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Abstract

This tutorial provides an introduction to a set of programs for implementing Bayesian
spatial survival models in R using the package spBayesSurv. The function survregbayes

includes three most commonly-used semiparametric models: proportional hazards, pro-
portional odds, and accelerated failure time. All manner of censored survival times are
simultaneously accommodated including uncensored, interval censored, current-status,
left and right censored, and mixtures of these. Left-truncated data are also accommo-
dated leading to models for time-dependent covariates. Both georeferenced and areally
observed spatial locations are handled via frailties. Model fit is assessed with conditional
Cox-Snell residual plots, and model choice is carried out via LPML and DIC. The func-
tion frailtyGAFT extends the accelerated failure time frailty model to allow covariates-
dependent baseline. The package can also fit two marginal survival models: proportional
hazards (spCopulaCoxph) and linear dependent Dirichlet process mixture (spCopulaDDP),
where the spatial dependence is modeled via spatial copulas. Note that all these models
can also accommodate non-spatial data.

Keywords: Bayesian survival analysis, spatial dependence, semiparametric models, parametric
models, interval-censored data.

1. Introduction

Due to the development of geographical information systems, many survival (time-to-event)
data are spatially referenced. Spatial location plays a key role in survival prediction, serving as
a proxy for unmeasured regional characteristics such as socioeconomic status, access to health
care, pollution, etc. Literature on the spatial analysis of survival data has flourished over the
last decade, including the study of leukemia survival (Henderson, Shimakura, and Gorst 2002),
childhood mortality (Kneib 2006), asthma (Li and Lin 2006), breast cancer (Banerjee and
Dey 2005; Zhou, Hanson, Jara, and Zhang 2015a), political event processes (Darmofal 2009),
prostate cancer (Wang, Zhang, and Lawson 2012; Zhou, Hanson, and Zhang 2016), pine trees
(Li, Hong, Thapa, and Burkhart 2015), threatened frogs (Zhou, Hanson, and Knapp 2015b),
health and pharmaceutical firms (Arbia, Espa, Giuliani, and Micciolo 2016), and many others.
In this tutorial we introduce a set of programs for implementing Bayesian spatial survival
models in R using the package spBayesSurv, version 1.1.0. Note that the function syntaxes
for spCopulaCoxph, indeptCoxph, spCopulaDDP and anovaDDP have changed in comparison
to previous versions, and old syntaxes are no longer supported; see Section 4.

Suppose subjects are observed at m distinct spatial locations s1, . . . , sm. Let tij be a random
event time associated with the jth subject in si and xij be a related p-dimensional vector of
covariates, i = 1, . . . ,m, j = 1, . . . , ni. Then n =

∑m
i=1 ni is the total number of subjects under
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consideration. Assume the survival time tij lies in the interval (aij , bij), 0 ≤ aij ≤ bij ≤ ∞,
and tij is independent with (aij , bij). Here left censored data are of the form (0, bij), right
censored (aij ,∞), interval censored (aij , bij) and uncensored values simply have aij = bij ,
i.e., we define (x, x) = {x}. Therefore, the observed data will be D = {(aij , bij ,xij , si); i =
1, . . . ,m, j = 1, . . . , ni}. For areally-observed outcomes, e.g. county-level, there is typically
replication (i.e. ni > 1); for georeferenced, there may or may not be replication. Note
although the models below are developed for spatial survival data, non-spatial data are also
accommodated.

The tutorial is organized as follows. Section 2 introduces three commonly-used semiparametric
frailty models, a test for parametric baseline, variable selection, left-truncation and time-
dependent covariates. Section 3 describes a generalized accelerated failure time frailty model
which allows covariates-dependent baseline function. Section 4 provides two spatial copula
survival models for georeferenced, right-censored data.

2. Semiparametric Frailty Models

2.1. The Model

The function survregbayes supports three commonly-used semiparametric spatial frailty
models: accelerated failure time (AFT), proportional hazards (PH), and proportional odds
(PO). The AFT model has survival and density functions

Sxij
(t) = S0(e

x
′

ijβ+vit), fxij
(t) = ex

′

ijβ+vif0(e
x
′

ijβ+vit), (1)

while the PH model has survival and density functions

Sxij
(t) = S0(t)

e
x
′

ijβ+vi

, fxij
(t) = ex

′

ijβ+viS0(t)
e
x
′

ijβ+vi−1f0(t), (2)

and the PO model has survival and density functions

Sxij
(t) =

e−x
′

ijβ−viS0(t)

1 + (e−x
′

ijβ−vi − 1)S0(t)
, fxij

(t) =
e−x

′

ijβ−vif0(t)

[1 + (e−x
′

ijβ−vi − 1)S0(t)]2
, (3)

where β = (β1, . . . , βp)
′ is a vector of regression coefficients, vi is an unobserved frailty asso-

ciated with si, and S0(t) is the baseline survival with density f0(t) corresponding to xij = 0
and vi = 0. The survregbayes function considers the following prior distributions:

β ∼ Np(β0,S0),

S0|α,θ ∼ TBPL(α, Sθ), α ∼ Γ(a0, b0), θ ∼ N2(θ0,V0),

(v1, . . . , vm)′|τ ∼ ICAR(τ2), τ−2 ∼ Γ(aτ , bτ ), or

(v1, . . . , vm)′|τ, φ ∼ GRF(τ2, φ), τ−2 ∼ Γ(aτ , bτ ), φ ∼ Γ(aφ, bφ), or

(v1, . . . , vm)′|τ ∼ IID(τ2), τ−2 ∼ Γ(aτ , bτ )

(4)

where TBPL, ICAR, GRF and IID refer to the transformed Bernstein polynomial (TBP)
(Chen, Hanson, and Zhang 2014; Zhou and Hanson 2017), intrinsic conditionally autoregres-
sive (ICAR) (Besag 1974), Gaussian random field (GRF) prior, and independent Gaussian
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(IID) prior distributions, respectively. We briefly introduce these priors but leave details to
Zhou and Hanson (2017).

TBP prior

In semiparametric survival analysis, a wide variety of Bayesian nonparametric priors can be
used to model S0; see Müller, Quintana, Jara, and Hanson (2015) and Zhou and Hanson
(2015) for reviews. The TBP prior is attractive in that it is centered at a given parametric
family and it selects smooth densities. For a fixed positive integer L, the prior TBPL(α, Sθ)
is defined as

S0(t) =

L∑

j=1

wjI(Sθ(t)|j, L− j + 1), wL ∼ Dirichlet(α, . . . , α), (5)

where wL = (w1, . . . , wL)
′ is a vector of positive weights, I(·|a, b) denotes a beta cumu-

lative distribution function (cdf) with parameters (a, b), {Sθ : θ ∈ Θ} is a parametric
family of survival functions with support on positive reals R

+. The log-logistic Sθ(t) =
{1 + (eθ1t)exp(θ2)}−1, the log-normal Sθ(t) = 1 − Φ{(log t + θ1) exp(θ2)}, and the Weibull
Sθ(t) = 1 − exp

{
−(eθ1t)exp(θ2)

}
families are considered, where θ = (θ1, θ2)

′. In our experi-
ence, the three centering distributions yield almost identical posterior inferences. Clearly, the
random distribution S0 is centered at Sθ, that is, E[S0(t)|α,θ] = Sθ(t). The parameter α
controls the weights wL to “adjust” the shape of the baseline survival S0 relative to the prior
guess Sθ. Large values of α indicate a strong belief that S0 is close to Sθ; as α → ∞, S0 → Sθ

with probability 1. Smaller values of α allow more pronounced deviations of S0 from Sθ. This
adaptability makes the TBP prior attractive in its flexibility, but also anchors the random
S0 firmly about Sθ: wj = 1/L for j = 1, . . . , L implies S0(t) = Sθ(t) for t ≥ 0. Moreover,
unlike the mixture of Polya trees (Lavine 1992) or mixture of Dirichlet process (Antoniak
1974) priors, the TBP prior selects smooth densities, leading to efficient posterior sampling.

ICAR and IID priors

For areal data, the ICAR prior can be assumed on v = (v1, . . . , vm)′. Let eij be 1 if regions
i and j share a common boundary and 0 otherwise; set eii = 0. Then the m × m matrix
E = [eij ] is called the adjacency matrix for the m regions. The prior ICAR(τ2) on v is defined
through the set of the conditional distributions

vi|{vj}j 6=i ∼ N




m∑

j=1

eijvj/ei+, τ2/ei+


 , i = 1, . . . ,m, (6)

where ei+ =
∑m

j=1 eij is the number of neighbors of area si. The induced prior on v under
ICAR is improper; the constraint

∑m
j=1 vj = 0 is used for identifiability (Banerjee, Carlin,

and Gelfand 2014).

For non-spatial data, we consider the independent Gaussian prior IID(τ2), defined as

v1, v2, . . . , vm
iid
∼ N(0, τ2). (7)

GRF priors

For georeferenced data, it is commonly assumed that vi = v(si) arises from a Gaussian ran-



4 spBayesSurv version 1.1.0

dom field (GRF) {v(s), s ∈ S} such that v = (v1, . . . , vm) follows a multivariate Gaussian
distribution as v ∼ Nm(0, τ2R), where τ2 measures the amount of spatial variation across lo-
cations and the (i, j) element of R is modeled as R[i, j] = ρ(si, sj). Here ρ(·, ·) is a correlation
function controlling the spatial dependence of v(s). In survregbayes the powered exponen-
tial correlation function ρ(s, s′) = ρ(s, s′;φ) = exp{−(φ‖s − s′‖)ν} is used, where φ > 0 is a
range parameter controlling the spatial decay over distance, ν ∈ (0, 2] is a pre-specified shape
parameter, and ‖s− s′‖ refers to the distance (e.g., Euclidean, great-circle) between s and s′.
Therefore, the prior GRF(τ2, φ) is defined as

vi|{vj}j 6=i ∼ N


−

∑

{j:j 6=i}

pijvj/pii, τ2/pii


 , i = 1, . . . ,m, (8)

where pij is the (i, j) element of R−1.

Full-scale approximation

As m increases evaluating R−1 from R becomes computationally impractical. To overcome
this computational issue, we consider the full-scale approximation (Sang and Huang 2012)
(FSA) due to its capability of capturing both large- and small-scale spatial dependence. Con-
sider a fixed set of “knots” S∗ = {s∗1, . . . , s

∗
K} chosen from the study region. These knots are

chosen using the function cover.design within the R package fields, which computes space-
filling coverage designs using the swapping algorithm (Johnson, Moore, and Ylvisaker 1990).
Let ρ(s, s′) be the correlation between locations s and s′. The FSA approach approximates
the correlation function ρ(s, s′) with

ρ†(s, s′) = ρl(s, s
′) + ρs(s, s

′). (9)

The ρl(s, s
′) in (9) is the reduced-rank part capturing the long-scale spatial dependence, de-

fined as ρl(s, s
′) = ρ′(s,S∗)ρ−1

KK(S∗,S∗)ρ(s′,S∗), where ρ(s,S∗) = [ρ(s, s∗i )]
K
i=1 is an K × 1

vector, and ρKK(S∗,S∗) = [ρ(s∗i , s
∗
j )]

K
i,j=1 is an K ×K correlation matrix at knots S∗. How-

ever, ρl(s, s
′) cannot well capture the short-scale dependence due to the fact that it discards

entirely the residual part ρ(s, s′)−ρl(s, s
′). The idea of FSA is to add a small-scale part ρs(s, s

′)
as a sparse approximate of the residual part, defined by ρs(s, s

′) = {ρ(s, s′)− ρl(s, s
′)}∆(s, s′),

where ∆(s, s′) is a modulating function, which is specified so that the ρs(s, s
′) can well capture

the local residual spatial dependence while still permits efficient computations. Motivated by
Konomi, Sang, and Mallick (2014), we first partition the total input space into B disjoin-
t blocks, and then specify ∆(s, s′) in a way such that the residuals are independent across
input blocks, but the original residual dependence structure within each block is retained.
Specifically, the function ∆(s, s′) is taken to be 1 if s and s′ belong to the same block and 0
otherwise. The approximated correlation function ρ†(s, s′) in (9) provides an exact recovery of
the true correlation within each block, and the approximation errors are ρ(s, s′)− ρl(s, s

′) for
locations s and s′ in different blocks. Those errors are expected to be small for most entries
because most of these location pairs are farther apart. To determine the blocks, we first use
the R function cover.design to choose B ≤ m locations among the m locations forming B
blocks, then assign each si to the block that is closest to si. Here B does not need to be
equal to K. When B = 1, no approximation is applied to the correlation ρ. When B = m, it
reduces to the approach of Finley, Sang, Banerjee, and Gelfand (2009), so the local residual
spatial dependence may not be well captured.
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Applying the above FSA approach to approximate the correlation function ρ(s, s′), we can
approximate the correlation matrix R with

ρ†
mm = ρl + ρs = ρmKρ−1

KKρ′
mK +

(
ρmm − ρmKρ−1

KKρ′
mK

)
◦∆, (10)

where ρmK = [ρ(si, s
∗
j )]i=1:m,j=1:K , ρKK = [ρ(s∗i , s

∗
j )]

K
i,j=1, and ∆ = [∆(si, sj)]

m
i,j=1. Here, the

notation“◦”represents the element-wise matrix multiplication. To avoid numerical instability,
we add a small nugget effect ǫ = 0.001 when define R, that is, R = (1 − ǫ)ρmm + ǫIm. It
follows from equation (10) that R can be approximated by

R† = (1− ǫ)ρ†
mm + ǫIm = (1− ǫ)ρmKρ−1

KKρ′
mK +Rs,

where Rs = (1 − ǫ)
(
ρmm − ρmKρ−1

KKρ′
mK

)
◦ ∆ + ǫIm. Applying the Sherman-Woodbury-

Morrison formula for inverse matrices, we can approximate R−1 by

(
R†

)−1
= R−1

s − (1− ǫ)R−1
s ρmK

[
ρKK + (1− ǫ)ρ′

mKR−1
s ρmK

]−1
ρ′
mKR−1

s . (11)

In addition, the determinant of R can be approximated by

det
(
R†

)
= det

{
ρKK + (1− ǫ)ρ′

mKR−1
s ρmK

}
det(ρKK)−1 det(Rs). (12)

Since the m × m matrix Rs is a block matrix, the right-hand sides of equations (11) and
(12) involve only inverses and determinants of K × K low-rank matrices and m × m block
diagonal matrices. Thus the computational complexity can be greatly reduced relative to the
expensive computational cost of using original correlation function for large value of m.

2.2. MCMC

The likelihood function for (wL,θ,β,v) is given by

L(wL,θ,β,v) =

m∏

i=1

ni∏

j=1

[
Sxij

(aij)− Sxij
(bij)

]I{aij<bij} fxij
(aij)

I{aij=bij}. (13)

MCMC is carried out through an empirical Bayes approach coupled with adaptive Metropolis
samplers (Haario, Saksman, and Tamminen 2001). Recall that wj = 1/L implies the un-
derlying parametric model with S0(t) = Sθ(t). Thus, the parametric model provides good
starting values for the TBP survival model. Let θ̂ and β̂ denote the parametric estimates
of θ and β, and let V̂ and Ŝ denote their estimated covariance matrices, respectively. Set
zL−1 = (z1, . . . , zL−1)

′ with zj = log(wj)− log(wL). The β, θ, zL−1, α and φ are all updated

using adaptive Metropolis samplers, where the initial proposal variance is Ŝ for β, V̂ for
θ, 0.16IL−1 for zL−1 and 0.16 for α and φ. Each frailty term vi is updated via Metropolis-
Hastings, with proposal variance as the conditional prior variance of vi|{vj}j 6=i; τ

−2 is updated
via a Gibbs step from its full conditional. A complete description and derivation of the up-
dating steps are available in Zhou and Hanson (2017).

The function survregbayes sets the following hyperparameters as defaults: β0 = 0, S0 =
1010Ip, θ0 = θ̂, V0 = 10V̂, a0 = b0 = 1, and aτ = bτ = .001. Note here we assume a somewhat
informative prior on θ to obviate confounding between θ and wL. For georeferenced data,
we set and aφ = φ0bφ + 1 and bφ = 1 so that the prior of φ has mode at φ0. Here φ0 satisfies
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ρ(s′, s′′;φ0) = 0.001, where ‖s′− s′′‖ = maxij ‖si− sj‖. Note that Kneib and Fahrmeir (2007)
simply fix φ at φ0, while we allow φ to be random around φ0.

2.3. Model Diagnostics and Comparison

For model diagnostics, we consider a general residual of Cox and Snell (1968), defined as
r(tij) = − log{Sxij

(tij)|D}, where the residual depends on the posterior [β,θ,wL, vi|D]. Given
Sxij

(·), − logSxij
(tij) has a standard exponential distribution. If the model is “correct,” and

under the arbitrary censoring, the pairs {r(aij), r(bij)} are approximately a random arbitrarily
censored sample from an Exp(1) distribution, and the estimated (Turnbull 1974) integrated
hazard plot should be approximately straight with slope 1. Uncertainty in the plot is assessed
through several cumulative hazards based on a random sample from [β,θ,wJ , vi|D]. This is
in contrast to typical Cox-Snell plots which only use point estimates.

For model comparison, we consider two popular model choice criteria: the deviance informa-
tion criterion (DIC) (Spiegelhalter, Best, Carlin, and Van Der Linde 2002) and the log pseudo
marginal likelihood (LPML) (Geisser and Eddy 1979), where the former places emphasis on
the relative quality of model fitting and the latter focuses on the predictive performance.
Both criteria are readily computed from the MCMC output; see Zhou and Hanson (2017) for
more details.

2.4. Leukemia Survival Data

A dataset on the survival of acute myeloid leukemia in n = 1, 043 patients (Henderson et al.
2002) is considered, named as LeukSurv in the package. It is of interest to investigate possible
spatial variation in survival after accounting for known subject-specific prognostic factors,
which include age, sex, white blood cell count (wbc) at diagnosis, and the Townsend score
(tpi) for which higher values indicates less affluent areas. Both exact residential locations of
all patients and their administrative districts (the boundary file is named as nwengland.bnd
in the package) are available, so we can fit both geostatistical and areal models.

PO model with ICAR frailties

We first need to sort the dataset by district, then obtain the adjacency matrix E.

> library(coda)

> library(survival)

> library(spBayesSurv)

> library(fields)

> library(BayesX)

> library(R2BayesX)

> data(LeukSurv);

> attach(LeukSurv);

> d = LeukSurv[order(district),]; n = nrow(d); detach(LeukSurv);

> head(d);

time cens xcoord ycoord age sex wbc tpi district

24 1 1 0.4123484 0.4233738 44 1 281.0 4.87 1

62 3 1 0.3925028 0.4531422 72 1 0.0 7.10 1

68 4 1 0.4167585 0.4520397 68 0 0.0 5.12 1
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128 9 1 0.4244763 0.4123484 61 1 0.0 2.90 1

129 9 1 0.4145535 0.4520397 26 1 0.0 6.72 1

163 15 1 0.4013230 0.4785006 67 1 27.9 1.50 1

> nwengland=read.bnd(system.file("otherdata/nwengland.bnd",

+ package="spBayesSurv"));

> adj.mat=bnd2gra(nwengland)

> E = diag(diag(adj.mat)) - as.matrix(adj.mat);

The following code is used to fit the PO model with ICAR frailties using the TBP prior
with L = 15 and default settings for other priors. A burn-in period of 5,000 iterates was
considered and the Markov chain was subsampled every 5 iterates to get a final chain size
of 2,000. The argument ndisplay=1000 will display the number of saved scans after every
1,000 saved iterates. If the argument InitParamMCMC=TRUE (not used here as it is the default
setting), then an initial chain with nburn=5000, nsave=5000, nkip=0 and ndisplay=1000 will
be run; otherwise, the initial values are obtained from fitting parametric non-frailty models
via survreg. The total running time is 172 seconds.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> prior=list(maxL=15);

> ptm<-proc.time()

> res1 = survregbayes(formula=Surv(time,cens)~age+sex+wbc+tpi

+ +frailtyprior("car",district),data=d,survmodel="PO",

+ dist="loglogistic",mcmc=mcmc,prior=prior,Proximity=E);

Starting initial MCMC based on parametric model:

scan = 1000

scan = 2000

scan = 3000

scan = 4000

scan = 5000

Starting the MCMC for the semiparametric model:

scan = 1000

scan = 2000

> systime1=proc.time()-ptm; systime1;

user system elapsed

168.930 0.950 171.507

The term frailtyprior("car",district) indicates that the ICAR prior in (6) is used.
One can also incorporate the IID prior in (7) via frailtyprior("iid",district). The
non-frailty model can be fit by removing the frailtyprior term. The argument survmodel
is used to indicate which model will be fit; choices include "PH", "PO", and "AFT". The
argument dist is used to specify the distribution family of Sθ defined in Section 2.1, and the
choices include "loglogistic", "lognormal", and "weibull". The argument prior is used
to specify user-defined hyperparameters, e.g., for p = 3, L = 15, β0 = 0, S0 = 10Ip, θ0 = 0,
V0 = 10I2, a0 = b0 = 1, and aτ = bτ = 1, the prior can be specified as below.

> prior=list(maxL=15,beta0=rep(0,3),S0=diag(10,3),theta0=rep(0,2),

+ V0=diag(10,2),a0=1,b0=1,taua0=1,taub0=1)
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If prior=NULL, then the default hyperparameters given in Section 2.2 would be used. Note
by default survregbayes standardizes each covariate by subtracting the sample mean and
dividing the sample standard deviation. Therefore, the user-specified hyperparameters should
be based on the model with scaled covariates unless the argument scale.designX=FALSE is
added.

The output from applying the summary function to the returned object res1 is given below.

> sfit1=summary(res1); sfit1

Proportional Odds model:

Call:

survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

frailtyprior("car", district), data = d, survmodel = "PO",

dist = "loglogistic", mcmc = mcmc, prior = prior, Proximity = E)

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2806):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0515312 0.0513855 0.0034000 0.0448747 0.0582174

sex 0.1238992 0.1227971 0.1129346 -0.0996123 0.3539006

wbc 0.0059400 0.0059837 0.0007868 0.0043236 0.0074710

tpi 0.0616777 0.0614836 0.0165983 0.0310655 0.0945423

Posterior inference of precision parameter

(Adaptive M-H acceptance rate: 0.1856):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

alpha 0.9596 0.8766 0.4511 0.3387 2.0669

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.074520 0.050776 0.085125 0.001517 0.283800

Log pseudo marginal likelihood: LPML=-5923.603

Deviance Information Criterion: DIC=11847.01

Number of subjects: n=1043

We can see that age, wbc and tpi are significant risk factors for leukemia survival. For
example, lower age decreases the odds of a patient dying by any time; holding other predictors
constant, a 10-year decrease in age cuts the odds of dying by exp(−10 × 0.0515312) ≈ 60%.
The posterior mean for τ2 is 0.074520, and is 0.9596 for precision parameter α. The LPML
and DIC are -5924 and 11847, respectively.

The following code is used to produce trace plots (Figure 1) for β, τ2 and α. Note that the
mixing for τ2 is not very satisfactory. This is not surprising, since we are using very vague
gamma prior Γ(0.001, 0.001) and the total number of districts is only 24.

> par(mfrow=c(3,2));

> par(cex=1,mar=c(2.5,4.1,1,1))

> traceplot(mcmc(res1$beta[1,]), xlab="", main="age")
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Figure 1: Leukemia survival data. Trace plots for β, τ2 and α under the PO model with
ICAR frailties.

> traceplot(mcmc(res1$beta[2,]), xlab="", main="sex")

> traceplot(mcmc(res1$beta[3,]), xlab="", main="wbc")

> traceplot(mcmc(res1$beta[4,]), xlab="", main="tpi")

> traceplot(mcmc(res1$tau2), xlab="", main="tau^2")

> traceplot(mcmc(res1$alpha), xlab="", main="alpha")

The code below is used to generate the Cox-Snell plots with 10 posterior residuals (Figure 2,
panel a).

> nrand = 10;

> Resid = cox.snell.survregbayes(res1, ncurves=nrand);

> r.max = ceiling(quantile(res1$Surv.cox.snell[,1], .99))+1

> xlim=c(0, r.max); ylim=c(0, r.max); width=8; height=8;

> xx = seq(0, r.max, 0.01);

> fit = survfit(Resid$resid1~1);

> par(cex=1.5,mar=c(2.1,2.1,1,1),cex.lab=1.4,cex.axis=1.1)

> plot(fit, fun="cumhaz", conf.int=F, mark.time=FALSE, xlim=xlim,

+ ylim=ylim, lwd=2, lty=2)

> lines(xx, xx, lty=1, lwd=3, col="darkgrey")

> for(i in 2:nrand){

+ fit = survfit(Resid[[i+1]]~1);

+ lines(fit, fun="cumhaz", conf.int=F, mark.time=FALSE, xlim=xlim,

+ ylim=ylim, lwd=2, lty=2)

+ }

The code below is used to generate survival curves for female patients with wbc=38.59 and
tpi=0.3398 at different ages (Figure 2, panel b).

> tgrid = seq(0.1,5000,length.out=300);

> xpred = rbind(c(49, 0, 38.59, 0.3398),
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Figure 2: Leukemia survival data. PO model with ICAR frailties. (a) Cox-Snell plot.
(b) Survival curves with 95% credit interval bands for female patients with wbc=38.59 and
tpi=0.3398 at different ages. (c) Map for the posterior mean frailties; larger frailties mean
higher mortality rate overall.

+ c(65, 0, 38.59, 0.3398),

+ c(74, 0, 38.59, 0.3398));

> estimates=plot(res1, xpred=xpred, tgrid=tgrid);

> par(mfrow=c(1,1));

> par(cex=1.2,mar=c(4.1,4.1,1,1),cex.lab=1.3,cex.axis=1.1)

> plot(estimates$tgrid, estimates$Shat[,1], "l", lwd=3, ylim = c(0, 1),

+ xlab = "Time (days)", ylab="Survival Probability")

> polygon(x=c(rev(tgrid),tgrid),

+ y=c(rev(estimates$Shatlow[,1]),estimates$Shatup[,1]),

+ border=c("black"),col="lightgray");

> lines(estimates$tgrid, estimates$Shat[,1], lty=1, lwd=3)

> polygon(x=c(rev(tgrid),tgrid),

+ y=c(rev(estimates$Shatlow[,2]),estimates$Shatup[,2]),

+ border=c("red"),lty=2, col="lightgray");

> lines(estimates$tgrid, estimates$Shat[,2], lty=2, lwd=3, col="red")

> polygon(x=c(rev(tgrid),tgrid),

+ y=c(rev(estimates$Shatlow[,3]),estimates$Shatup[,3]),

+ border=c("green"),lty=2, col="lightgray");

> lines(estimates$tgrid, estimates$Shat[,3], lty=3, lwd=3, col="green")

> legend(2600,0.95, legend=c("age=49","age=65","age=74"),

+ lty=c(1,2,3),lwd=c(3,3,3),col=c("black","red","green"),bty="n",cex=2)

The code below is used to generate the map of posterior means of frailties for each district
(Figure 2, panel c).

> frail0=(rowMeans(res1$v)); #$

> frail = frail0[as.integer(names(nwengland))];

> values = cbind(as.integer(names(nwengland)), frail)

> op <- par(no.readonly = TRUE)

> par(mar=c(3,0,0,0))
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> plotmap(nwengland, x=values, col=(gray.colors(10,0.3,1))[10:1],

+ pos = "bottomleft",width = 0.5, height = 0.04)

PO model with GRF frailties

Note that all coordinates are distinct, so we have m = 1043 and ni = 1 in terms of our
notations. To use frailtyprior specify the prior, we need to create an ID variables consisting
of 1043 distinct values. The powered exponential correlation function with ν = 1 is used. To
specify the number of knots and blocks for the FSA of R, we consider K = 100 and B = 1043.
The code below is used to fit a PO model with GRF frailties under above settings. The running
time is 10478 seconds.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> prior=list(maxL=15, nu=1, nknots=100, nblock=1043);

> d$ID=1:nrow(d); #$

> locations=cbind(d$xcoord,d$ycoord);

> ptm<-proc.time()

> res2 = survregbayes(formula=Surv(time,cens)~age+sex+wbc+tpi

+ +frailtyprior("grf",ID),data=d,survmodel="PO",

+ dist="loglogistic",mcmc=mcmc,prior=prior,

+ Coordinates=locations);

> sfit2=summary(res2); sfit2

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2838):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0529726 0.0530458 0.0034661 0.0461137 0.0595578

sex 0.1068712 0.1057764 0.1114583 -0.1039998 0.3221860

wbc 0.0060615 0.0060646 0.0007782 0.0045370 0.0075862

tpi 0.0592036 0.0599728 0.0157041 0.0276731 0.0889597

Posterior inference of precision parameter

(Adaptive M-H acceptance rate: 0.2431):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

alpha 1.0894 0.9871 0.4984 0.4190 2.3426

Posterior inference of frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.1468 0.1302 0.0604 0.0754 0.3084

Posterior inference of correlation function range phi

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

range 7.924 7.705 2.157 4.229 12.402

Log pseudo marginal likelihood: LPML=-5921.707

Deviance Information Criterion: DIC=11842.45

Number of subjects: n=1043
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Figure 3: Leukemia survival data. Trace plots for β, τ2 and α under the PO model with GRF
frailties.

> systime2=proc.time()-ptm; systime2;

user system elapsed

10393.707 79.944 10478.230

The trace plots for β, τ2 and φ (Figure 3), Cox-Snell residuals and survival curves (Figure 4)
can be obtained using the same code used for the PO model with ICAR frailties. The code
below is used to generate the map of posterior means of frailties for each location (Figure 4).

> frail= round((rowMeans(res2$v)),3); nclust=5; #$

> frail.cluster = cut(frail, breaks = nclust);

> frail.names = names(table(frail.cluster))

> rbPal <- colorRampPalette(c('blue','red'))

> frail.colors=rbPal(nclust)[as.numeric(frail.cluster)]

> par(mar=c(3,0,0,0))

> plot(nwengland)

> points(cbind(d$xcoord,d$ycoord), col=frail.colors)

> legend("topright",title="frailty values",legend=frail.names,

+ col=rbPal(nclust),pch=20,cex=1.7)

2.5. Variable Selection

The most direct approach is to multiply βk by a latent Bernoulli variable γk, where γk = 1
indicates presence of covariate xk in the model, and then assume an appropriate prior on
(β,γ), where γ = (γ1, . . . , γp). Following Kuo and Mallick (1998) and Hanson, Branscum,
Johnson et al. (2014), we consider below independent priors

γ1, . . . , γp
iid
∼ Bern(0.5) and β ∼ Np(0, gn(X

′X)−1), (14)

where X is the usual design matrix, but with mean-centered covariates, i.e. 1′nX = 0′p, and

g is chosen by picking a number M such that a random ex
′β is less than M with probability
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Figure 4: Leukemia survival data. PO model with GRF frailties. (a) Cox-Snell plot. (b)
Survival curves with 95% credit interval bands for female patients with wbc=38.59 and
tpi=0.3398 at different ages. (c) Map for the posterior mean frailties; larger frailties mean
higher mortality rate overall.

q, i.e. approximately g =
[
logM/Φ−1(q)

]2
/p. The function survregbayes sets M = 10 and

q = 0.9 as the defaults. The MCMC procedure is described in Zhou and Hanson (2017).

To perform variable selection for the leukemia survival data, we simply need to add the
argument selection=TRUE to the function survregbayes. A part of the output from summary

is also shown. The model with age, wbc and tpi has the highest proportion (85.9%), and
thus can be served as the final model.

> res3 = survregbayes(formula=Surv(time,cens)~age+sex+wbc+tpi

+ +frailtyprior("car",district),data=d,survmodel="PO",

+ dist="loglogistic",mcmc=mcmc,prior=prior,Proximity=E,

+ selection=TRUE);

> systime3=proc.time()-ptm; systime3;

user system elapsed

312.111 1.632 316.392

> sfit3=summary(res3); sfit3

Variable selection:

age,wbc,tpi age,sex,wbc,tpi age,wbc age,sex,wbc

prop. 0.8590 0.0985 0.0375 0.0050

Log pseudo marginal likelihood: LPML=-5925.228

Deviance Information Criterion: DIC=11849.45

Number of subjects: n=1043

2.6. Parametric vs. Semiparametric

Many authors have found parametric models to fit as well or better than competing semipara-
metric models (Cox and Oakes 1984, p. 123; Nardi and Schemper 2003). The semiparametric
TBP models have their baseline survival functions centered at a parametric family Sθ(t). Note
that zJ−1 = 0 implies S0(t) = Sθ(t). Therefore, testing H0 : zJ−1 = 0 versus H1 : zJ−1 6= 0
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leads to the comparison of the semiparametric model with the underlying parametric model.
Let BF10 be the Bayes factor between H1 and H0. Zhou et al. (2016) proposed to esti-
mate BF10 by a large-sample approximation to the generalized Savage-Dickey density ratio
(Verdinelli and Wasserman 1995). Adapting their approach BF10 is estimated

B̂F 10 =
p(0|α̂)

NJ−1(0; m̂, Σ̂)
, (15)

where p(0|α) = Γ(αJ)/[JαΓ(α)]J is the prior density of zJ−1 evaluated at zJ−1 = 0, α̂ is
the posterior mean of α, Np(·;m,Σ) denotes a p-variable normal density with mean m and

covariance Σ, and m̂ and Σ̂ are posterior mean and covariance of zJ−1.

The Bayes factor BF10 under the semiparametric PO model with ICAR frailties can be
obtained using the code below (here the object res1 is obtained in Section 2.4).

> BF.survregbayes(res1)

[1] 2330.477

The BF10 = 2330 ≫ 1 indicates that the semiparametric model significantly outperforms the
loglogistic parametric model.

The function survregbayes also supports efficient parametric frailty models with loglogistic,
lognormal or Weibull baseline function. For example, the following code fits a parametric
loglogistic PO model with ICAR frailties for the leukemia survival data.

> prior=list(maxL=15, a0=-1,thete0=rep(0,2),V0=diag(1e10,2));

> state=list(alpha=Inf);

> ptm<-proc.time()

> res11 = survregbayes(formula=Surv(time,cens)~age+sex+wbc+tpi

+ +frailtyprior("car",district),data=d,survmodel="PO",

+ dist="loglogistic",mcmc=mcmc,prior=prior,state=state,

+ Proximity=E,InitParamMCMC=FALSE);

scan = 1000

scan = 2000

> sfit11=summary(res11); sfit11

Proportional Odds model:

Call:

survregbayes(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

frailtyprior("car", district), data = d, survmodel = "PO",

dist = "loglogistic", mcmc = mcmc, prior = prior, state = state,

Proximity = E, InitParamMCMC = FALSE)

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2903):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0504202 0.0505329 0.0034000 0.0437902 0.0570289

sex 0.1146655 0.1110484 0.1136106 -0.0962541 0.3412315

wbc 0.0062118 0.0062088 0.0007854 0.0046620 0.0077172

tpi 0.0596343 0.0592660 0.0155276 0.0303326 0.0912814
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Posterior inference of baseline parameters

Note: the baseline estimates are based on scaled covariates

(Adaptive M-H acceptance rate: 0.2811):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

theta1 -5.12357 -5.12354 0.06320 -5.24813 -5.00353

theta2 -0.10715 -0.10640 0.02826 -0.16283 -0.05271

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

variance 0.07614 0.06035 0.07411 0.00150 0.26608

Log pseudo marginal likelihood: LPML=-5950.056

Deviance Information Criterion: DIC=11899.71

Number of subjects: n=1043

> systime11=proc.time()-ptm; systime11;

user system elapsed

25.123 0.112 25.369

In parametric models, the prior for θ can be set to be relatively vague. The LPML is -5950,
much worse than the value under the semiparametric PO model. Note that setting a0 at any
negative value will force the α to be fixed at the value specified in the argument state. For
example, setting prior=list(a0=-1) and state=list(alpha=1) will fix α = 1 throughout
the MCMC; setting prior=list(a0=-1) and state=list(alpha=Inf) will fit a parametric
model.

2.7. Left-Truncation and Time-Dependent Covariates

The survival time tij is left-truncated at uij ≥ 0 when uij is the time when the ijth subject
is first observed. Left-truncation often occurs when age is used as the time scale. Given the
observed left-truncated data D = {(uij , aij , bij ,xij , si)}, the likelihood function (13) becomes

L(wJ ,θ,β,v) =

m∏

i=1

ni∏

j=1

[
Sxij

(aij)− Sxij
(bij)

]I{aij<bij} fxij
(aij)

I{aij=bij}/Sxij
(uij).

Allowing for left-truncation allows the semiparametric AFT, PH and PO models to be easily
extended to handle time-dependent covariates. Following Kneib (2006) and Hanson, Johnson,
and Laud (2009), assume the covariate vector xij(t) is a step function that changes at oij
ordered times tij,1 < . . . < tij,oij ≤ aij , i.e.,

xij(t) =

oij∑

k=1

xij,kI(tij,k ≤ t < tij,k+1),

where tij,1 = uij and tij,oij+1 = ∞. Assuming one of PH, PO, or AFT holds conditionally on
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each interval, the survival function for the ijth individual at time aij is

P (tij > aij) = P (tij > aij |tij > tij,oij )

oij∏

k=1

P (tij > tij,k|tij > tij,k−1)

=
Sxij,oij

(aij)

Sxij,oij
(tij,oij )

oij∏

k=1

Sxij,k
(tij,k)

Sxij,k
(tij,k−1)

,

where tij,0 = 0. This leads to the usual PH model for time-dependent covariates (Cox
1972), the AFT model first proposed by Prentice and Kalbfleisch (1979) and developed
by Hanson et al. (2009), and particular piecewise PO model. Thus one can replace the
observation (uij , aij , bij ,xij(t), si) by a set of new oij observations (tij,1, tij,2,∞,xij,1, si),
(tij,2, tij,3,∞,xij,2, si), . . ., (tij,oij , aij , bij ,xij,oij , si). This way we get a new left-truncated
data set of size N =

∑m
i=1

∑ni

j=1 oij . Then the likelihood function becomes

L(wJ ,θ,β,v) =
m∏

i=1

ni∏

j=1

{[
Sxij,oij

(aij)− Sxij,oij
(bij)

]I{aij<bij}
fxij,oij

(aij)
I{aij=bij}

×

oij∏

k=1

Sxij,k
(tij,k)

Sxij,k
(tij,k−1)

}
.

PBC data

We use the primary biliary cirrhosis (PBC) dataset (available in the package survival as
pbc) as an example to show how to incorporate time-dependent covariates in the function
survregbayes. Although this is not a spatial dataset, spatial frailties can be added similarly
as in Section 2.4. The following code is copied from Therneau, Crowson, and Atkinson (2016)
to create the data frame with time-dependent covariates.

> temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline data

> pbc2 <- tmerge(temp, temp, id=id, endpt = event(time, status))

> pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites),

+ bili = tdc(day, bili), albumin = tdc(day, albumin),

+ protime = tdc(day, protime), alk.phos = tdc(day, alk.phos))

> pbc2 = pbc2[,c("id","tstart","tstop","endpt","bili","protime")];

> head(pbc2);

id tstart tstop endpt bili protime

1 1 0 192 0 14.5 12.2

2 1 192 400 2 21.3 11.2

3 2 0 182 0 1.1 10.6

4 2 182 365 0 0.8 11.0

5 2 365 768 0 1.0 11.6

6 2 768 1790 0 1.9 10.6

> coxph(Surv(tstart,tstop,endpt==2)~log(bili)+log(protime), data=pbc2)

Call:

coxph(formula = Surv(tstart, tstop, endpt == 2) ~ log(bili) +

log(protime), data = pbc2)
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coef exp(coef) se(coef) z p

log(bili) 1.241 3.460 0.097 12.80 <2e-16

log(protime) 3.983 53.699 0.436 9.14 <2e-16

Likelihood ratio test=332 on 2 df, p=0

n= 1807, number of events= 125

We can fit the Bayesian PH model with TBP baseline as follows. The output for regression
coefficients is partial.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> ptm<-proc.time()

> fit1 = survregbayes(Surv(tstart,tstop,endpt==2)~log(bili)+log(protime),

+ data=pbc2, survmodel="PH", dist="loglogistic",

+ mcmc=mcmc, subject.num=id);

> fit1

Proportional hazards model:

Call:

survregbayes(formula = Surv(tstart, tstop, endpt == 2) ~ log(bili) +

log(protime), data = pbc2, survmodel = "PH", dist = "loglogistic",

mcmc = mcmc, subject.num = id)

Posterior means for regression coefficients:

log(bili) log(protime)

1.315 4.217

LPML: -1018.964

DIC: 2033.276

n=1807

> systime1=proc.time()-ptm; systime1;

user system elapsed

234.975 1.108 237.089

Equivalently, one can also run the following code to obtain the same analysis. The argument
truncation_time is used to specify the start time point for each time interval, i.e. tstart.
The end time point tstop together with endpt are formulated as interval censored data using
type="interval2" of Surv. This format is more general than the former one, as one can
easily incorporate interval censored data.

> pbc2$tleft=pbc2$tstop; pbc2$tright=pbc2$tstop;

> pbc2$tright[which(pbc2$endpt!=2)]=NA;

> fit11 = survregbayes(Surv(tleft,tright,type="interval2")~log(bili)

+ +log(protime), data=pbc2, survmodel="PH",

+ dist="loglogistic", mcmc=mcmc,

+ truncation_time=tstart, subject.num=id);
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3. GAFT Frailty Models

3.1. The Model

The generalized accelerated failure time (GAFT) frailty model (Zhou et al. 2016) generalizes
the AFT model (1) to allow the baseline survival function S0(t) to depend on certain covari-
ates, say a q-dimensional vector zij which is usually a subset of xij . Specifically, the GAFT
frailty model is given by

Sxij
(t) = S0,zij

(
e−x

′

ijβ−vit
)
, (16)

or equivalently,
yij = log(tij) = x̃′

ijβ̃ + vi + ǫij , (17)

where x̃ij = (1,x′
ij)

′ includes an intercept, β̃ = (β0,β
′)′ is a vector of corresponding coeffi-

cients, ǫij is a heteroscedastic error term independent of vi, and P (eβ0+ǫij > t|zij) = S0,zij (t).
Note the regression coefficients β here are defined differently with those in model (1). Here
we assume

ǫij |Gzij

ind.
∼ Gzij

,

where Gz is a probability measure defined on R for every z ∈ X ; this defines a model for the
entire collection of probability measures GX = {Gz : z ∈ X} so that each element is allowed
to smoothly change with the covariates z. The frailtyGAFT function considers the following
prior distributions:

β̃ ∼ Np+1(m0,S0)

Gz|α, σ
2 ∼ LDTFPL(α, σ

2), α ∼ Γ(a0, b0), σ−2 ∼ Γ(aσ, bσ),

(v1, . . . , vm)′|τ ∼ ICAR(τ2), τ−2 ∼ Γ(aτ , bτ ), or

(v1, . . . , vm)′|τ, φ ∼ GRF(τ2, φ), τ−2 ∼ Γ(aτ , bτ ), φ ∼ Γ(aφ, bφ),

(18)

where LDTFPL refers to the linear dependent tailfree process prior (LDTFP) prior as de-
scribed in (Zhou et al. 2016).

The LDTFP prior considered in Zhou et al. (2016) is centered at a normal distribution Φσ

with mean 0 and variance σ2, that is, E(Gz) = N(0, σ2) for every z ∈ X . Define the function
kσ(x) = ⌈2LΦσ(x)⌉, where ⌈x⌉ is the ceiling function, the smallest integer greater than or
equal to x. Further define probability pz(k) for k = 1, . . . , 2L as

pz(k) =
L∏

l=1

Yl,⌈k2l−L⌉(z),

where Yj+1,2k−1(z) =
(
1 + exp{−z̃′γj,k}

)−1
and Yj+1,2k(z) = 1−Yj+1,2k−1(z) for j = 0, . . . , L−

1, k = 1, . . . , 2j , where z̃ = (1, z′)′ includes an intercept, and γj,k = (γj,k,0, . . . , γj,k,q)
′ is a

vector of coefficients. Note there are 2L − 1 regression coefficient vectors γ = {γj,k}, e.g.
for L = 3, γ = {γ0,1,γ1,1,γ1,2,γ2,1,γ2,2,γ2,3,γ2,4}. For a fixed integer L > 0, the random
density associated with LDTFPL(α, σ

2) is defined as

fz(e) = 2Lφσ(e)pz{kσ(e)}, γj,k
ind.
∼ Nq+1

(
0,

2n

α(j + 1)2
(Z′Z)−1

)
(19)
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with cdf

Gz(e) = pz{kσ(e)}
{
2LΦσ(e)− kσ(e)

}
+

kσ(e)∑

k=1

pz(k), (20)

where Z is the n × (q + 1) design matrix with mean-centered covariates z̃ijs. Furthermore,
the LDTFP is specified by setting γ0,1 ≡ 0, such that for every z ∈ X , Gz is almost surely
a median-zero probability measure. This is important to avoid identifiability issues. As
shown by Jara and Hanson (2011), the LDTFP has appealing theoretical properties such as
continuity as a function of the covariates, large support on the space of conditional density
functions, straightforward posterior computation relying on algorithms for fitting generalized
linear models, and the process closely matches conventional Polya tree priors (see, e.g., Hanson
2006) at each value of the covariate, which justify its choice here.

3.2. MCMC

Let Ω = (yc, β̃,v, τ
2, σ2,γ, α) denote collectively the model parameters to be updated, where

yc = {yij : aij < bij} are censored log-survival times. The yij ∈ yc, each component of β̃,
vi and σ are all sampled using the single-variable slice sampling method (Neal 2003). For
the LDTFP regression parameters γj,k, we utilize Metropolis-Hastings steps with Gaussian
proposals based on iterative weighted least squares (Gamerman 1997), recognizing that the
γj,k full conditionals are proportional to logistic regression likelihoods. The hyperparameter
τ2 and α are sampled according to their conjugate full conditional distributions. A complete
description of updating steps is available in Zhou et al. (2016).

The function frailtyGAFT sets the following hyperparameters as defaults: m0 = 0, S0 =
105Ip, a0 = b0 = 1, aτ = bτ = .001, and aσ = 2 + σ̂4

0/(100v̂0), bσ = σ̂2
0(aσ − 1), where σ̂2

0 and
v̂0 are the estimates of σ2 and its asymptotic variance from fitting the parametric lognormal
AFT model, respectively. Note here we assume a somewhat informative prior on σ2 so that
its mean is σ̂2

0 and variance is 100v̂0. For georeferenced data, we set and aφ = φ0bφ + 1 and
bφ = 1 so that the prior of φ has mode at φ0. Here φ0 satisfies ρ(s′, s′′;φ0) = 0.001, where
‖s′−s′′‖ = maxij ‖si−sj‖. Note that Kneib and Fahrmeir (2007) simply fix φ at φ0, while we
allow φ to be random around φ0. Again, the user-defined hyperparameters can be specified
via the argument prior, e.g., for p = 3, L = 5, m0 = 0, S0 = 10Ip+1, a0 = b0 = 1, and
aσ = bσ = 2, the prior can be specified as below.

> prior=list(maxL=5,m0=rep(0,4),S0=diag(10,4),siga0=1,sigb0=1,a0=1,b0=1)

Given a set of posterior samples {Ω(s), s = 1, . . . , S}, all the inference targets can be easily
estimated. For example, the baseline survival function S0,z(t) = P (eβ0+ǫ > t|z) given the
covariate z is estimated by

S0,z(t) =
1

S

S∑

s=1

{
1−G

(s)
z

(
log t− β

(s)
0

)}
, (21)

where G
(s)
z (·) is given in (20) with all unknown parameters replaced by corresponding posterior

values in the sth iterate.

3.3. Bayesian Hypothesis Testing
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The GAFT frailty model includes the following as important special cases: an AFT frailty
model with nonparametric baseline where Gz = G

z
′ for all z = z′ and parametric baseline

model Gz = N(0, σ2) for all z ∈ X . Hypothesis tests can be constructed based on the
LDTFP coefficients {γl,k : k = 1, . . . , 2l, l = 1, . . . , L − 1}, where γl,k = (γl,k,0, . . . , γl,k,q)

′.
Let γl,k,−j denote the subvector of γl,k without element γl,k,j for j = 0, . . . , q. Set Υj =

(γl,k,j , k = 1, . . . , 2l, l = 1, . . . , L − 1)′, Υ−j = (γ ′
l,k,−j , k = 1, . . . , 2l, l = 1, . . . , L − 1)′ and

Υ = (γ ′
l,k, k = 1, . . . , 2l, l = 1, . . . , L − 1)′. Testing the hypotheses H0 : Υ−0 = 0 and

H0 : Υ = 0 leads to global comparisons of the proposed model with the above two special
cases respectively. Similarly, we may also test the null hypothesis H0 : Υj = 0 for the jth
covariate effect of z on the baseline survival, j = 1, . . . , q.

Suppose we wish to test H0 : Υj = 0 versus H1 : Υj 6= 0, for fixed j ∈ {1, . . . , q}. Following
Zhou et al. (2016), the Bayes factor between hypotheses H1 and H0 can be approximated by

B̂F 10 =

L−1∏

l=1

2l∏

k=1

N

(
0

∣∣∣∣0,
2n

α̂(l + 1)2
(Z′Z)−1

jj

)

N2L−2(Υj = 0; m̂j , Ŝj)
, (22)

where Np(·;m,S) denotes a p-variate normal density with mean m and covariance matrix S,

and m̂j and Ŝj are the sample mean and covariance for Υj .

3.4. Leukemia Survival Data

The code below is used to fit the GAFT model with ICAR frailties for the leukemia survival
data. As suggested by Zhou et al. (2016), the gamma prior Γ(a0 = 5, b0 = 1) is used for α.
We include all four covariates affect the baseline survival.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> prior=list(maxL=4, a0=5, b0=1);

> ptm<-proc.time()

> res1 = frailtyGAFT(formula=Surv(time,cens)~age+sex+wbc+tpi

+ +baseline(age,sex,wbc,tpi)+frailtyprior("car",district),

+ data=d,mcmc=mcmc,prior=prior,Proximity=E);

scan = 1000

scan = 2000

> sfit1=summary(res1); sfit1

Generalized accelerated failure time frailty model:

Call:

frailtyGAFT(formula = Surv(time, cens) ~ age + sex + wbc + tpi +

baseline(age, sex, wbc, tpi) + frailtyprior("car", district),

data = d, mcmc = mcmc, prior = prior, Proximity = E)

Posterior inference of regression coefficients

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

intercept 8.561833 8.559441 0.139238 8.297258 8.843160

age -0.050588 -0.050576 0.001988 -0.054635 -0.046877

sex -0.263716 -0.275361 0.151775 -0.545586 0.009187
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wbc -0.004093 -0.004278 0.001013 -0.005650 -0.001764

tpi -0.063257 -0.065633 0.022226 -0.099564 -0.019121

Posterior inference of scale parameter

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

scale 2.1299 2.1250 0.0985 1.9640 2.3529

Posterior inference of precision parameter of LDTFP

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

alpha 6.618 6.350 2.007 3.214 10.738

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

variance 0.3167 0.2880 0.1394 0.1093 0.5818

Bayes factors for LDTFP covariate effects:

intercept age sex wbc tpi overall normality

1.9716 44.0512 1.1188 44.0041 0.5366 44.0503 6372.6117

Log pseudo marginal likelihood: LPML=-5936.359

Number of subjects:=1043

> systime1=proc.time()-ptm; systime1;

user system elapsed

508.686 0.518 509.806

The Bayes factors for testing age and wbc effects on LDTFP are both 44, indicating that the
baseline survival function under the AFT model significantly depends on age and wbc, and
thus GAFT should be considered. The trace plots, survival curves and frailty map (Figure 5)
can be obtained using the code similarly to Section 2.4. The only difference is that we need
to specify the baseline covariates for plotting survival curves by including the arguement
xtfpred=xpred into the plot function.

> estimates=plot(res1, xpred=xpred, xtfpred=xpred, tgrid=tgrid);

4. Survival Models via Spatial Copulas

Currently the package only supports spatial copula models for georeferenced (without replica-
tion, i.e. ni = 1), right-censored spatial data. Suppose subjects are observed at n distinct spa-
tial locations s1, . . . , sn. Let ti be a random event time associated with the subject at si and xi

be a related p-dimensional vector of covariates, i = 1, . . . , n. For right-censored data, we only
observe toi and a censoring indicator δi for each subject, where δi equals 1 if toi = ti and equals
0 if ti is censored at toi . Therefore, the observed data will be D = {(toi , δi,xi, si); i = 1, . . . , n}.
Note although the models below are developed for spatial survival data, non-spatial data are
also accommodated.

The use of copulas in the spatial context was first proposed by Bárdossy (2006), where the
empirical variogram is replaced by empirical copulas to investigate the spatial dependence
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Figure 5: Leukemia survival data. GAFT model with ICAR frailties. (a) Trace plots for β, τ2

and α. (b) Survival curves with 95% credit interval bands for female patients with wbc=38.59
and tpi=0.3398 at different ages. (c) Map for the posterior mean frailties; larger frailties
mean higher mortality rate overall.

structure. Copulas completely describe association among random variables separately from
their univariate distributions and thus capture joint dependence without the influence of the
marginal distribution (Li 2010). In the context of survival models, the idea of spatial copula
approach is to first assume that the survival time ti at location si marginally follows a model
Sxi

(t), then model the joint distribution of (t1, . . . , tn)
′ as

P (t1 ≤ a1, . . . , tn ≤ an) = C(Fx1
(a1), . . . , Fxn(an)), (23)

where Fxi
(t) = 1 − Sxi

(t) is the cumulative distribution function and the function C is an
n-copula used to capture spatial dependence.

The current package assumes a spatial version of the Gaussian copula (Li 2010), defined as

C(u1, . . . , un) = Φn

(
Φ−1{u1}, . . . ,Φ

−1{un};R
)
, (24)

where Φn(·, . . . , ·;R) denotes the distribution function of Nn(0,R). To allow for a nugget
effect, we consider R[i, j] = θ1ρ(dij ; θ2) + (1− θ1)I(si = sj), where ρ(dij ; θ2) = exp{−θ2dij}.
Here θ1 ∈ [0, 1], also known as a“partial sill” in Waller and Gotway (2004), is a scale parameter
measuring a local maximum correlation, and θ2 controls the spatial decay over distance. Note
that all the diagonal elements of R are ones, so it is also a correlation matrix. Under the
above spatial Gaussian copula, the likelihood function based on upon the complete data
{(ti,xi, si), i = 1, . . . , n} is

L = |R|−1/2 exp

{
−
1

2
z′(R−1 − In)z

} n∏

i=1

fxi
(ti), (25)

where zi = Φ−1 {Fxi
(ti)} and fxi

(t) is the density function corresponding to Sxi
(t). We next

discuss two marginal spatial survival models for Sxi
(t) that are accommodated in the package.

Note that for large n, the FSA introduced in Section 2.1 (with ǫ replaced by 1 − θ1) can be
applied.
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4.1. Proportional Hazards Model via Spatial Copulas

Assume that ti|xi marginally follows the proportional hazards (PH) model with cdf

Fxi
(t) = 1− exp

{
−Λ0(t)e

x
′

iβ
}

(26)

and density

fxi
(t) = exp

{
−Λ0(t)e

x
′

iβ
}
λ0(t)e

x
′

iβ,

where β is a p × 1 vector of regression coefficients, λ0(t) is the baseline hazard function
and Λ0(t) =

∫ t
0 λ0(s)ds is the cumulative baseline hazard function. The piecewise exponential

model provides a flexible framework to deal with the baseline hazard (e.g. Walker and Mallick
1997). We partition the time period R

+ into M intervals, say Ik = (dk−1, dk], k = 1, . . . ,M ,
where d0 = 0 and dM = ∞. Specifically, we set dk = F−1

h (k/M), k = 0, . . . ,M , where Fh(·)
is the cdf of exponential distribution with rate parameter h. The baseline hazard is then
assumed to be constant within each interval, i.e.

λ0(t) =

M∑

k=1

hkI{t ∈ Ik},

where hks are unknown hazard values. Consequently, the cumulative baseline hazard function
can be written as

Λ0(t) =

M(t)∑

k=1

hk∆k(t),

where M(t) = min{k : dk ≥ t} and ∆k(t) = min{dk, t} − dk−1. After incorporating spatial
dependence via the copula in (24), the spCopulaCoxph function considers the following prior
distributions:

β ∼ Np(β0,S0),

hk|h
iid
∼ Γ(r0h, r0), k = 1, . . . ,M,

(θ1, θ2) ∼ Beta(θ1a, θ1b)× Γ(θ2a, θ2b)

(27)

The spCopulaCoxph function sets the following default hyperparameter values: M = 10,
r0 = 1, h = ĥ, β0 = 0, S0 = 105Ip, θ1a = θ1b = θ2a = θ2b = 1, where ĥ is the maximum
likelihood estimate of the rate parameter from fitting an exponential PH model. A function
indeptCoxph is also provided to fit the non-spatial standard PH model with above baseline
and prior settings.

4.2. Bayesian Nonparametric Survival Model via Spatial Copulas

We assume that yi = log ti given xi marginally follows a linear dependent Dirichlet process
mixture (LDDPM) model (De Iorio, Johnson, Müller, and Rosner 2009) with cdf,

Fxi
(t) =

∫
Φ

(
log t− x′

iβ

σ

)
dG{β, σ2}, (28)

where Φ(·) is the cdf of the standard normal, and G follows the Dirichlet Process (DP) prior.
This Bayesian nonparametric model treats the conditional distribution Fx as a function-valued
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parameter and allows its variance, skewness, modality and other features to flexibly vary with
the x covariates. After incorporating spatial dependence via the copula in (24), the function
spCopulaDDP assumes the following prior distributions:

G =

N∑

k=1

wkδ(βk,σ
2
k
), wk = Vk

k−1∏

j=0

(1− Vj), V0 = 0, VN = 1

Vk
iid
∼ Beta(1, α), k = 1, . . . , N, α ∼ Γ(a0, b0)

βk|µ
iid
∼ Np(µ,Σ), k = 1, . . . , N, µ ∼ Np(m0,S0)

σ−2
k |Σ

iid
∼ Γ(νa, νb), k = 1, . . . , N, Σ−1 ∼ Wp

(
(κ0Σ0)

−1, κ0
)

(θ1, θ2) ∼ Beta(θ1a, θ1b)× Γ(θ2a, θ2b).

(29)

The following default hyperpriors are considered in spCopulaDDP: a0 = b0 = 2, νa = 3,
νb = σ̂2, θ1a = θ1b = θ2a = θ2b = 1, m0 = β̂, S0 = Σ̂, Σ0 = 30Σ̂, and κ0 = 7, where β̂ and
σ̂2 are the maximum likelihood estimates of β and σ2 from fitting the log-normal accelerated
failure time model log(ti) = x′

iβ + σǫi, ǫi ∼ N(0, 1), and Σ̂ is the asymptotic covariance
estimate for β̂. A function indeptDDP is also provided to fit the non-spatial LDDPM model
in (28) with above prior settings.

4.3. Leukemia Survival Data

PH model with spatial copula

The following code is used to fit the piecewise exponential PH model (26) with the Gaussian
spatial copula (24) using M = 20 and default priors. We consider K = 100 and B = 1043 for
the number of knots and blocks in the FSA of R. The total running time is 15075 seconds.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> prior=list(M=20, nknots=100, nblock=1043);

> ptm<-proc.time()

> res1 = spCopulaCoxph(formula=Surv(time,cens)~age+sex+wbc+tpi,data=d,

+ mcmc=mcmc,prior=prior,

+ Coordinates=cbind(d$xcoord,d$ycoord));

> sfit1=summary(res1); sfit1

Spatial Copula Cox PH model with piecewise constant baseline hazards

Call:

spCopulaCoxph(formula = Surv(time, cens) ~ age + sex + wbc +

tpi, data = d, mcmc = mcmc, prior = prior, Coordinates = cbind(d$xcoord,

d$ycoord))

Posterior inference of regression coefficients

(Adaptive M-H acceptance rate: 0.2438):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

age 0.0282502 0.0282043 0.0018892 0.0246622 0.0319507

sex 0.0568409 0.0558295 0.0612507 -0.0663804 0.1774189

wbc 0.0028199 0.0028274 0.0004191 0.0020218 0.0036204
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Figure 6: Leukemia survival data. Trace plots for β, θ1 and θ2 under the PH model with
spatial copula.

tpi 0.0265696 0.0265197 0.0089057 0.0084522 0.0442770

Posterior inference of spatial sill and range parameters

(Adaptive M-H acceptance rate: 0.1932):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

sill 0.19922 0.20228 0.05963 0.07301 0.29884

range 0.43634 0.33631 0.37704 0.02665 1.48672

Log pseudo marginal likelihood: LPML=-5931.167

Number of subjects: n=1043

> systime1=proc.time()-ptm; systime1;

user system elapsed

14875.147 180.753 15075.110

The trace plots (Figure 6) and survival curves (Figure 7, panel a) can be obtained using the
code similarly to Section 2.4, where the only difference is that we also present the trace plots
for partial sill θ1 and range θ2.

> traceplot(mcmc(res1$theta[1,]), xlab="", main="partial sill")

> traceplot(mcmc(res1$theta[2,]), xlab="", main="range")

Note that the higher the value of zi = Φ−1 {Fxi
(ti)} is, the longer the survival time ti (i.e.

lower mortality rate) would be. The posterior sample of zis is saved in res1$Zpred. The
following code is used to show the posterior mean of zi values on the map (Figure 7, panel b).

> frail= round((rowMeans(res1$Zpred)),3); nclust=5;

> frail.cluster = cut(frail, breaks = nclust);

> frail.names = names(table(frail.cluster))

> rbPal <- colorRampPalette(c('red','blue'))

> frail.colors=rbPal(nclust)[as.numeric(frail.cluster)]
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Figure 7: Leukemia survival data. PH model with spatial copula. (a) Survival curves with
95% credit interval bands for female patients with wbc=38.59 and tpi=0.3398 at different
ages. (b) Map for the posterior mean of zi values; smaller z values mean higher mortality
rate overall.

> par(mar=c(3,0,0,0))

> plot(nwengland)

> points(cbind(d$xcoord,d$ycoord), col=frail.colors)

> legend("topright",title="z values",legend=frail.names,

+ col=rbPal(nclust),pch=20, cex=1.7)

LDDPM model with spatial copula

The following code is used to fit the LDDPM model (28) with the Gaussian spatial copula
(24) using N = 10 and default priors. For the FSA, K = 100 and B = 1043 are used. The
total running time is 19491 seconds. Note this is no summary output as before, as we are
fitting a nonparametric model.

> mcmc=list(nburn=5000, nsave=2000, nskip=4, ndisplay=1000);

> prior=list(N=10, nknots=100, nblock=1043);

> ptm<-proc.time()

> res1 = spCopulaDDP(formula=Surv(time,cens)~age+sex+wbc+tpi,data=d,

+ mcmc=mcmc,prior=prior,

+ Coordinates=cbind(d$xcoord,d$ycoord));

> systime1=proc.time()-ptm; systime1;

user system elapsed

19310.243 177.188 19490.923

> sum(log(res1$cpo)); ## LPML $

[1] -5931.866

The trace plots, survival curves, and map of zis (Figure 8) can be obtained using the same
code used for the PH copula model, where the only difference is that we only present the
trace plots for partial sill θ1 and range θ2.
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(c)

Figure 8: Leukemia survival data. LDDPM model with spatial copula. (a) Trace plots for
partial sill θ1 and range θ2. (b) Survival curves with 95% credit interval bands for female
patients with wbc=38.59 and tpi=0.3398 at different ages. (c) Map for the posterior mean
of zi values; smaller z values mean higher mortality rate overall.
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