
Multivariate polynomials in R

Robin K. S. Hankin
Auckland University of Technology

Abstract

In this short article I introduce the spray package, which provides some functional-
ity for handling sparse multivariate polynomials; the package is discussed here from a
programming perspective. An example from the field of enumerative combinatorics is
presented.

Keywords: Multivariate polynomials, R.

1. Introduction

The multipol package (Hankin 2008) furnishes the R programming language with functionality
for multivariate polynomials. However, the multipol package was noted as being inefficient
in many common cases: the package stores multivariate polynomials as arrays and this often
involves storing many zero elements which consume computational and memory resources
unnecessarily.

One suggestion was to use sparse arrays—in which nonzero elements are stored along with
an index vector describing their coordinates—instead of arrays. In this short document I
introduce the spray package which provides functionality for sparse arrays and interprets
them as multivariate polynomials.

1.1. Existing work

The slam package (Hornik, Meyer, and Buchta 2014) provides some sparse array functionality
but is not intended to interpret arbitrary dimensional sparse arrays as multivariate polynomi-
als. The mpoly (Kahle 2013) package handles multivariate polynomials but does not accept
negative powers, nor is it designed for efficiently processing large multivariate polynomials; I
present some timings below. The mpoly package is different in philosophy from both the spray
package and multipol in that mpoly is more “symbolic” in the sense that it admits—and han-
dles appropriately—named variables, whereas my packages do not make any reference to the
names of the variables. As Kahle points out, naming the variables allows a richer and more
natural suite of functionality; straightforward mpoly idiom is somewhat strained in spray.

2. Package philosophy

The spray package does not interact or depend on multipol in any way, owing to the very
different design philosophies used. The package uses the C++ Standard Template Library’s



2 Sparse arrays and multivariate polynomials in R

map class to store and retrieve elements.

A map is an associative container that stores values indexed by a key, which is used to sort
and uniquely identify the values. In the package, the key is a vector object or a deque object
with (signed) integer elements.

2.1. Compile-time options

At compile time, the package offers two options. Firstly one may use the unordered map class
in place of the map class. This option is provided in the interests of efficiency. An unordered
map has lookup time O(1) (compare O(log n) for the map class), but overhead is higher.

The other option offered is the nature of the key, which may be either vector class or deque
class. Elements of a vector are guaranteed to be contiguous in memory, unlike a deque. This
does not appear to make a huge difference to timings, but the default (unordered map indexed
by a vector) appears to be marginally the fastest option.

3. The package in use

To create a sparse array object, one specifies a matrix of indices M with each row corresponding
to the position of a nonzero element, and a numeric vector of values:

> library("spray")

> M <- matrix(c(0,0,0,1,0,0,1,1,1,2,0,3),ncol=3)

> M

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 0 2

[3,] 0 1 0

[4,] 1 1 3

> S1 <- spray(M, 1:4)

> S1

val

0 0 1 = 1

0 1 0 = 3

0 0 2 = 2

1 1 3 = 4

Thus S1[0,0,2] = 2. Note that the representation of the spray object does not preserve
the order of the index rows in the argument, although a particular index row is associated
unambiguously with a unique numeric value. Replace methods work as expected:

> S1[diag(3)] <- -3

> S1



Robin K. S. Hankin 3

val

0 0 1 = -3

0 1 0 = -3

0 0 2 = 2

1 1 3 = 4

1 0 0 = -3

Note that a value with an existing index is overwritten, while new elements are created as
necessary. Addition is implemented:

> S2 <- spray(matrix(c(6,0,1,7,0,1,8,2,3),nrow=3), c(17,11,-4))

> S2

val

6 7 8 = 17

0 0 2 = 11

1 1 3 = -4

> S1+S2

val

0 0 1 = -3

0 1 0 = -3

0 0 2 = 13

6 7 8 = 17

1 0 0 = -3

Note that element [0,0,2] becomes 2 + 11 = 13, while element [1,1,3] vanishes.

Repeated index rows

If any row of the index matrix is identical to any other row, then this is interpreted as an
error. However, on occasion, the user may wish to sum values over repeated index rows and
this is done by setting the addrepeats argument to TRUE:

> spray(matrix(0:5,8,3),addrepeats=TRUE)

val

0 2 4 = 2

1 3 5 = 2

5 1 3 = 1

2 4 0 = 1

4 0 2 = 1

3 5 1 = 1

4. Sparse arrays interpreted as multivariate polynomials

One natural and useful interpretation of a sparse array is as a multivariate polynomial:



4 Sparse arrays and multivariate polynomials in R

> options(polyform=TRUE)

> S1

-3*z -3*y +2*z^2 +4*x*y*z^3 -3*x

(only the print method has changed; S1 is as before).

> S1*S2

+12*x^2*y*z^3 -33*y*z^2 -33*x*z^2 +36*x*y*z^5 +22*z^4 +12*x*y*z^4 -16*x^2*y^2*z^6 +12*x*y^2*z^3 +34*x^6*y^7*z^10 -51*x^6*y^8*z^8 -51*x^7*y^7*z^8 +68*x^7*y^8*z^11 -33*z^3 -51*x^6*y^7*z^9

It is possible to introduce an element of symbolic calculation, exhibiting familiar algebraic
identities:

> x <- lone(1,2)

> y <- lone(2,2)

> (x+y)^3

+3*x^2*y +3*x*y^2 +y^3 +x^3

> (1+x+y)^3

1 +3*x^2 +3*y +3*x +6*x*y +3*y^2 +y^3 +x^3 +3*x^2*y +3*x*y^2

4.1. Further functionality

Negative indices have a natural intrerpretation as multivariate polynomials:

> S1[0,-1,-2] <- 1

> S1

-3*z -3*y +2*z^2 +4*x*y*z^3 -3*x +y^-1*z^-2

And multivariate polynomials have a natural interpretation as functions:

> f <- as.function(S1)

> f(matrix(1:9,3,3))

[1] 5550.005 20563.003 52596.002

The package also includes the ability to sum across one or more dimensions:

> asum(S1,2)

-3 -3*y +y^-2 -3*x +2*y^2 +4*x*y^3



Robin K. S. Hankin 5

Other algebraic operations include substitution and partial differentiation. Consider the ho-
mogenous polynomial in three variables; to substitute y = 1.5 into this, we use the subs()

function:

> options(polyform=TRUE)

> homog(3,3)

+x^2*y +y^3 +x^2*z +x^3 +x*y^2 +x*y*z +y^2*z +x*z^2 +z^3 +y*z^2

> subs(homog(3,3),dims=2,1.5)

4.5 +1.5*x^2 +3*y +1.5*x*y +3*x +1.5*y^2

5. An example

Suppose we consider a chess knight and ask how many ways are there for the knight to
return to its starting square in 6 moves. Such questions are most naturally answered by using
generating functions. We define chess_knight, a spray object with rows corresponding to
the possible moves the chess piece may make:

> chess_knight <-

+ spray(matrix(

+ c(1,2,1,-2,-1,2,-1,-2,2,1,2,-1,-2,1,-2,-1),

+ byrow=TRUE,ncol=2))

> options(polyform=FALSE)

> chess_knight

val

1 2 = 1

1 -2 = 1

-1 2 = 1

-1 -2 = 1

2 1 = 1

2 -1 = 1

-2 1 = 1

-2 -1 = 1

Then chess_knight[i,j] gives the number of ways the piece can move from square [0,0]

to [i,j]; and (chess_knight^n)[i,j] gives the number of ways the piece can reach [i,j]

in n moves. To calculate the number of ways that the piece can return to its starting square
we simply raise chess_knight to the sixth power and extract the [0,0] coefficient:

> constant(chess_knight^6,drop=TRUE)

[1] 5840



6 Sparse arrays and multivariate polynomials in R

(function constant() extracts the coefficient corresponding to zero power). One natural
generalization would be to arbitrary dimensions. A d-dimensional knight moves two squares
in one direction, followed by one square in another direction:

> knight <- function(d){

+ n <- d*(d-1)

+ out <- matrix(0,n,d)

+ out[cbind(rep(seq_len(n),each=2),c(t(which(diag(d)==0,arr.ind=TRUE))))] <- seq_len(2)

+ spray(rbind(out,-out,`[<-`(out,out==1,-1),`[<-`(out,out==2,-2)))
+ }

Then, considering a four-dimensional chessboard (Figure 1):

Figure 1: Four-dimensional knight on a 4 × 4 × 4 × 4 board. Cells attacked by the knight
shown by dots

> constant(knight(4)^6, drop=TRUE)

[1] 10117920

It is in such cases that the efficiency of the map class becomes evident: on my system (3.4 GHz
Intel Core i5 iMac)), the above call took just under 0.6 seconds of elapsed time whereas the
same1 calculation took over 173 seconds using mpoly.

1Because mpoly does not accept negative powers, the calculation was equivalent to (knight(4) +

xyz(4)^2)^6. Also note that the multipol package is not able to execute these commands in a reasonable
time.



Robin K. S. Hankin 7

If we want the number of ways to return to the starting point in 6 or fewer moves, we can
simply add the unit multinomial and take the sixth power of the sum:

> constant((1+knight(4))^6, drop=TRUE)

[1] 10306561

(1.2 seconds for spray vs 275 seconds for mpoly). For 8 moves, the differences are more
pronounced, with spray taking 5.1 seconds and mpoly requiring more than 1500 seconds).

References

Hankin RKS (2008). “Programmers’ Niche: Multivariate polynomials in R.” R News, 8(1),
41–45. URL http://CRAN.R-project.org/doc/Rnews/.

Hornik K, Meyer D, Buchta C (2014). slam: Sparse Lightweight Arrays and Matrices. R
package version 0.1-32, URL https://CRAN.R-project.org/package=slam.

Kahle D (2013). “mpoly: Multivariate Polynomials in R.” The R Journal, 5(1), 162–170.
URL http://journal.r-project.org/archive/2013-1/kahle.pdf.

Affiliation:

Robin K. S. Hankin
Auckland University of Technology
New Zealand

http://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=slam
http://journal.r-project.org/archive/2013-1/kahle.pdf

	Introduction
	Existing work

	Package philosophy
	Compile-time options

	The package in use
	Repeated index rows

	Sparse arrays interpreted as multivariate polynomials
	Further functionality

	An example

