
“The Problem of Spatial Autocorrelation:” forty
years on

Roger Bivand

April 6, 2017

1 Introduction
Cliff and Ord (1969), published forty years ago, marked a turning point in the treatment
of spatial autocorrelation in quantitative geography. It provided the framework needed
by any applied researcher to attempt an implementation for a different system, possibly
using a different programming language. In this spirit, here we examine how spatial
weights have been represented in implementations and may be reproduced, how the
tabulated results in the paper may be reproduced, and how they may be extended to
cover simulation.

One of the major assertions of Cliff and Ord (1969) is that their statistic advances
the measurement of spatial autocorrelation with respect to Moran (1950) and Geary
(1954) because a more general specification of spatial weights could be used. This
more general form has implications both for the preparation of the weights themselves,
and for the calculation of the measures. We will look at spatial weights first, before
moving on to consider the measures presented in the paper and some of their subse-
quent developments. Before doing this, we will put together a data set matching that
used in Cliff and Ord (1969). They provide tabulated data for the counties of the Irish
Republic, but omit Dublin from analyses. A shapefile included in this package, kindly
made available by Michael Tiefelsdorf, is used as a starting point:
> library(spdep)

> require(maptools)

> fn <- system.file("etc/shapes/eire.shp", package = "spdep")[1]

> prj <- CRS("+proj=utm +zone=30 +units=km +ellps=mod_airy")

> eire <- readShapeSpatial(fn, ID = "names", proj4string = prj)

> class(eire)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

> names(eire)

[1] "A" "towns" "pale" "size" "ROADACC" "OWNCONS" "POPCHG" "RETSALE"

[9] "INCOME" "names"

and read into a SpatialPolygonsDataFrame — classes used for handling spatial data in
R are fully described in Bivand, Pebesma, and Gómez-Rubio (2008). To this we need
to add the data tabulated in the paper in Table 2,1 p. 40, here in the form of a text file
with added rainfall values from Table 9, p. 49:

1cropped scans of tables are available from http://spatial.nhh.no/R/etc/CO69-PNGs.zip.

1

http://spatial.nhh.no/R/etc/CO69-PNGs.zip


> fn <- system.file("etc/misc/geary_eire.txt", package = "spdep")[1]

> ge <- read.table(fn, header = TRUE)

> names(ge)

[1] "serlet" "county" "pagval2_10" "pagval10_50" "pagval50p"

[6] "cowspacre" "ocattlepacre" "pigspacre" "sheeppacre" "townvillp"

[11] "carspcap" "radiopcap" "retailpcap" "psinglem30_34" "rainfall"

Since we assigned the county names as feature identifiers when reading the shape-
files, we do the same with the extra data, and combine the objects:
> row.names(ge) <- as.character(ge$county)

> all.equal(row.names(ge), row.names(eire))

[1] TRUE

> eire_ge <- spCbind(eire, ge)

Finally, we need to drop the Dublin county omitted in the analyses conducted in Cliff
and Ord (1969):
> eire_ge1 <- eire_ge[!(row.names(eire_ge) %in% "Dublin"), ]

> length(row.names(eire_ge1))

[1] 25

To double-check our data, let us calculate the sample Beta coefficients, using the for-
mulae given in the paper for sample moments:
> skewness <- function(z) {

+ z <- scale(z, scale = FALSE)

+ ((sum(z^3)/length(z))^2)/((sum(z^2)/length(z))^3)

+ }

> kurtosis <- function(z) {

+ z <- scale(z, scale = FALSE)

+ (sum(z^4)/length(z))/((sum(z^2)/length(z))^2)

+ }

These differ somewhat from the ways in which skewness and kurtosis are computed in
modern statistical software, see for example Joanes and Gill (1998). However, for our
purposes, they let us reproduce Table 3, p. 42:
> print(sapply(as(eire_ge1, "data.frame")[13:24], skewness), digits = 3)

pagval2_10 pagval10_50 pagval50p cowspacre ocattlepacre pigspacre

1.675429 1.294978 0.000382 1.682094 0.086267 1.138387

sheeppacre townvillp carspcap radiopcap retailpcap psinglem30_34

1.842362 0.472748 0.011111 0.342805 0.002765 0.068169

> print(sapply(as(eire_ge1, "data.frame")[13:24], kurtosis), digits = 4)

pagval2_10 pagval10_50 pagval50p cowspacre ocattlepacre pigspacre

3.790 4.331 1.508 4.294 2.985 3.754

sheeppacre townvillp carspcap radiopcap retailpcap psinglem30_34

4.527 2.619 1.865 2.730 2.188 2.034

> print(sapply(as(eire_ge1, "data.frame")[c(13, 16, 18, 19)], function(x) skewness(log(x))),

+ digits = 3)

pagval2_10 cowspacre pigspacre sheeppacre

0.68801 0.17875 0.00767 0.04184

> print(sapply(as(eire_ge1, "data.frame")[c(13, 16, 18, 19)], function(x) kurtosis(log(x))),

+ digits = 4)

pagval2_10 cowspacre pigspacre sheeppacre

2.883 2.799 2.212 2.421

Using the tabulated value of 23.6 for the percentage of agricultural holdings above 50 in
1950 in Waterford, the skewness and kurtosis cannot be reproduced, but by comparison
with the irishdata dataset in ade4, it turns out that the value should rather be 26.6,
which yields the tabulated skewness and kurtosis values.

Before going on, the variables considered are presented in Table 1.

2



Table 1: Description of variables in the Geary data set.

variable description
pagval2_10 Percentage number agricultural holdings in valuation group £2–£10 (1950)
pagval10_50 Percentage number agricultural holdings in valuation group £10–£50 (1950)
pagval50p Percentage number agricultural holdings in valuation group above £50 (1950)
cowspacre Milch cows per 1000 acres crops and pasture (1952)
ocattlepacre Other cattle per 1000 acres crops and pasture (1952)
pigspacre Pigs per 1000 acres crops and pasture (1952)
sheeppacre Sheep per 1000 acres crops and pasture (1952)
townvillp Town and village population as percentage of total (1951)
carspcap Private cars registered per 1000 population (1952)
radiopcap Radio licences per 1000 population (1952)
retailpcap Retail sales £ per person (1951)
psinglem30_34 Single males as percentage of all males aged 30–34 (1951)
rainfall Average of rainfall for stations in Ireland, 1916–1950, mm

2 Spatial weights
As a basis for comparison, we will first read the unstandardised weighting matrix given
in Table A1, p. 54, of the paper, reading a file corrected for the misprint giving O rather
than D as a neighbour of V:
> fn <- system.file("etc/misc/unstand_sn.txt", package = "spdep")[1]

> unstand <- read.table(fn, header = TRUE)

> summary(unstand)

from to weight

V : 8 V : 8 Min. :0.000600

S : 7 S : 7 1st Qu.:0.003225

T : 7 T : 7 Median :0.007550

Q : 6 Q : 6 Mean :0.007705

A : 5 A : 5 3rd Qu.:0.010225

B : 5 B : 5 Max. :0.032400

(Other):72 (Other):72

In the file, the counties are represented by their serial letters, so ordering and conversion
to integer index representation is required to reach a representation similar to that of
the S-PLUS SpatialStats module for spatial neighbours:
> class(unstand) <- c("spatial.neighbour", class(unstand))

> of <- ordered(unstand$from)

> attr(unstand, "region.id") <- levels(of)

> unstand$from <- as.integer(of)

> unstand$to <- as.integer(ordered(unstand$to))

> attr(unstand, "n") <- length(unique(unstand$from))

Having done this, we can change its representation to a listw object, assigning an
appropriate style (generalised binary) for unstandardised values:
> lw_unstand <- sn2listw(unstand)

> lw_unstand$style <- "B"

> lw_unstand

Characteristics of weights list object:

Neighbour list object:

Number of regions: 25

Number of nonzero links: 110

Percentage nonzero weights: 17.6

Average number of links: 4.4

Weights style: B

Weights constants summary:

3



n nn S0 S1 S2

B 25 625 0.8476 0.01871808 0.1229232

Note that the values of S0, S1, and S2 correspond closely with those given on page 42
of the paper, 0.84688672, 0.01869986 and 0.12267319. The discrepancies appear to
be due to rounding in the printed table of weights.

The contiguous neighbours represented in this object ought to match those found
using poly2nb. However, we see that the reproduced contiguities have a smaller link
count:
> nb <- poly2nb(eire_ge1)

> nb

Neighbour list object:

Number of regions: 25

Number of nonzero links: 108

Percentage nonzero weights: 17.28

Average number of links: 4.32

The missing link is between Clare and Kerry, perhaps by the Tarbert–Killimer ferry,
but the counties are not contiguous, as Figure 1 shows:
> xx <- diffnb(nb, lw_unstand$neighbours, verbose = TRUE)

Neighbour difference for region id: Clare in relation to id: Kerry

Neighbour difference for region id: Kerry in relation to id: Clare

> plot(eire_ge1, border = "grey60")

> plot(nb, coordinates(eire_ge1), add = TRUE, pch = ".", lwd = 2)

> plot(xx, coordinates(eire_ge1), add = TRUE, pch = ".", lwd = 2, col = 3)

A

B

C

D

E

G

H

I

J

K

L

M

N
O

P

Q

R

S

T

U

V

W

X

Y

Z

Contiguous
Ferry

Figure 1: County boundaries and contiguities

An attempt has also been made to reproduce the generalised weights for 25 Irish
counties reported by Cliff and Ord (1969), after Dublin is omitted. Reproducing the
inverse distance component d−1

i j of the generalised weights d−1
i j βi( j) is eased by the

statement in Cliff and Ord (1973, p. 55) that the points chosen to represent the counties
were their “geographic centres,” so not very different from the centroids yielded by
applying a chosen computational geometry function. The distance metric is not given,
and may have been in kilometers or miles — both were tried, but the results were not
sensitive to the difference as it applies equally across the weights; miles are used here.

4



Computing the proportion of shared distance measure βi( j) is harder, because it re-
quires the availability of the full topology of the input polygons. Bivand, Pebesma, and
Gómez-Rubio (2008, p. 244) show how to employ the vect2neigh function (written
by Markus Neteler) in the Rspgrass6 package when using GRASS GIS vector han-
dling to create a full topology from spaghetti vector data and to extract border segment
lengths; a similar approach also is mentioned there using ArcGIS coverages for the
same purpose. GRASS was used to create the topology, and next the proportion of
shared distance measure was calculated.
> library(maptools)

> SG <- Sobj_SpatialGrid(eire_ge1)$SG

> library(spgrass6)

> grass_home <- "/home/rsb/topics/grass/g64/grass-6.4.0svn"

> initGRASS(grass_home, home = tempdir(), SG = SG, override = TRUE)

> writeVECT6(eire_ge1, "eire", v.in.ogr_flags = c("o", "overwrite"))

> res <- vect2neigh("eire", ID = "serlet")

> grass_borders <- sn2listw(res)

> raw_borders <- grass_borders$weights

> int_tot <- attr(res, "total") - attr(res, "external")

> prop_borders <- lapply(1:length(int_tot), function(i) raw_borders[[i]]/int_tot[i])

> dlist <- nbdists(grass_borders$neighbours, coordinates(eire_ge1))

> inv_dlist <- lapply(dlist, function(x) 1/(x/1.609344))

> combo_km <- lapply(1:length(inv_dlist), function(i) inv_dlist[[i]] *

+ prop_borders[[i]])

> combo_km_lw <- nb2listw(grass_borders$neighbours, glist = combo_km,

+ style = "B")

> summary(combo_km_lw)

Characteristics of weights list object:

Neighbour list object:

Number of regions: 25

Number of nonzero links: 108

Percentage nonzero weights: 17.28

Average number of links: 4.32

Link number distribution:

1 2 3 4 5 6 7 8

1 2 5 5 8 1 2 1

1 least connected region:

E with 1 link

1 most connected region:

V with 8 links

Weights style: B

Weights constants summary:

n nn S0 S1.5 S2

B 25 625 0.9083141 0.02191843 0.1427745

To compare, we need to remove the Tarbert–Killimer ferry link manually, and view
the summary of the original weights, as well as a correlation coefficient between these
and the reconstructed weights. Naturally, unless the boundary coordinates used here
are identical with those in the original analysis, presumably measured by hand, small
differences will occur.
> red_lw_unstand <- lw_unstand

> Clare <- which(attr(lw_unstand, "region.id") == "C")

> Kerry <- which(attr(lw_unstand, "region.id") == "H")

> Kerry_in_Clare <- which(lw_unstand$neighbours[[Clare]] == Kerry)

> Clare_in_Kerry <- which(lw_unstand$neighbours[[Kerry]] == Clare)

> red_lw_unstand$neighbours[[Clare]] <- red_lw_unstand$neighbours[[Clare]][-Kerry_in_Clare]

> red_lw_unstand$neighbours[[Kerry]] <- red_lw_unstand$neighbours[[Kerry]][-Clare_in_Kerry]

5



> red_lw_unstand$weights[[Clare]] <- red_lw_unstand$weights[[Clare]][-Kerry_in_Clare]

> red_lw_unstand$weights[[Kerry]] <- red_lw_unstand$weights[[Kerry]][-Clare_in_Kerry]

> summary(red_lw_unstand)

Characteristics of weights list object:

Neighbour list object:

Number of regions: 25

Number of nonzero links: 108

Percentage nonzero weights: 17.28

Average number of links: 4.32

Link number distribution:

1 2 3 4 5 6 7 8

1 2 5 5 8 1 2 1

1 least connected region:

E with 1 link

1 most connected region:

V with 8 links

Weights style: B

Weights constants summary:

n nn S0 S1 S2

B 25 625 0.8437 0.01870287 0.1222501

> cor(unlist(red_lw_unstand$weights), unlist(combo_km_lw$weights))

[1] 0.9695429

Even though the differences in the general weights, for identical contiguities, are so
small, the consequences for the measure of spatial autocorrelation are substantial, Here
we use the fifth variable, other cattle per 1000 acres crops and pasture (1952), and see
that the reconstructed weights seem to “reveal” more autocorrelation than the original
weights.
> flatten <- function(x, digits = 3, statistic = "I") {

+ res <- c(format(x$estimate, digits = digits), format(x$statistic,

+ digits = digits), format.pval(x$p.value, digits = digits))

+ res <- matrix(res, ncol = length(res))

+ colnames(res) <- paste(c("", "E", "V", "SD_", "P_"), "I", sep = "")

+ rownames(res) <- deparse(substitute(x))

+ res

+ }

> `reconstructed weights` <- moran.test(eire_ge1$ocattlepacre, combo_km_lw)

> `original weights` <- moran.test(eire_ge1$ocattlepacre, red_lw_unstand)

> print(rbind(flatten(`reconstructed weights`), flatten(`original weights`)),
+ quote = FALSE)

I EI VI SD_I P_I

reconstructed weights 0.3203 -0.0417 0.0225 2.41 0.00792

original weights 0.2779 -0.0417 0.0223 2.14 0.0161

3 Measures of spatial autocorrelation
Our targets for reproduction are Tables 4 and 5 in Cliff and Ord (1969, pp. 43–44), the
first containing standard deviates under normality and randomisation for the original
Moran measure with binary weights, the original Geary measure with binary weights,
the proposed measure with unstandardised general weights, and the proposed mea-
sure with row-standardised general weights. In addition, four variables were log-
transformed on the basis of the skewness and kurtosis results presented above. We
carry out the transformation of these variables, and generate additional binary and row-
standardised general spatial weights objects — note that the weights constants for the

6



row-standardised general weights agree with those given on p. 42 in the paper, after
allowing for small differences due to rounding in the weights values displayed in the
paper (p. 54):
> eire_ge1$ln_pagval2_10 <- log(eire_ge1$pagval2_10)

> eire_ge1$ln_cowspacre <- log(eire_ge1$cowspacre)

> eire_ge1$ln_pigspacre <- log(eire_ge1$pigspacre)

> eire_ge1$ln_sheeppacre <- log(eire_ge1$sheeppacre)

> vars <- c("pagval2_10", "ln_pagval2_10", "pagval10_50", "pagval50p",

+ "cowspacre", "ln_cowspacre", "ocattlepacre", "pigspacre", "ln_pigspacre",

+ "sheeppacre", "ln_sheeppacre", "townvillp", "carspcap", "radiopcap",

+ "retailpcap", "psinglem30_34")

> nb_B <- nb2listw(lw_unstand$neighbours, style = "B")

> nb_B

Characteristics of weights list object:

Neighbour list object:

Number of regions: 25

Number of nonzero links: 110

Percentage nonzero weights: 17.6

Average number of links: 4.4

Weights style: B

Weights constants summary:

n nn S0 S1 S2

B 25 625 110 220 2176

> lw_std <- nb2listw(lw_unstand$neighbours, glist = lw_unstand$weights,

+ style = "W")

> lw_std

Characteristics of weights list object:

Neighbour list object:

Number of regions: 25

Number of nonzero links: 110

Percentage nonzero weights: 17.6

Average number of links: 4.4

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 25 625 25 15.84089 103.6197

The standard representation of the measures is:

I =
n

∑
n
i=1 ∑

n
j=1 wi j

∑
n
i=1 ∑

n
j=1 wi j(xi − x̄)(x j − x̄)

∑
n
i=1(xi − x̄)2

for Moran’s I — in the paper termed the proposed statistic, and for Geary’s C:

C =
(n−1)

2∑
n
i=1 ∑

n
j=1 wi j

∑
n
i=1 ∑

n
j=1 wi j(xi − x j)

2

∑
n
i=1(xi − x̄)2

where xi, i = 1, . . . ,n are n observations on the numeric variable of interest, and wi j
are the spatial weights. In order to reproduce the standard deviates given in the pa-
per, it is sufficient to apply moran.test to the variables with three different spatial
weights objects, and two different values of the randomisation= argument. In addi-
tion, geary.test is applied to a single spatial weights objects, and two different values
of the randomisation= argument.

7



> system.time({

+ MoranN <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw = nb_B,

+ randomisation = FALSE))

+ MoranR <- lapply(vars, function(x) moran.test(eire_ge1[[x]], listw = nb_B,

+ randomisation = TRUE))

+ GearyN <- lapply(vars, function(x) geary.test(eire_ge1[[x]], listw = nb_B,

+ randomisation = FALSE))

+ GearyR <- lapply(vars, function(x) geary.test(eire_ge1[[x]], listw = nb_B,

+ randomisation = TRUE))

+ Prop_unstdN <- lapply(vars, function(x) moran.test(eire_ge1[[x]],

+ listw = lw_unstand, randomisation = FALSE))

+ Prop_unstdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]],

+ listw = lw_unstand, randomisation = TRUE))

+ Prop_stdN <- lapply(vars, function(x) moran.test(eire_ge1[[x]],

+ listw = lw_std, randomisation = FALSE))

+ Prop_stdR <- lapply(vars, function(x) moran.test(eire_ge1[[x]],

+ listw = lw_std, randomisation = TRUE))

+ })

user system elapsed

0.378 0.004 0.385

> res <- sapply(c("MoranN", "MoranR", "GearyN", "GearyR", "Prop_unstdN",

+ "Prop_unstdR", "Prop_stdN", "Prop_stdR"), function(x) sapply(get(x),

+ "[[", "statistic"))

> rownames(res) <- vars

> ores <- res[, c(1, 2, 5:8)]

In order to conduct 8 different tests on 16 variables, we use lapply on the list of vari-
ables in the specified order, then sapply on a list of output objects by name to generate
a table in the same row and column order as the original (we save a copy of six columns
for comparison with bootstrap results below):
> print(formatC(res, format = "f", digits = 4), quote = FALSE)

MoranN MoranR GearyN GearyR Prop_unstdN Prop_unstdR Prop_stdN Prop_stdR

pagval2_10 3.7851 3.8779 4.3142 3.9016 3.3307 3.4159 3.9276 4.0292

ln_pagval2_10 4.0965 4.1074 4.0841 4.0343 3.5795 3.5894 4.1278 4.1393

pagval10_50 1.0899 1.1316 2.7511 2.3760 1.3348 1.3882 1.5127 1.5738

pagval50p 5.2011 5.0555 4.0178 4.7194 4.6604 4.5247 4.8823 4.7387

cowspacre 5.1969 5.3907 4.3531 3.7709 4.1379 4.2991 4.7274 4.9135

ln_cowspacre 5.2420 5.2455 3.9211 3.9085 4.2007 4.2037 4.6532 4.6566

ocattlepacre 0.5565 0.5593 -0.1707 -0.1668 2.1366 2.1478 1.9219 1.9320

pigspacre 2.4807 2.5393 2.2928 2.0802 2.8312 2.9010 3.1908 3.2703

ln_pigspacre 2.3015 2.2724 2.0520 2.1893 2.5171 2.4839 2.8460 2.8081

sheeppacre 1.0188 1.0630 0.8689 0.7387 1.7398 1.8187 1.4792 1.5470

ln_sheeppacre 1.2930 1.2827 1.5156 1.5767 2.3708 2.3511 2.0374 2.0203

townvillp 2.2759 2.2681 2.5475 2.5902 1.2148 1.2104 1.6275 1.6216

carspcap 4.4927 4.4015 3.2247 3.5992 3.8897 3.8075 4.1826 4.0934

radiopcap 0.3156 0.3153 1.2294 1.2348 0.5915 0.5909 0.7857 0.7849

retailpcap 3.4985 3.4524 3.1303 3.3497 2.9291 2.8888 3.0346 2.9926

psinglem30_34 2.7349 2.6895 2.3382 2.5519 2.7541 2.7065 2.7078 2.6605

The values of the standard deviates agree with those in Table 4 in the original paper,
with the exception of those for the proposed statistic with standardised weights under
normality for all untransformed variables. We can see what has happened by substi-
tuting the weights constants for the standardised weights with those for unstandardised
weights:
> wc_unstd <- spweights.constants(lw_unstand)

> wrong_N_sqVI <- sqrt((wc_unstd$nn * wc_unstd$S1 - wc_unstd$n * wc_unstd$S2 +

+ 3 * wc_unstd$S0 * wc_unstd$S0)/((wc_unstd$nn - 1) * wc_unstd$S0 *

+ wc_unstd$S0) - ((-1/(wc_unstd$n - 1))^2))

> raw_data <- grep("^ln_", vars, invert = TRUE)

8



> I <- sapply(Prop_stdN, function(x) x$estimate[1])[raw_data]

> EI <- sapply(Prop_stdN, function(x) x$estimate[2])[raw_data]

> res <- (I - EI)/wrong_N_sqVI

> names(res) <- vars[raw_data]

> print(formatC(res, format = "f", digits = 4), quote = FALSE)

pagval2_10 pagval10_50 pagval50p cowspacre ocattlepacre pigspacre

3.8836 1.4957 4.8276 4.6744 1.9003 3.1550

sheeppacre townvillp carspcap radiopcap retailpcap psinglem30_34

1.4627 1.6093 4.1357 0.7769 3.0006 2.6774

Next, let us look at Table 5 in the original paper. Here we only tabulate the values
of the measures themselves, and, since the expectation is constant for each measure,
the square root of the variance of the measure under randomisation — extracting values
calculated above:
> res <- lapply(c("MoranR", "GearyR", "Prop_unstdR", "Prop_stdR"), function(x) sapply(get(x),

+ function(y) c(y$estimate[1], sqrt(y$estimate[3]))))

> res <- t(do.call("rbind", res))

> colnames(res) <- c("I", "sigma_I", "C", "sigma_C", "unstd_r", "sigma_r",

+ "std_r", "sigma_r")

> rownames(res) <- vars

> print(formatC(res, format = "f", digits = 4), quote = FALSE)

I sigma_I C sigma_C unstd_r sigma_r std_r sigma_r

pagval2_10 0.4074 0.1158 0.3477 0.1672 0.4559 0.1456 0.5384 0.1440

ln_pagval2_10 0.4444 0.1183 0.3825 0.1531 0.4930 0.1490 0.5680 0.1473

pagval10_50 0.0877 0.1143 0.5840 0.1751 0.1577 0.1436 0.1818 0.1420

pagval50p 0.5754 0.1221 0.3925 0.1287 0.6545 0.1539 0.6795 0.1522

cowspacre 0.5749 0.1144 0.3418 0.1745 0.5764 0.1438 0.6566 0.1421

ln_cowspacre 0.5803 0.1186 0.4071 0.1517 0.5858 0.1493 0.6456 0.1476

ocattlepacre 0.0244 0.1181 1.0258 0.1547 0.2775 0.1486 0.2422 0.1469

pigspacre 0.2527 0.1159 0.6533 0.1667 0.3812 0.1458 0.4296 0.1441

ln_pigspacre 0.2314 0.1202 0.6897 0.1417 0.3343 0.1514 0.3787 0.1497

sheeppacre 0.0792 0.1137 0.8686 0.1778 0.2182 0.1429 0.1768 0.1412

ln_sheeppacre 0.1117 0.1196 0.7708 0.1453 0.3125 0.1506 0.2593 0.1489

townvillp 0.2284 0.1191 0.6148 0.1487 0.1398 0.1499 0.1987 0.1482

carspcap 0.4914 0.1211 0.5124 0.1355 0.5394 0.1526 0.5761 0.1509

radiopcap -0.0042 0.1188 0.8141 0.1505 0.0467 0.1495 0.0744 0.1478

retailpcap 0.3734 0.1202 0.5267 0.1413 0.3959 0.1515 0.4066 0.1498

psinglem30_34 0.2828 0.1207 0.6465 0.1385 0.3697 0.1520 0.3583 0.1503

The values are as follows, and match the original with the exception of those for
the initial version of Moran’s I in the first two columns. If we write a function imple-
menting equations 3 and 4:

I =
∑

n
i=1 ∑

n
j=i+1 wi j(xi − x̄)(x j − x̄)

∑
n
i=1(xi − x̄)2

where crucially the inner summation is over i+1 . . .n, not 1 . . .n, we can reproduce
the values of the measure shown in the original Table 5:
> oMoranf <- function(x, nb) {

+ z <- scale(x, scale = FALSE)

+ n <- length(z)

+ glist <- lapply(1:n, function(i) {

+ ii <- nb[[i]]

+ ifelse(ii > i, 1, 0)

+ })

+ lw <- nb2listw(nb, glist = glist, style = "B")

+ wz <- lag(lw, z)

+ I <- (sum(z * wz)/sum(z * z))

+ I

9



+ }

> res <- sapply(vars, function(x) oMoranf(eire_ge1[[x]], nb = lw_unstand$neighbours))

> print(formatC(res, format = "f", digits = 4), quote = FALSE)

pagval2_10 ln_pagval2_10 pagval10_50 pagval50p cowspacre ln_cowspacre

0.8964 0.9776 0.1928 1.2660 1.2649 1.2766

ocattlepacre pigspacre ln_pigspacre sheeppacre ln_sheeppacre townvillp

0.0536 0.5559 0.5091 0.1743 0.2458 0.5024

carspcap radiopcap retailpcap psinglem30_34

1.0811 -0.0093 0.8215 0.6222

The variance term given in equation 7 in the original paper is for the case of normality,
not randomisation; the reference on p. 28 to equation 38 on p. 26 does not permit
the reproduction of the values in the second column of Table 5. The variance equation
given as equation 1.35 by Cliff and Ord (1973, p. 9) does not do so either, so for the
time being it is not possible to say how the tabulated values were computed. Note
that since the standard deviances are reproduced correctly, and can be reproduced from
the second column values using the measure and its expectance, it is just a matter of
establishing which formula was used, but this has so far not proved possible.

4 Simulating measures of spatial autocorrelation
Cliff and Ord (1969) do not conduct simulation experiments, although their sequels do,
notably Cliff and Ord (1973), among many others. Simulation studies are necessarily
more demanding computationally, especially if spatially autocorrelated variables are
to be created, as in Cliff and Ord (1973, pp. 146–153). In the same book, they also
report the use of permutation tests, also known as Monte Carlo or Hope hypothesis
testing procedures (Cliff and Ord, 1973, pp. 50–52). These procedures provided a
way to examine the distribution of the statistic of interest by exchanging at random the
observed values between observations, and then comparing the simulated distribution
under the null hypothesis of no spatial patterning with the observed value of the statistic
in question.
> MoranI.boot <- function(var, i, ...) {

+ var <- var[i]

+ return(moran(x = var, ...)$I)

+ }

> Nsim <- function(d, mle) {

+ n <- length(d)

+ rnorm(n, mle$mean, mle$sd)

+ }

> f_bperm <- function(x, nsim, listw) {

+ boot(x, statistic = MoranI.boot, R = nsim, sim = "permutation",

+ listw = listw, n = length(x), S0 = Szero(listw))

+ }

> f_bpara <- function(x, nsim, listw) {

+ boot(x, statistic = MoranI.boot, R = nsim, sim = "parametric", ran.gen = Nsim,

+ mle = list(mean = mean(x), sd = sd(x)), listw = listw, n = length(x),

+ S0 = Szero(listw))

+ }

> nsim <- 4999

> set.seed(1234)

First let us define a function MoranI.boot just to return the value of Moran’s I for
variable var and permutation index i, and a function Nsim to generate random samples
from the variable of interest assuming Normality. To make it easier to process the vari-
ables in turn, we encapsulate calls to boot in wrapper functions f_bperm and f_bpara.

10



Running 4999 simulations for each of 16 for three different weights specifications and
both parametric and permutation bootstrap takes quite a lot of time.
> system.time({

+ MoranNb <- lapply(vars, function(x) f_bpara(x = eire_ge1[[x]], nsim = nsim,

+ listw = nb_B))

+ MoranRb <- lapply(vars, function(x) f_bperm(x = eire_ge1[[x]], nsim = nsim,

+ listw = nb_B))

+ Prop_unstdNb <- lapply(vars, function(x) f_bpara(x = eire_ge1[[x]],

+ nsim = nsim, listw = lw_unstand))

+ Prop_unstdRb <- lapply(vars, function(x) f_bperm(x = eire_ge1[[x]],

+ nsim = nsim, listw = lw_unstand))

+ Prop_stdNb <- lapply(vars, function(x) f_bpara(x = eire_ge1[[x]],

+ nsim = nsim, listw = lw_std))

+ Prop_stdRb <- lapply(vars, function(x) f_bperm(x = eire_ge1[[x]],

+ nsim = nsim, listw = lw_std))

+ })

user system elapsed

156.161 0.053 156.290

> res <- lapply(c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb",

+ "Prop_stdNb", "Prop_stdRb"), function(x) sapply(get(x), function(y) (y$t0 -

+ mean(y$t))/sd(y$t)))

> res <- t(do.call("rbind", res))

> colnames(res) <- c("MoranNb", "MoranRb", "Prop_unstdNb", "Prop_unstdRb",

+ "Prop_stdNb", "Prop_stdRb")

> rownames(res) <- vars

We collate the results to compare with the analytical standard deviates under Nor-
mality and randomisation, and see that in fact the differences are not at all large, as
expressed by the median absolute difference between the tables. We can also see that
inferences based on a one-sided α = 0.05 cut-off are the same for the analytical and
bootstrap approaches. This indicates that we can, in general, rely on the analytical
standard deviates, and that bootstrap methods will not help if assumptions underlying
the measures are not met.
> print(formatC(res, format = "f", digits = 4), quote = FALSE)

MoranNb MoranRb Prop_unstdNb Prop_unstdRb Prop_stdNb Prop_stdRb

pagval2_10 3.7863 3.8492 3.3168 3.4630 3.9634 4.0194

ln_pagval2_10 4.1367 4.0862 3.5868 3.6581 4.1702 4.1103

pagval10_50 1.1046 1.1064 1.3070 1.3692 1.4822 1.5870

pagval50p 5.2336 5.0855 4.6790 4.4855 4.9216 4.6215

cowspacre 5.2719 5.4104 4.1738 4.3003 4.7350 4.8861

ln_cowspacre 5.2422 5.1914 4.1386 4.1536 4.6903 4.6230

ocattlepacre 0.5705 0.5671 2.1297 2.1222 1.9411 1.9267

pigspacre 2.5097 2.5290 2.8613 2.8747 3.2262 3.3209

ln_pigspacre 2.2690 2.2327 2.4767 2.4649 2.8330 2.7646

sheeppacre 1.0252 1.0798 1.7742 1.8546 1.4874 1.5987

ln_sheeppacre 1.2730 1.2635 2.3792 2.3089 2.0554 2.0152

townvillp 2.2430 2.2517 1.2020 1.2250 1.6203 1.5670

carspcap 4.4517 4.3808 3.9764 3.8321 4.2280 4.0749

radiopcap 0.3214 0.3172 0.5860 0.6091 0.8314 0.7813

retailpcap 3.4621 3.4153 2.9609 2.8453 3.0229 3.0109

psinglem30_34 2.7225 2.7065 2.7108 2.7998 2.6958 2.6423

> oores <- ores - res

> apply(oores, 2, mad)

MoranN MoranR Prop_unstdN Prop_unstdR Prop_stdN Prop_stdR

0.03626358 0.02883196 0.04297479 0.04716456 0.03294942 0.02561857

> alpha_0.05 <- qnorm(0.05, lower.tail = FALSE)

> all((res >= alpha_0.05) == (ores >= alpha_0.05))

11



[1] TRUE

These assumptions affect the shape of the distribution of the measure in its tails; one
possibility is to use a Saddlepoint approximation to find an equivalent to the analytical
or bootstrap-based standard deviate for inference (Tiefelsdorf, 2002). The Saddlepoint
approximation requires the eigenvalues of the weights matrix and iterative root-finding
for global Moran’s I, while for local Moran’s Ii, analytical forms are known. Even with
this computational burden, the Saddlepoint approximation for global Moran’s I runs
quite quickly. First we need to fit null linear models (only including an intercept) to the
variables, then apply lm.morantest.sad to the fitted model objects:
> lm_objs <- lapply(vars, function(x) lm(formula(paste(x, "~1")), data = eire_ge1))

> system.time({

+ MoranSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw = nb_B))

+ Prop_unstdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x,

+ listw = lw_unstand))

+ Prop_stdSad <- lapply(lm_objs, function(x) lm.morantest.sad(x, listw = lw_std))

+ })

user system elapsed

0.222 0.000 0.223

> res <- sapply(c("MoranSad", "Prop_unstdSad", "Prop_stdSad"), function(x) sapply(get(x),

+ "[[", "statistic"))

> rownames(res) <- vars

Although the analytical standard deviates (under Normality) are larger than those
reached using the Saddlepoint approximation when measured by median absolute de-
viation, the differences do not lead to different inferences at this chosen cut-off. This
reflects the fact that the shape of the distribution is very sensitive to small n, but for
moderate n and global Moran’s I, the effects are seen only further out in the tails. The
consequences for local Moran’s Ii are much stronger, because the clique of neighbours
of each observation is typically very small. It is perhaps of interest that the differ-
ences are much smaller for the case of general weights than for unstandardised binary
weights.
> print(formatC(res, format = "f", digits = 4), quote = FALSE)

MoranSad Prop_unstdSad Prop_stdSad

pagval2_10 3.2903 3.1711 3.8283

ln_pagval2_10 3.5346 3.3982 4.0441

pagval10_50 1.0883 1.3219 1.4791

pagval50p 4.4402 4.4258 4.9377

cowspacre 4.4366 3.9164 4.7406

ln_cowspacre 4.4758 3.9760 4.6493

ocattlepacre 0.6030 2.0748 1.8642

pigspacre 2.2611 2.7154 3.0775

ln_pigspacre 2.1158 2.4271 2.7417

sheeppacre 1.0250 1.7040 1.4476

ln_sheeppacre 1.2669 2.2921 1.9731

townvillp 2.0949 1.2079 1.5872

carspcap 3.8500 3.6840 4.1044

radiopcap 0.3750 0.6094 0.7906

retailpcap 3.0663 2.8049 2.9245

psinglem30_34 2.4649 2.6449 2.6089

> oores <- res - ores[, c(1, 3, 5)]

> apply(oores, 2, mad)

MoranSad Prop_unstdSad Prop_stdSad

0.37142684 0.10779060 0.05650183

> all((res >= alpha_0.05) == (ores[, c(1, 3, 5)] >= alpha_0.05))

12



[1] TRUE

In addition we could choose to use the exact distribution of Moran’s I, as described
by Tiefelsdorf (2000); its implementation is covered in Bivand, Müller, and Reder
(2009). The global case also needs the eigenvalues of the weights matrix, and the
solution of a numerical integration function, but for these cases, the timings are quite
acceptable.
> system.time({

+ MoranEx <- lapply(lm_objs, function(x) lm.morantest.exact(x, listw = nb_B))

+ Prop_unstdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x,

+ listw = lw_unstand))

+ Prop_stdEx <- lapply(lm_objs, function(x) lm.morantest.exact(x,

+ listw = lw_std))

+ })

user system elapsed

0.272 0.001 0.275

> res <- sapply(c("MoranEx", "Prop_unstdEx", "Prop_stdEx"), function(x) sapply(get(x),

+ "[[", "statistic"))

> rownames(res) <- vars

The output is comparable with that of the Saddlepoint approximation, and the in-
ferences drawn here are the same for the chosen cut-off as for the analytical standard
deviates calculated under Normality.
> print(formatC(res, format = "f", digits = 4), quote = FALSE)

MoranEx Prop_unstdEx Prop_stdEx

pagval2_10 3.2895 3.1660 3.8261

ln_pagval2_10 3.5384 3.3979 4.0430

pagval10_50 1.0798 1.3131 1.4745

pagval50p 4.4568 4.4430 4.9446

cowspacre 4.4532 3.9268 4.7453

ln_cowspacre 4.4928 3.9875 4.6531

ocattlepacre 0.5967 2.0611 1.8596

pigspacre 2.2486 2.7033 3.0740

ln_pigspacre 2.1031 2.4131 2.7380

sheeppacre 1.0168 1.6924 1.4430

ln_sheeppacre 1.2575 2.2779 1.9685

townvillp 2.0822 1.1999 1.5826

carspcap 3.8593 3.6899 4.1037

radiopcap 0.3696 0.6054 0.7873

retailpcap 3.0616 2.7938 2.9210

psinglem30_34 2.4533 2.6321 2.6050

> oores <- res - ores[, c(1, 3, 5)]

> apply(oores, 2, mad)

MoranEx Prop_unstdEx Prop_stdEx

0.37187539 0.09751723 0.05419300

> all((res >= alpha_0.05) == (ores[, c(1, 3, 5)] >= alpha_0.05))

[1] TRUE

Li, Calder, and Cressie (2007) take up the challenge in Cliff and Ord (1969, p. 31),
to try to give the statistic a bounded fixed range. Their APLE measure is intended to
approximate the spatial dependence parameter of a simultaneous autoregressive model
better than Moran’s I, and re-scales the measure by a function of the eigenvalues of the
spatial weights matrix. APLE requires the use of row standardised weights.
> vars_scaled <- lapply(vars, function(x) scale(eire_ge1[[x]], scale = FALSE))

> nb_W <- nb2listw(lw_unstand$neighbours, style = "W")

> pre <- spdep:::preAple(0, listw = nb_W)

13



> MoranAPLE <- sapply(vars_scaled, function(x) spdep:::inAple(x, pre))

> pre <- spdep:::preAple(0, listw = lw_std, override_similarity_check = TRUE)

> Prop_stdAPLE <- sapply(vars_scaled, function(x) spdep:::inAple(x, pre))

> res <- cbind(MoranAPLE, Prop_stdAPLE)

> colnames(res) <- c("APLE W", "APLE Gstd")

> rownames(res) <- vars

In order to save time, we use the two internal functions spdep:::preAple and
spdep:::inAple, since for each definition of spatial weights, the same eigenvalue cal-
culations need to be made. The notation using the ::: operator says that the function
with named after the operator is to be found in the namespace of the package named
before the operator. The APLE values repeat the pattern that we have already seen —
for some variables, the measured autocorrelation is very similar irrespective of spatial
weights definition, while for others, the change in the definition from binary to general
does make a difference.
> print(formatC(res, format = "f", digits = 4), quote = FALSE)

APLE W APLE Gstd

pagval2_10 0.7702 0.6628

ln_pagval2_10 0.7615 0.6655

pagval10_50 0.3954 0.3446

pagval50p 0.7519 0.7313

cowspacre 0.8329 0.7408

ln_cowspacre 0.8148 0.7487

ocattlepacre 0.1468 0.4092

pigspacre 0.6227 0.6205

ln_pigspacre 0.5582 0.5887

sheeppacre 0.1594 0.2841

ln_sheeppacre 0.2046 0.4550

townvillp 0.3442 0.2644

carspcap 0.7140 0.6166

radiopcap 0.0083 0.1376

retailpcap 0.6376 0.5307

psinglem30_34 0.4094 0.4889

Binary General

1:
25

Std. general

1:
25

Figure 2: Three contrasted spatial weights definitions.

14



Binary

1

2

3

4

5

6

7

8

General

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Figure 3: Sums of weights by county for two contrasted spatial weights definitions —
for row standardisation, all counties sum to unity.

5 Odds and ends . . .
The differences found in the case of a few variables in inference using the original bi-
nary weights, and the general weights proposed by Cliff and Ord (1969) are necessarily
related to the the weights thenselves. Figures 2 and 3 show the values of the weights
in sparse matrix form, and the sums of weights by county where these sums are not
identical by design. In the case of binary weights, the matrix entries are equal, but the
sums up-weight counties with many neighbours.

General weights up-weight counties that are close to each other, have more neigh-
bours, and share larger boundary proportions (an asymmetric relationship). There is a
further impact of using boundary proportions, in that the boundary between the county
and the exterior is subtracted, thus boosting the weights between edge counties and
their neighbours, even if there are few of them. Standardised general weights up-
weight further up-weight counties with few neighbours, chiefly those on the edges of
the study area.

With a small data set, here with n = 25, it is very possible that edge and other
configuration effects are relatively strong, and may impact inference in different ways.
The issue of egde effects has not really been satisfactorily resolved, and should be kept
in mind in analyses of data sets of this size and shape.

References
Bivand, R. S., E. J. Pebesma, and V. Gómez-Rubio. (2008). Applied Spatial Data

Analysis with R. New York: Springer.

Bivand, R. S., W. Müller and M. Reder. (2009). “Power calculations for global and
local Moran’s I.” Computational Statistics and Data Analysis 53, 2859–2872.

Cliff, A. D. and J. K. Ord. (1969). “The problem of Spatial autocorrelation.” In London

15



Papers in Regional Science 1, Studies in Regional Science, 25–55, edited by A. J.
Scott, London: Pion.

Cliff, A. D. and J. K. Ord. (1973). Spatial autocorrelation. London: Pion.

Geary, R. C. (1954). “The contiguity ratio and statistical mapping.” The Incorporated
Statistician 5, 115–145.

Joanes D. N. and C. A. Gill (1998). “Comparing measures of sample skewness and
kurtosis.” The Statistician 47, 183–189.

Li, H., C. A. Calder and N. Cressie. (2007). “Beyond Moran’s I: Testing for spatial
dependence based on the spatial autoregressive model.” Geographical Analysis 39,
357–375.

Moran, P. A. P. (1950). “Notes on continuous stochastic phenomena.” Biometrika 37,
17–23.

Tiefelsdorf, M. (2000). Modelling Spatial Processes, The Identification and Analysis
of Spatial Relationships in Regression Residuals by Means of Moran’s I. Springer,
Berlin.

Tiefelsdorf, M. (2002). “The Saddlepoint approximation of Moran’s I and local
Moran’s Ii reference distributions and their numerical evaluation.” Geographical
Analysis 34, 187–206.

16


	Introduction
	Spatial weights
	Measures of spatial autocorrelation
	Simulating measures of spatial autocorrelation
	Odds and ends …

