A Prat (ed.), Proceedings in Computational Statistics, COMP-
STAT‘96, pp. 211–216. Physica Verlag, Heidelberg.

Croux C, Ruiz-Gazen A (2005). “High Breakdown Estimators for Principal Components: The
Projection-pursuit Approach Revisited.” Journal of Multivariate Analysis, 95, 206–226.

Daigle G, Rivest L (1992). “A Robust Biplot.” The Canadian Journal of Statistics, 20(3),
241–255.

Davies P (1987). “Asymptotic Behavior of S-Estimators of Multivariate Location Parameters
and Dispersion Matrices.” The Annals of Statistics, 15, 1269–1292.

Devlin SJ, Gnanadesikan R, Kettenring JR (1981). “Robust Estimation of Dispersion Matrices
and Principal Components.” Journal of the American Statistical Association, 76, 354–362.

Donoho DL (1982). “Breakdown Properties of Multivariate Location Estimators.” Techni-
cal report, Harvard University, Boston. URL http://www-stat.stanford.edu/~donoho/

Reports/Oldies/BPMLE.pdf.

Filzmoser P, Fritz H, Kalcher K (2009). pcaPP: Robust PCA by Projection Pursuit. R package
version 1.7, URL http://CRAN.R-project.org/package=pcaPP.

Fraley C, Raftery A (2009). mclust: Model-Based Clustering / Normal Mixture Modeling.
R package version 3.2, URL http://CRAN.R-project.org/package=mclust.

Gabriel KR (1971). “The Biplot Graphical Display of Matrices with Application to Principal
Component Analysis.” Biometrika, 58, 453–467.

Gamma E, Helm R, Johnson R, Vlissides J (1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Reading.

Gnanadesikan R, Kettenring JR (1972). “Robust Estimates, Residuals, and Outlier Detection
with Multiresponse Data.” Biometrics, 28, 81–124.

Hawkins DM (1994). “The Feasible Solution Algorithm for the Minimum Covariance Deter-
minant Estimator in Multivariate Data.” Computational Statistics & Data Analysis, 17(2),
197–210. ISSN 0167-9473.

Hawkins DM, McLachlan GJ (1997). “High Breakdown Linear Discriminant Analysis.” Jour-
nal of the American Statistical Association, 92, 136–143.

He X, Fung W (2000). “High Breakdown Estimation for Multiple Populations with Applica-
tions to Discriminant Analysis.” Journal of Multivariate Analysis, 72, 151–162.

http://www-stat.stanford.edu/~donoho/Reports/Oldies/BPMLE.pdf
http://www-stat.stanford.edu/~donoho/Reports/Oldies/BPMLE.pdf
http://CRAN.R-project.org/package=pcaPP
http://CRAN.R-project.org/package=mclust

46 OOF for Robust Multivariate Analysis

Hubert M, Engelen S (2007). “Fast Cross-Validation of High Breakdown Resampling Methods
for PCA.” Computational Statistics & Data Analysis, 51, 5013–5024.

Hubert M, Rousseeuw PJ, van Aelst S (2008). “High-Breakdown Robust Multivariate Meth-
ods.” Statistical Science, 23, 92–119.

Hubert M, Rousseeuw PJ, Vanden Branden K (2005). “ROBPCA: A New Approach to Robust
Principal Component Analysis.” Technometrics, 47, 64–79.

Hubert M, Van Driessen K (2004). “Fast and Robust Discriminant Analysis.” Computational
Statistics & Data Analysis, 45, 301–320.

Lachenbruch PA (1975). Discriminant Analysis. Hafner, New York.

Lachenbruch PA, Michey MR (1968). “Estimation of Error Rates in Discriminant Analysis.”
Technometrics, 10, 1–11.

Li G, Chen Z (1985). “Projection-Pursuit Approach to Robust Dispersion Matrices and Prin-
cipal Components: Primary Theory and Monte Carlo.” Journal of the American Statistical
Association, 80, 759–766.

Loader C (2007). locfit: Local Regression, Likelihood and Density Estimation. R package
version 1.5-4, URL http://CRAN.R-project.org/package=locfit.

Locantore N, Marron J, Simpson D, Tripoli N, Zhang J, Cohen K (1999). “Robust Principal
Components for Functional Data.” Test, 8, 1–28.

Lopuhaä HP (1989). “On the Relation Between S-Estimators and M-estimators of Multivariate
Location and Covariance.” The Annals of Statistics, 17, 1662–1683.

Maronna RA (2005). “Principal Components and Orthogonal Regression Based on Robust
Scales.” Technometrics, 47, 264–273.

Maronna RA, Martin D, Yohai V (2006). Robust Statistics: Theory and Methods. John Wiley
& Sons, New York.

Maronna RA, Yohai VJ (1995). “The Behavoiur of the Stahel-Donoho Robust Multivariate
Estimator.” Journal of the American Statistical Association, 90, 330–341.

Maronna RA, Zamar RH (2002). “Robust Estimation of Location and Dispersion for High-
Dimensional Datasets.” Technometrics, 44, 307–317.

Morgenthaler S (2007). “A Survey of Robust Statistics.” Statistical Methods and Applications,
15(3), 271–293.

Naga R, Antille G (1990). “Stability of Robust and Non-robust Principal Component Analy-
sis.” Computational Statistics & Data Analysis, 10, 169–174.

OMG (2009a). “OMG Unified Modeling Language (OMG UML), Infrastructure, V2.2.” Cur-
rent formally adopted specification, Object Management Group. URL http://www.omg.

org/spec/UML/2.2/Infrastructure/PDF.

http://CRAN.R-project.org/package=locfit
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF

Valentin Todorov, Peter Filzmoser 47

OMG (2009b). “OMG Unified Modeling Language (OMG UML), Superstructure, V2.2.”
Current formally adopted specification, Object Management Group. URL http://www.

omg.org/spec/UML/2.2/Superstructure/PDF.

Pison G, Van Aelst S, Willems G (2002). “Small Sample Corrections for LTS and MCD.”
Metrika, 55, 111–123.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Reaven GM, Miller RG (1979). “An Attempt to Define the Nature of Chemical Diabetes
Using a Multidimensional Analysis.” Diabetologia, 16, 17–24.

Robbins JE (1999). “Cognitive Support Features for Software Development Tools.” Ph.d.
thesis, University of California, Irvine. URL http://argouml.tigris.org/docs/robbins_

dissertation/.

Robbins JE, Redmiles DF (2000). “Cognitive Support, UML Adherence, and XMI Interchange
in Argo/UML.” Information and Software Technology, 42, 79–89.

Rocke DM (1996). “Robustness Properties of S-Estimators of Multivariate Location and
Shape in High Dimension.” The Annals of Statistics, 24, 1327–1345.

Rocke DM, Woodruff DL (1996). “Identification of Outliers in Multivariate Data.” Journal
of the American Statistical Association, 91, 1047–1061.

Rousseeuw PJ (1985). “Multivariate Estimation with High Breakdown Point.” In W Gross-
mann, G Pflug, I Vincze, W Wertz (eds.), Mathematical Statistics and Applications Vol. B,
pp. 283–297. Reidel Publishing, Dordrecht.

Rousseeuw PJ, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Maechler
M (2009). robustbase: Basic Robust Statistics. R package version 0.4-5, URL http:

//CRAN.R-project.org/package=robustbase.

Rousseeuw PJ, Leroy AM (1987). Robust Regression and Outlier Detection. John Wiley &
Sons, New York.

Rousseeuw PJ, Van Driessen K (1999). “A Fast Algorithm for the Minimum Covariance
Determinant Estimator.” Technometrics, 41, 212–223.

Rousseeuw PJ, Van Driessen K (2006). “Computing LTS Regression for Large Data Sets.”
Data Mining and Knowledge Discovery, 12(1), 29–45.

Rousseeuw PJ, van Zomeren BC (1991). “Robust Distances: Simulation and Cutoff Values.”
In W Stahel, S Weisberg (eds.), Directions in Robust Statistics and Diagnostics, Part II.
Springer-Verlag, New York.

Ruckdeschel P, Kohl M, Todorov V (2009). “Structured User Interfaces via Generating Func-
tions.” Unpublished manuscript, in preparation.

Ruppert D (1992). “Computing S-Estimators for Regression and Multivariate Loca-
tion/Dispersion.” Journal of Computational and Graphical Statistics, 1, 253–270.

http://www.omg.org/spec/UML/2.2/Superstructure/PDF
http://www.omg.org/spec/UML/2.2/Superstructure/PDF
http://www.R-project.org/
http://www.R-project.org/
http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/
http://CRAN.R-project.org/package=robustbase
http://CRAN.R-project.org/package=robustbase

48 OOF for Robust Multivariate Analysis

Salibian-Barrera M, Yohai VJ (2006). “A Fast Algorithm for S-regression Estimates.” Journal
of Computational and Graphical Statistics, 15, 414–427.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.

Stahel WA (1981a). “Breakdown of Covariance Estimators.” Research Report 31, ETH Zurich.
Fachgruppe für Statistik.

Stahel WA (1981b). “Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von
Kovarianzmatrizen.” Ph.d. thesis no. 6881, Swiss Federal Institute of Technology (ETH),
Zürich. URL http://e-collection.ethbib.ethz.ch/view/eth:21890.

Stromberg A (2004). “Why Write Statistical Software? The Case of Robust Statistical Meth-
ods.” Journal of Statistical Software, 10(5), 1–8. URL http://www.jstatsoft.org/v10/

i05.

Todorov V (1992). “Computing the Minimum Covariance Determinant Estimator (MCD) by
Simulated Annealing.” Computational Statistics & Data Analysis, 14, 515–525.

Todorov V (2008). “A Note on the MCD Consistency and Small Sample Correction Factors.”
Unpublished manuscript, in preparation.

Todorov V (2009). rrcov: Scalable Robust Estimators with High Breakdown Point. R package
version 0.5-03, URL http://CRAN.R-project.org/package=rrcov.

Todorov V, Filzmoser P (2009). “An Object Oriented Framework for Robust Multivariate
Analysis.” Journal of Statistical Software, 32(3), 1–47. URL http://www.jstatsoft.org/

v32/i03/.

Todorov V, Filzmoser P (2010). “Robust Statistic for the One-way MANOVA.” Computational
Statistics & Data Analysis, 54, 37–48.

Todorov V, Neykov N, Neytchev P (1990). “Robust Selection of Variables in the Discrimi-
nant Analysis Based on MVE and MCD Estimators.” In K Momirovic, V Mildner (eds.),
Proceedings in Computational Statistics, COMPSTAT 1990, pp. 193–198. Physica Verlag,
Heidelberg.

Todorov V, Neykov N, Neytchev P (1994a). “Robust Two-group Discrimination by Bounded
Influence Regression.” Computational Statistics & Data Analysis, 17, 289–302.

Todorov V, Neykov N, Neytchev P (1994b). “Stability of (High-breakdown Point) Robust
Principal Components Analysis.” In R Dutter, W Grossmann (eds.), Short Communications
in Computational Statistics, COMPSTAT 1994, pp. 90–92. Physica Verlag, Heidelberg.

Todorov V, Pires AM (2007). “Comparative Performance of Several Robust Linear Discrimi-
nant Analysis Methods.” REVSTAT Statistical Journal, 5, 63–83.

Wang J, Zamar R, Marazzi A, Yohai V, Salibian-Barrera M, Maronna R, Zivot E, Rocke D,
Martin D, Konis K (2008). robust: Insightful Robust Library. R package version 0.3-4,
URL http://CRAN.R-project.org/package=robust.

Willems G, Pison G, Rousseeuw PJ, Van Aelst S (2002). “A Robust Hotelling Test.” Metrika,
55, 125–138.

http://e-collection.ethbib.ethz.ch/view/eth:21890
http://www.jstatsoft.org/v10/i05
http://www.jstatsoft.org/v10/i05
http://CRAN.R-project.org/package=rrcov
http://www.jstatsoft.org/v32/i03/
http://www.jstatsoft.org/v32/i03/
http://CRAN.R-project.org/package=robust

Valentin Todorov, Peter Filzmoser 49

Woodruff DL, Rocke DM (1994). “Computable Robust Estimation of Multivariate Location
and Shape in High Dimension Using Compound Estimators.” Journal of the American
Statistical Association, 89, 888–896.

Affiliation:

Valentin Todorov
Research and Statistics Branch
United Nations Industrial Development Organization (UNIDO)
Vienna International Centre
P.O.Box 300, 1400, Vienna, Austria
E-mail: valentin.todorov@chello.at

mailto:valentin.todorov@chello.at

	Introduction
	Design approach and structure of the framework
	UML diagrams
	Design patterns
	Accessor methods
	Naming conventions

	Example session
	Robust multivariate methods
	Multivariate location and scatter
	The Minimum covariance determinant estimator and its computation
	The Minimum volume ellipsoid estimates
	The Stahel-Donoho estimator
	Orthogonalized Gnanadesikan/Kettenring
	S estimates
	Object model for robust location and scatter estimation
	Controlling the estimation options
	A generalized function for robust location and covariance estimation: CovRobust()
	Visualization of the results

	Principal component analysis
	PCA based on robust covariance matrix (MCD, OGK, MVE, etc.)
	Projection pursuit methods
	Hubert method (ROBPCA)
	Spherical principal components (SPC)
	Object model for robust PCA and examples
	Visualization of PCA results

	Linear and quadratic discriminant analysis
	Object model for robust LDA and QDA
	Computing the common covariance matrix
	Evaluation of the discriminant rules
	Example: Diabetes data

	Conclusions

