
## Loading required package: lattice

1



The smint package
user’s guide

2015-08-18
smint version 0.4.1

Yves Deville and Yann Richet

Yves Deville Statistical consultant Alpestat deville.yves@alpestat.com

Yann Richet Technical Advisor IRSN yann.richet@irsn.fr



Contents

1 The Grid class 4
1.1 Motivation: grids as data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Creating a Grid object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Operations with Grid objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



The smint package: outlook

Goals

The smint package has been initiated and financed by the french institute IRSN1. The main goal
is to provide fast methods of interpolation for typical dimensions between 3 and 7, as required
for instance in the study of nuclear cross-sections. The two classical contexts of interpolation,
namely gridded data and scattered data, are of interest.

We assume to be given n distinct vectors xi called nodes in the d-dimensional space Rd and
n real values fi. The goal is to find a function f defined on a domain containing the nodes and
such that the n interpolation conditions f(xi) = fi hold for i = 1, 2, . . . , n. The function must
be smooth, and at least continuous. It will be obtained in a form allowing the evaluation of
f(xnew

j ) for nnew arbitrary new points in Rd.

A boldface notation will be used for vectors and matrices as in xi = [xi1, xi2, . . . , xid]> for
the i-th node. The notations x1, x2, . . . , xd will be used to denote the coordinates or variables
matching the d dimensions. In the classical contexts where d 6 3, the dimensions can for the
sake of clarity be named x, y, z in place of x1, x2 and x3 and the function values can be denoted
by fi. In the general context, the prescribed function values at the nodes will sometimes be
denoted as yi rather than fi.

Scattered data

For the scattered data context, the data to be interpolated are likely to be given as a data frame
or matrix X with a numeric vector of response f or y.

Grid data

A d-dimensional grid is a finite set in the d-dimensional space which is the tensor product of d
finite sets, one for each dimension. The nj elements for the dimension j may be called levels of
the variable xj and can be assumed to be given in increasing order

x?j,1 < x?j,2 < · · · < x?j,nj
j = 1, 2, . . . , d.

The total number of nodes is n = n1 × n2 × · · · × nd.
The levels are conveniently stored in R as a list of d numeric vectors. Often the grid range

will be the hyper-cube of interest, so nodes having one of their levels equal to the minimum or
maximal level are boundary points.

When working with grid data, a particular ordering of the nodes must be chosen so that
each of the n elements in the response vector can be related to the corresponding node xi.

1Institut de Radioprotection et de Sûreté Nucléaire

2



Multi-response

In some cases it will be needed to interpolate several functions rather than one, still using the
same set of nodes xi and the same set of new evaluation points xnewj . We call this context
multi-response interpolation, since multivariate interpolation is ambiguous.

If m response functions are of interest, the n prescribed function values can be seen as
forming a n×m matrix F.

3



Chapter 1

The Grid class

1.1 Motivation: grids as data frames

The popular expand.grid function from the base package provides a representation of a grid
as a data frame object.

df <- expand.grid(x = c(0.0, 0.2, 1.0), y = c(1.0, 2.5, 3.0), z = c(0.2, 0.4))

nrow(df)

## [1] 18

head(df)

## x y z

## 1 0.0 1.0 0.2

## 2 0.2 1.0 0.2

## 3 1.0 1.0 0.2

## 4 0.0 2.5 0.2

## 5 0.2 2.5 0.2

## 6 1.0 2.5 0.2

class(df)

## [1] "data.frame"

Note the rule: first index varies faster, which will also be retained in smint. We could as well
have used a single list formal argument

df2 <- expand.grid(list("x" = c(0.0, 0.2, 1.0), "y" = c(1.0, 2.5, 3.0),

"z" = c(0.2, 0.4)))

identical(df, df2)

## [1] TRUE

This second form is convenient to deal with grids in an arbitrary dimension d.
The grid described by df could be shown on a three dimensional plot using the package

scatterplot3d or rgl, see left panel of figure 1.1. But an useful diagnostic is straightforwardly
given by the plot method, which provides the pairs plot shown on the right of figure 1.1.

4



x

1.0 1.5 2.0 2.5 3.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.
0

1.
5

2.
0

2.
5

3.
0

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

y

●●●

●●●

●●●

●●●

●●●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

● ● ●● ● ●● ● ●

● ● ●● ● ●● ● ●

●●● ●●● ●●●

●●● ●●● ●●●

0.20 0.25 0.30 0.35 0.40

0.
20

0.
25

0.
30

0.
35

0.
40

z

Figure 1.1: Left: three-dimensional representation of the grid using rgl. Right: using the plot

method for data frames.

Each point shown in a pair panel corresponds to several grid points having the same two-
dimensional projection. This problem gets more crucial with grids in higher dimension, since
many points can then be collapsed into one. Using semi-transparent (translucent) colours can
be of some help, see later.

Recall that even when their columns are numeric, data frames are very different from matri-
ces. They are frames in which columns can be used in expression, like objects in an environment.
This is usually achieved by using the methods with, within

f <- with(df, x^3 + 2 * y + z^2)

Yet a function can easily be applied to each row of the data frame in a matrix fashion, for
instance f(x, y, z) := x3 + 2y + z2.

my3dFun <- function(x) x[1]^3 + 2 * x[2] + x[3]^2

f2 <- apply(df, MARGIN = 1, FUN = my3dFun)

max(abs(f - f2))

## [1] 0

Note that the order of the columns is essential here, while it was immaterial in the computation
of f2 above. Since each grid dimension is mapped to a column, it is quite easy to have a
permutation of the dimensions.

5



dfP <- df[ , c(2, 3, 1)]

head(dfP)

## y z x

## 1 1.0 0.2 0.0

## 2 1.0 0.2 0.2

## 3 1.0 0.2 1.0

## 4 2.5 0.2 0.0

## 5 2.5 0.2 0.2

## 6 2.5 0.2 1.0

The order of the rows also matters. In some contexts, the nodes have a particular ordering, e.g.
because they are associated to successive experiments. Then it is important to keep a numbering
of the nodes attached with the grid, as is naturally done in the data frame representation.

The data frame representation is convenient for many common operations involving grids.
However some apparently simple operations can be either tricky or inefficient. For instance,
retrieving the grid levels from data frame representation is quite tedious, since it requires some-
thing like a tapply. Although the list of the levels was provided in the creation of the grid, this
information is no longer readily accessible from the object, and it would be convenient to have
it attached to the object. As another example, finding the boundary points of the grid from
the data frame representation is no more straightforward. Using a data frame with attributes
could help in many problems. However, it should then be checked that the order of the columns
remains the same in the data frame and in the list, and also that the data frame contains a
tensor product of finite sets as assumed.

In the smint package, it was decided to define a S4 class for the grid under the name Grid,
in the aim that standard methods give the frequently needed information. As in the data frame
representation, the nodes will be considered as ordered – so a Grid object can be thought of as
a traveller salesman’s path visiting each node of the grid exactly once.

1.2 Creating a Grid object

A Grid object can be created using the quite versatile Grid creator, similar to the list version
of expand.grid

myGrid1 <- Grid(level = list("x" = c(0.0, 0.2, 1.0), "y" = c(1.0, 2.5, 3.0),

"z" = c(0.2, 0.4)))

myGrid1

## Grid Data object

## o dimension : 3

## o dim names : x, y, z

## o number of nodes : 3 (x), 3 (y), 2 (z)

## o total number of nodes : 18

An object named myGrid and class "Grid" is created; as is usual with S4 classes, by typing the
name of an object one invokes the show method1 A number of methods can be invoked

1This is similar to the invocation of print for S3 classes/objects.

6



length(myGrid1)

## [1] 18

nlevels(myGrid1)

## x y z

## 3 3 2

levels(myGrid1)

## $x

## [1] 0.0 0.2 1.0

##

## $y

## [1] 1.0 2.5 3.0

##

## $z

## [1] 0.2 0.4

dimnames(myGrid1)

## [1] "x" "y" "z"

A more concise call to the creator can sometimes be used. By default, the standard hypercube
[0, 1]d and regularly spaced coordinates along the axes will be used.

myGrid2 <- Grid(nlevels = c(3, 3, 2))

myGrid2

## Grid Data object

## o dimension : 3

## o dim names : X1, X2, X3

## o number of nodes : 3 (X1), 3 (X2), 2 (X3)

## o total number of nodes : 18

myGrid2 <- Grid(nlevels = c("a" = 3, "b" = 3, "c" = 2))

myGrid2

## Grid Data object

## o dimension : 3

## o dim names : a, b, c

## o number of nodes : 3 (a), 3 (b), 2 (c)

## o total number of nodes : 18

dimnames(myGrid2) <- c("A", "B", "C")

myGrid2

## Grid Data object

## o dimension : 3

## o dim names : A, B, C

## o number of nodes : 3 (A), 3 (B), 2 (C)

## o total number of nodes : 18

7



The dimnanes are by default "X1", "X2" and so on, but they can be specified by using a named
vector for the number of levels. They can also be changed by using the replacement method
dimnames<- illustrated before.

Another possibility to create a Grid object is to use the randGrid which generates a random
Grid object. This can be of some help to test the results of interpolation methods.

set.seed(123)

rGrid <- randGrid()

rGrid

## Grid Data object

## o dimension : 3

## o dim names : X1, X2, X3

## o number of nodes : 5 (X1), 3 (X2), 6 (X3)

## o total number of nodes : 90

levels(rGrid)

## $X1

## [1] 0.0455565 0.5281055 0.5514350 0.8924190 0.9404673

##

## $X2

## [1] 0.4533342 0.4566147 0.9568333

##

## $X3

## [1] 0.04205953 0.10292468 0.24608773 0.57263340 0.67757064 0.89982497

The user can control some features of the object by using the optional arguments of randGrid
such as dim or nlevels. Be aware that a Grid object with moderate dimension, e.g. 6 or 7
might then have a considerable number of nodes.

Back to data frames

One of the most common operation is the transformation of the object into a data frame.

df <- as.data.frame(myGrid1)

head(df)

## x y z

## 1 0.0 1.0 0.2

## 2 0.2 1.0 0.2

## 3 1.0 1.0 0.2

## 4 0.0 2.5 0.2

## 5 0.2 2.5 0.2

## 6 1.0 2.5 0.2

Conversely, a Grid in arbitrary dimension can be created by coercing a data frame or a matrix
with suitable content using as.Grid. Obviously, not every data frame can be used, and an error
will occur when the data frame is not suitable. The two coercions are nearly reversible.

8



identical(as.Grid(as.data.frame(myGrid1)), myGrid1)

## [1] TRUE

However, we do not recommend to compare Grid objects with identical, since the result can
misleadingly be FALSE only because of the rounding of the levels.

Note that as.Grid will be quite slow for a large grid object. As a major difference with
the data frame representation, a Grid object stores all the n possible combinations of the levels
as vectors of length d with integer values rather than doubles. So for a large grid, the Grid

representation needs only about 1/8 of the space required by the data frame representation.

Plot method

The trained R user might have guessed at this point that the plot method for the class Grid will
produce exactly the plot that would have resulted from using the plot method after a coercion
to a data frame using as.data.frame. This is true as far as only one formal is used. When
the grid dimension is > 2 we noticed that the pairs representation can be very misleading since
several points in the d-dimensional space collapse into the same projection in a particular pair
plot. A simple way to avoid this is to jitterise the points. A jitter argument was added to the
as.data.frame coercion method and to the plot method. Combined with semi-transparent
colours, an improved representation results, see figure 1.2. The points can be given different
colours, size, ... by using vectors. Remind that the order of points is then essential.

1.3 Operations with Grid objects

Flat grids

A grid in which one dimension has only one level will be said to be flat. This can be compared
to a flat array, e.g. a matrix with one row or one column. By default, R drops the unnecessary
dimensions of flat arrays when subsetting, and the user can also do this on purpose with the
drop function. A similar operation is possible for Grid objects by using the drop_Grid function
which drops the dimensions of flat grids

flatGrid <- Grid(nlevels = c(2, 1, 3))

flatGrid

## Grid Data object

## o dimension : 3

## o dim names : X1, X2, X3

## o number of nodes : 2 (X1), 1 (X2), 3 (X3)

## o total number of nodes : 6

drop_Grid(flatGrid)

## Grid Data object

## o dimension : 2

## o dim names : X1, X3

## o number of nodes : 2 (X1), 3 (X3)

## o total number of nodes : 6

9



x

1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
0

1.
5

2.
0

2.
5

3.
0

y

0.0 0.2 0.4 0.6 0.8 1.0 0.20 0.25 0.30 0.35 0.40

0.
20

0.
25

0.
30

0.
35

0.
40

z

Figure 1.2: Pairs plot produced by the plot method of the Grid class with the formal argument
jitter set to TRUE.

10



The drop_Grid function can be used from the matrix or data frame representation; however it
will then make use of the coercion method as.Grid, hence of tapply.

Applying a function

The apply_Grid function can be used with its first formal object of class "Grid". Using the
function my3dFun defined in section 1.1 page 5

fGrid <- apply_Grid(myGrid1, fun = my3dFun)

max(abs(fGrid - f))

## [1] 0

So we get the same result as with apply.

Generalised transposition

A useful operation is the generalised transpose, corresponding to the aperm method in the
base package. This is equivalent to a permutation of the columns in the data frame or matrix
representation, and the order of nodes remains unchanged. So, if a function or response has
been computed on the nodes and is stored as a response vector f, this will remain unchanged
when aperm is used on the Grid object X with a subsequent modification of the function.

myGrid1p <- aperm(myGrid1, perm = c(3, 1, 2))

myGrid1p

## Grid Data object

## o dimension : 3

## o dim names : z, x, y

## o number of nodes : 2 (z), 3 (x), 3 (y)

## o total number of nodes : 18

my3dFunp <- function(x) x[2]^3 + 2 * x[3] + x[1]^2

fGridp <- apply_Grid(myGrid1p, fun = my3dFunp)

max(abs(fGridp - f))

## [1] 0

In the definition of the function, the elements of the formal x must correspond to z, x, and y in
that order. It is possible to make the function independent of the order of the dimensions by
using a named vector as formal.

my3dFuni <- function(x) x["x"]^3 + 2 * x["y"] + x["z"]^2

fGridi <- apply_Grid(myGrid1p, fun = my3dFuni)

max(abs(fGridi - f))

## [1] 0

fGridi0 <- apply_Grid(myGrid1, fun = my3dFuni)

max(abs(fGridi0 - f))

## [1] 0

11



This works because apply_Grid relies on the apply function for matrices, in which the first
function formal can be named. Using a named vector as formal should be preferred when
possible.

Remark . The with method is not yet implemented for a data formal with class "Grid". It
can easily be used through a coercion to data frame.

Range and scale

The range_Grid and scale_Grid functions can be used to get or set the range of a Grid object

range_Grid(myGrid1)

## x y z

## min 0 1 0.2

## max 1 3 0.4

myGrid1s <- scale_Grid(myGrid1)

range_Grid(myGrid1s)

## x y z

## min 0 0 0

## max 1 1 1

The scaling transformation can be controlled with the fromRange and toRange formal argu-
ments.

Boundary points

The boundary_Grid function identifies the points located on the boundary, assuming that the
smallest and largest levels are boundary levels for each of the d dimensions. When the number
of levels is 6 2 for one dimension or more, all points are boundary points.
See figure 1.3. The number of interior (non-boundary) points is

∏d
i=1 [ni − 2], i.e. 3×5×4 = 60

for this example.

Remark . When choosing the same number of points by dimension, say n1, the proportion of
interior (non-boundary) points is given by [1− 2/n1]

d and turns out to be small for dimensions
d > 5. This is one of the effects of the curse of dimensionality : when the dimension d is large,
most grid points are located on the boundary of the hyper-rectangle.

Sampling

A common need when working with a grid is to draw random points, either at grid points or
within the hyper-rectangle of interest. The sampleIn method was written for that. Using our
myGrid3 object defined earlier with 210 nodes.

X3s <- sampleIn(myGrid3, size = 100)

head(X3s)

## X Y Z

## [1,] 0.21506675 0.74678791 0.6305725

## [2,] 0.86953229 0.41931352 0.3908899

12



X

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Y

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Z

Boundary points

Figure 1.3: Grid data with nx = 5, ny = 7 and nz = 6 levels. Boundary points are plotted in
orange and non-boundary points are in green. Among the 210 nodes, 150 are on the boundary.

13



## [3,] 0.06083806 0.58214390 0.4322536

## [4,] 0.23489960 0.83073406 0.3486340

## [5,] 0.99301551 0.01353063 0.7935578

## [6,] 0.67819773 0.01152176 0.8869361

X3ss <- sampleIn(myGrid3, size = 100, atSample = TRUE)

head(X3ss)

## X Y Z

## 111 0.0 0.1666667 0.6

## 125 1.0 0.5000000 0.6

## 155 1.0 0.3333333 0.8

## 198 0.5 0.6666667 1.0

## 101 0.0 1.0000000 0.4

## 18 0.5 0.5000000 0.0

The result is a matrix that can be coerced to a data frame when needed.

Reshaping response(s) to an array

When d = 2, a common practice is to provide a response as a matrix with row i corresponding
to the i-th value of the first dimension x1 (or x) and the column j matching the j-th value
of the second dimension x2 (or y). This form is often required to produce a contour plot or a
perspective plot (not shown here). The array_Grid function can be used for that.

plotGrid <- Grid(nlevels = c(10, 10))

F <- apply_Grid(plotGrid, branin)

aF <- array_Grid(X = plotGrid, Y = F)

round(aF)

## X2=0 X2=0.1 X2=0.2 X2=0.3 X2=0.4 X2=0.6 X2=0.7 X2=0.8 X2=0.9 X2=1

## X1=0 306 252 203 160 122 90 63 43 27 17

## X1=0.1 162 123 89 60 37 20 8 2 1 6

## X1=0.2 90 63 41 25 15 10 10 16 28 45

## X1=0.3 56 38 27 21 20 25 36 52 73 101

## X1=0.4 23 13 9 11 18 31 49 73 102 137

## X1=0.6 5 1 2 9 21 39 63 92 127 167

## X1=0.7 14 13 17 27 43 63 90 122 160 203

## X1=0.8 20 19 24 35 51 72 100 132 171 214

## X1=0.9 8 6 9 18 32 52 77 108 145 187

## X1=1 10 3 2 7 17 33 55 81 114 152

contour(aF, nlevels = 20)

This rule obviously generalises to a larger dimension d: a response can be reshaped into a d-
dimensional array with dimension [n1, n2, . . . , nd]. Moreover, when m responses are available
we can use a d + 1-dimensional array with the response index as the slice index in the d + 1
dimension.

14



Subgrid

The subset_Grid function allows the selection of a sub-grid by selecting the nodes using a
clause for one dimension, using the subset argument.

subset_Grid(myGrid1, subset = y > 2)

## [1] 4 5 6 7 8 9 13 14 15 16 17 18

We get here the indices of the nodes in the subset, which would be convenient e.g. to find the
corresponding responses in a vector. Alternatively, one can return the result as a Grid

subset_Grid(myGrid1, subset = y > 2, type = "Grid")

## Grid Data object

## o dimension : 3

## o dim names : x, y, z

## o number of nodes : 3 (x), 2 (y), 2 (z)

## o total number of nodes : 12

If the sub-grid turns out to be flat because only one node is selected, the dimension used in the
selection will be dropped by default. This would here have happened with subset = y > 3.

Why uppercase X?

The * Grid functions (see table 1.1) are “pseudo-methods”, and are intended to work for Grid
objects as well as for their data frame or matrix representation, and they have their first
argument named X to remind of that.

1.4 Summary

• The smint package provides a Grid S4 class with some methods and dedicated functions.

• A Grid object is efficiently coerced into a data frame when needed but it also contains
information about the grid characteristics: number of levels, levels, ...

• A Grid object contains a numbering of the grid points which is used to match the grid
points and the responses. Several functions are provided to apply a (test) function on a
grid, reshape responses to an array, remove unneeded dimensions and more.

15



Method df? Goal

aperm(x, perm) Generalised transposition.

closest(X, XNew, ...)
Find the points in X that are closest to those
in XNew.

dim Get the dimension d.

dimnames

dimnames<-
Get or set the dimension names.

nlevels

levels
Get the number and values of the levels.

plot(x, y, jitter = FALSE, ...) Pairs plot for a Grid object x.

sampleIn y
Draw size random points in a grid. Formal
atSample.

show Show information about the object.

Function df? Goal

apply Grid(X, fun) n
Apply the function fun to each node of a
grid X.

array Grid(X, Y) n
Reshape as array the response(s) Y for a
grid X.

boundary Grid(X) n Identify the boundary points in a grid X.

drop Grid(X) n Drop “flat” dimensions with only one level.

range Grid(X) y Get the ranges as a 2-rows matrix.

scale Grid(X, fromRange, toRange) y
Transform to [0, 1]d or to a given hyper-
rectangle.

subset Grid(X, subset, type, drop) n Extract a sub-grid.

Table 1.1: Methods and functions. For the “* Grid functions” with name ending by Grid,
the first part of the name is most of time not a method name, e.g. drop is not a method as
long as only base packages are used. The functions for which X can be a matrix or data frame
are shown by a y in the column df?.

16


	The Grid class
	Motivation: grids as data frames
	Creating a Grid object
	Operations with Grid objects
	Summary


