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Abstract

Dynamic occupancy models (MacKenzie et al. 2003) allow inference about the occurrence
of “things” at collections of “sites” and about how changes in occurrence are driven by colo-
nization and local extinction. These models also account for imperfect detection probability.
Depending on how “thing” and “site” are defined, occupancy may have vastly different bi-
ological meanings, including the presence of a disease in an individual (disease incidence)
of a species at a site (occurrence, distribution), or of an individual in a territory. Dynamic
occupancy models in unmarked are fit using the function colext. All parameters can be
modeled as functions of covariates, i.e., first-year occupancy with covariates varying by site
(site-covariates), colonization and survival with site- and yearly-site-covariates and detection
with site-, yearly-site- and sample-occasion-covariates. We give two commented example
analyses: one for a simulated data set and another for a real data set on crossbills in the
Swiss breeding bird survey MHB. We also give examples to show how predictions, along with
standard errors and confidence intervals, can be obtained.
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1 Introduction

Occurrence is a quantity of central importance in many branches of ecology and related
sciences. The presence of a disease in an individual or of a species at a site are two
common types of occurrence studies. The associated biological metrics are the incidence of
the disease and species occurrence or species distribution. Thus, depending on how we
define the thing we are looking for and the sample unit, very different biological quantities
can be analyzed using statistical models for occupancy.

If we denote presence of the “thing” as y = 1 and its absence as y = 0, then it is natural
to characterize all these metrics by the probability that a randomly chosen sample unit
(“site”) is occupied, i.e., has a “thing” present: Pr(y = 1) = ψ. We call this the occupancy
probability, or occupancy for short, and from now on will call the sample unit, where the
presence or absence of a “thing” is assessed, generically a “site”.

Naturally, we would like to explore factors that affect the likelihood that a site is
occupied. A binomial generalized linear model, or logistic regression, is the customary
statistical model for occurrence. In this model, we treat occurrence y as a binomial random
variable with trial size 1 and success probability p, or, equivalently, a Bernoulli trial with p.
“Success” means occurrence, so p is the occurrence probability. It can be modeled as a linear
or other function of covariates via a suitable link function, e.g., the logit link. This simple
model is described in many places, including McCullagh and Nelder (1989), Royle and
Dorazio (2008, chapter 3), Kéry (2010, chapter 17) and Kéry and Schaub (2011, chapter 3).

A generalization of this model accounts for changes in the occupancy state of sites by
introducing parameters for survival (or alternatively, extinction) and colonization
probability. Thus, when we have observations of occurrence for more than a single point in
time, we can model the transition of the occupancy state at site i between successive times
as another Bernoulli trial. To model the fate of an occupied site, we denote the probability
that a site occupied at t is again occupied at t+ 1 as Pr(yi,t+1 = 1|yi,t = 1) = φ. This
represents the survival probability of a site that is occupied. Of course, we could also
choose to express this component of occupancy dynamics by the converse, extinction
probability ε — the parameterization used in unmarked. To model the fate of an
unoccupied site, we denote as Pr(yi,t+1 = 1|yi,t = 0) = γ the probability that an
unoccupied site at t becomes occupied at t+ 1. This is the colonization probability of an
empty site. Such a dynamic model of occurrence has become famous in the ecological
literature under the name “metapopulation model” (Hanski 1998).

However, when using ecological data collected in the field to fit such models of
occurrence, we face the usual challenge of imperfect detection (e.g. Kéry and Schmidt
2008). For instance, a species can go unobserved at a surveyed site or an occupied territory
can appear unoccupied during a particular survey, perhaps because both birds are away
hunting. Not accounting for detection error may seriously bias all parameter estimators of
a metapopulation model (Moilanen 2002; Royle and Dorazio 2008). To account for this
additional stochastic component in the generation of most ecological field data, the classical
metapopulation model may be generalized to include a submodel for the observation
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process, which allows an occupied site to be recorded as unoccupied. This model has been
developed by MacKenzie et al. (2003). It is described as a hierarchical model by Royle and
Kéry (2007), Royle and Dorazio (2008, chapter 9) and Kéry and Schaub (2011, chapter 13).
The model is usually called a multi-season, multi-year or a dynamic site-occupancy model.
The former terms denote the fact that it is applied to multiple “seasons” or years and the
latter emphasizes that the model allows for between-season occurrence dynamics.

This vignette describes the use of the unmarked function colext to fit dynamic
occupancy models. Note that we will use italics for the names of functions. Static
occupancy models, i.e., for a single season without changes in the occupancy state
(MacKenzie et al. 2002), can be fit with occu, for the model described by MacKenzie et al.
(2002) and Tyre et al. (2003), and with occuRN, for the heterogeneity occupancy model
described by Royle and Nichols (2003). In the next section (section 2), we give a more
technical description of the dynamic occupancy model. In section 3, we provide R code for
generating data under a basic dynamic occupancy model and illustrate use of colext for
fitting the model. In section 4, we use real data from the Swiss breeding bird survey MHB
(Schmid et al. 2004) to fit a few more elaborate models with covariates for all parameters.
We also give examples illustrating how to compute predictions, with standard errors and
95% confidence intervals, for the parameters.

2 Dynamic occupancy models

To be able to estimate the parameters of the dynamic occupancy model (probabilities of
occurrence, survival and colonization) separately from the parameters for the observation
process (detection probability), replicate observations are required from a period of closure,
during which the occupancy state of a site must remain constant, i.e., it is either occupied
or unoccupied. The modeled data yijt are indicators for whether a species is detected at
site i (i = 1, 2, . . .M), during replicate survey j (j = 1, 2, . . . J) in season t (t = 1, 2, . . . T ).
That is, yijt = 1 if at least one individual is detected and yijt = 0 if none is detected.

The model makes the following assumptions:

� replicate surveys at a site during a single season are independent (or else dependency
must be modeled)

� occurrence state zit (see below) does not change over replicate surveys at site i during
season t

� there are no false-positive errors, i.e., a species can only be overlooked where it
occurs, but it cannot be detected where it does not in fact occur (i.e., there are no
false-positives)

The complete model consists of one submodel to describe the ecological process, or state,
and another submodel for the observation process, which is dependent on the result of the
ecological process. The ecological process describes the latent occurrence dynamics for all
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sites in terms of parameters for the probability of initial occurrence and site survival and
colonization. The observation process describes the probability of detecting a presence (i.e.,
y = 1) at a site that is occupied and takes account of false-negative observation errors.

2.1 Ecological or state process

This initial state is denoted zi1 and represents occurrence at site i during season 1. For
this, the model assumes a Bernoulli trial governed by the occupancy probability in the first
season ψi1:

zi1 = Bernoulli(ψi1)

We must distinguish the sample quantity “occurrence” at a site, z, from the population
quantity “occupancy probability”, ψ. The former is the realization of a Bernoulli random
variable with parameter ψ. This distinction becomes important when we want to compute
the number of occupied sites among the sample of surveyed sites; see Royle and Kéry
(2007) and Weir et al. (2009) for this distinction.

For all later seasons (t = 2, 3, . . . T ), occurrence is a function of occurrence at site i at
time t− 1 and one of two parameters that describe the colonization-extinction dynamics of
the system. These dynamic parameters are the probability of local survival φit, also called
probability of persistence (= 1 minus the probability of local extinction), and the
probability of colonization γit.

zit ∼ Bernoulli(zi,t−1φit + (1− zi,t−1)γit)

Hence, if site i is unoccupied at t− 1 , zi,t−1 = 0, and the success probability of the
Bernoulli is 0 ∗ φit + (1− 0) ∗ γit, so the site is occupied (=colonized) in season t with
probability γit . Conversely, if site i is occupied at t− 1 , zi,t−1 = 0, and the success
probability of the Bernoulli is given by 1 ∗ φit + (1− 1) ∗ γit, so the site is occupied in
(=survives to) season t with probability φit.

Occupancy probability (ψit) and occurrence (zit) at all later times t can be computed
recursively from ψi1, zi1 , φit and γit. Variances of these derived estimates can be obtained
via the delta method or the bootstrap.

2.2 Observation process

To account for the observation error (specifically, false-negative observations), the
conventional Bernoulli detection process is assumed, such that

yijt ∼ Bernoulli(zitpijt)

Here, yijt is the detection probability at site i during survey j and season t. Detection is
conditional on occurrence, and multiplying pijt with zit ensures that occurrence can only be
detected where in fact a species occurs, i.e. where zit = 1.
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2.3 Modeling of parameters

The preceding, fully general model description allows for site-(i) dependence of all
parameters. In addition to that, survival and colonization probabilities may be
season-(t)dependent and detection probability season-(t) and survey-(j) dependent. All
this complexity may be dropped, especially the dependence on sites. On the other hand, all
parameters that are indexed in some way can be modeled, e.g., as functions of covariates
that vary along the dimension denoted by an index. We will fit linear functions (on the
logit link scale) of covariates into first-year occupancy, survival and colonization and into
detection probability. That is, for probabilities of first-year occupancy, survival,
colonization and detection, respectively, we will fit models of the form logit(ψi1) = α+ βxi,
where xi may be forest cover or elevation of site i , logit(φit) = α + βxit, where xit may be
tree mast at site i during season t, logit(γit) = α+ βxit, for a similarly defined covariate xit,
or logit(pijt) = α + βxijt , where xijt is the Julian date of the survey j at site i in season t.

We note that for first-year occupancy, only covariates that vary among sites (“site
covariates”) can be fitted, while for survival and colonization, covariates that vary by site
and by season (“yearly site covariates”) may be fitted as well. For detection, covariates of
three formats may be fitted: “site-covariates”, “yearly-site-covariates” and
“observation-covariates”, as they are called in unmarked.

3 Dynamic occupancy models for simulated data

We first generate a simple, simulated data set with specified, year-specific values for the
parameters as well as design specifications, i.e., number of sites, years and surveys per year.
Then, we show how to fit a dynamic occupancy model with year-dependence in the
parameters for colonization, extinction and detection probability.

3.1 Simulating, formatting, and summarizing data

To simulate the data, we execute the following R code. The actual values for these
parameters for each year are drawn randomly from a uniform distribution with the
specified bounds.

> M <- 250 # Number of sites

> J <- 3 # num secondary sample periods

> T <- 10 # num primary sample periods

> psi <- rep(NA, T) # Occupancy probability

> muZ <- z <- array(dim = c(M, T)) # Expected and realized occurrence

> y <- array(NA, dim = c(M, J, T)) # Detection histories

> set.seed(13973)

> psi[1] <- 0.4 # Initial occupancy probability

> p <- c(0.3,0.4,0.5,0.5,0.1,0.3,0.5,0.5,0.6,0.2)

> phi <- runif(n=T-1, min=0.6, max=0.8) # Survival probability (1-epsilon)
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> gamma <- runif(n=T-1, min=0.1, max=0.2) # Colonization probability

> # Generate latent states of occurrence

> # First year

> z[,1] <- rbinom(M, 1, psi[1]) # Initial occupancy state

> # Later years

> for(i in 1:M){ # Loop over sites

for(k in 2:T){ # Loop over years

muZ[k] <- z[i, k-1]*phi[k-1] + (1-z[i, k-1])*gamma[k-1]

z[i,k] <- rbinom(1, 1, muZ[k])

}

}

> # Generate detection/non-detection data

> for(i in 1:M){

for(k in 1:T){

prob <- z[i,k] * p[k]

for(j in 1:J){

y[i,j,k] <- rbinom(1, 1, prob)

}

}

}

> # Compute annual population occupancy

> for (k in 2:T){

psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]

}

We have now generated a single realization from the stochastic system thus defined.
Figure 1 illustrates the fundamental issue of imperfect detection — the actual proportion of
sites occupied differs greatly from the observed proportion of sites occupied, and because p
varies among years, the observed data cannot be used as a valid index of the parameter of
interest ψi.

> plot(1:T, colMeans(z), type = "b", xlab = "Year",

ylab = "Proportion of sites occupied",

col = "black", xlim=c(0.5, 10.5), xaxp=c(1,10,9),

ylim = c(0,0.6), lwd = 2, lty = 1,

frame.plot = FALSE, las = 1, pch=16)

> psi.app <- colMeans(apply(y, c(1,3), max))

> lines(1:T, psi.app, type = "b", col = "blue", lty=3, lwd = 2)

> legend(1, 0.6, c("truth", "observed"),

col=c("black", "blue"), lty=c(1,3), pch=c(16,1))

To analyze this data set with a dynamic occupancy model in unmarked, we first load
the package.

> library(unmarked)
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Figure 1: Summary of the multi-year occupancy data set generated.

Next, we reformat the detection/non-detection data from a 3-dimensional array (as
generated) into a 2-dimensional matrix with M rows. That is, we put the annual tables of
data (the slices of the former 3-D array) sideways to produce a “wide” layout of the data.

> yy <- matrix(y, M, J*T)

Next, we create a matrix indicating the year each site was surveyed.

> year <- matrix(c('01','02','03','04','05','06','07','08','09','10'),

nrow(yy), T, byrow=TRUE)

To organize the data in the format required by colext, we make use of the function
unmarkedMultFrame. The only required arguments are y, the detection/non-detection
data, and numPrimary, the number of seasons. The three types of covariates described
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earlier can also be supplied using the arguments siteCovs, yearlySiteCovs, and obsCovs. In
this case, we only make use of the second type, which must have M rows and T columns.

> simUMF <- unmarkedMultFrame(

y = yy,

yearlySiteCovs = list(year = year),

numPrimary=T)

> summary(simUMF)

unmarkedFrame Object

250 sites

Maximum number of observations per site: 30

Mean number of observations per site: 30

Number of primary survey periods: 10

Number of secondary survey periods: 3

Sites with at least one detection: 195

Tabulation of y observations:

0 1 <NA>

6430 1070 0

Yearly-site-level covariates:

year

01 : 250

02 : 250

03 : 250

04 : 250

05 : 250

06 : 250

(Other):1000

3.2 Model fitting

We are ready to fit a few dynamic occupancy models. We will fit a model with constant
values for all parameters and another with full time-dependence for colonization, extinction
and detection probability. We also time the calculations.

> # Model with all constant parameters

> m0 <- colext(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1,

pformula = ~ 1, data = simUMF, method="BFGS")

> summary(m0)
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Call:

colext(psiformula = ~1, gammaformula = ~1, epsilonformula = ~1,

pformula = ~1, data = simUMF, method = "BFGS")

Initial (logit-scale):

Estimate SE z P(>|z|)

-0.813 0.158 -5.16 2.46e-07

Colonization (logit-scale):

Estimate SE z P(>|z|)

-1.77 0.0807 -22 2.75e-107

Extinction (logit-scale):

Estimate SE z P(>|z|)

-0.59 0.102 -5.79 7.04e-09

Detection (logit-scale):

Estimate SE z P(>|z|)

-0.0837 0.0562 -1.49 0.137

AIC: 4972.597

Number of sites: 250

optim convergence code: 0

optim iterations: 27

Bootstrap iterations: 0

The computation time was only a few seconds. Note that all parameters were estimated
on the logit scale. To back-transform to the original scale, we can simply use the
inverse-logit function, named plogis in R.

> plogis(-0.813)

[1] 0.3072516

Alternatively, we can use backTransform, which computes standard errors using the
delta method. Confidence intervals are also easily obtained using the function confint. We
first remind ourselves of the names of parameters, which can all be used as arguments for
these functions.

> names(m0)

[1] "psi" "col" "ext" "det"

> backTransform(m0, type="psi")

Backtransformed linear combination(s) of Initial estimate(s)

Estimate SE LinComb (Intercept)
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0.307 0.0335 -0.813 1

Transformation: logistic

> confint(backTransform(m0, type="psi"))

0.025 0.975

0.2457313 0.3765804

Next, we fit the dynamic occupancy model with full year-dependence in the parameters
describing occupancy dynamics and also in detection. This is the same model under which
we generated the data set, so we would expect accurate estimates.

By default in R, a factor such as year in this analysis, is a parameterized in terms of an
intercept and effects representing differences. This would mean that the parameter for the
first year is the intercept and the effects would denote the differences between the
parameter values in all other years, relative to the parameter value in the first year, which
serves as a reference level. This treatment or effects parameterization is useful for testing
for differences. For simple presentation, a means parameterization is more practical. It can
be specified by adding a -1 to the formula for the time-dependent parameters.

> m1 <- colext(psiformula = ~1, # First-year occupancy

gammaformula = ~ year-1, # Colonization

epsilonformula = ~ year-1, # Extinction

pformula = ~ year-1, # Detection

data = simUMF)

> m1

Call:

colext(psiformula = ~1, gammaformula = ~year - 1, epsilonformula = ~year -

1, pformula = ~year - 1, data = simUMF)

Initial:

Estimate SE z P(>|z|)

-0.273 0.302 -0.906 0.365

Colonization:

Estimate SE z P(>|z|)

year01 -2.08 0.951 -2.19 2.86e-02

year02 -2.18 0.365 -5.96 2.52e-09

year03 -1.98 0.274 -7.23 4.88e-13

year04 -2.32 0.678 -3.42 6.37e-04

year05 -1.89 0.478 -3.95 7.78e-05

year06 -1.76 0.294 -5.97 2.44e-09

year07 -1.55 0.230 -6.73 1.75e-11

year08 -1.43 0.228 -6.29 3.19e-10
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year09 -2.35 0.470 -5.00 5.64e-07

Extinction:

Estimate SE z P(>|z|)

year01 -1.4209 0.418 -3.401 6.72e-04

year02 -0.4808 0.239 -2.009 4.45e-02

year03 -1.2606 0.366 -3.440 5.83e-04

year04 -0.0907 0.650 -0.139 8.89e-01

year05 -0.6456 0.599 -1.078 2.81e-01

year06 -0.9586 0.378 -2.539 1.11e-02

year07 -1.2279 0.365 -3.362 7.74e-04

year08 -1.1894 0.292 -4.076 4.58e-05

year09 -0.6292 0.635 -0.991 3.22e-01

Detection:

Estimate SE z P(>|z|)

year01 -1.0824 0.244 -4.434 9.26e-06

year02 -0.2232 0.148 -1.508 1.32e-01

year03 0.2951 0.154 1.918 5.52e-02

year04 0.0662 0.161 0.412 6.81e-01

year05 -2.0396 0.433 -4.706 2.52e-06

year06 -0.6982 0.232 -3.005 2.66e-03

year07 0.2413 0.165 1.466 1.43e-01

year08 0.0847 0.155 0.548 5.84e-01

year09 0.6052 0.140 4.338 1.44e-05

year10 -1.1699 0.306 -3.828 1.29e-04

AIC: 4779.172

3.3 Manipulating results: prediction and plotting

Again, all estimates are shown on the logit-scale. Back-transforming estimates when
covariates, such as year, are present involves an extra step. Specifically, we need to tell
unmarked the values of our covariate at which we want an estimate. This can be done
using backTransform in combination with linearComb, although it can be easier to use
predict. predict allows the user to supply a data.frame in which each row represents a
combination of covariate values of interest. Below, we create data.frames called nd with
each row representing a year. Then we request yearly estimates of the probability of
extinction, colonization and detection, and compare them to “truth”, i.e., the values with
which we simulated the data set. Note that there are T-1 extinction and colonization
parameters in this case, so we do not need to include year ‘10’ in nd.

> nd <- data.frame(year=c('01','02','03','04','05','06','07','08','09'))

> E.ext <- predict(m1, type='ext', newdata=nd)
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> E.col <- predict(m1, type='col', newdata=nd)

> nd <- data.frame(year=c('01','02','03','04','05','06','07','08','09','10'))

> E.det <- predict(m1, type='det', newdata=nd)

Predict returns the predictions along with standard errors and confidence intervals.
These can be used to create plots. The with function is used to simplify the process of
requesting the columns of data.frame returned by predict.

> op <- par(mfrow=c(3,1), mai=c(0.6, 0.6, 0.1, 0.1))

> with(E.ext, { # Plot for extinction probability

plot(1:9, Predicted, pch=1, xaxt='n', xlab='Year',

ylab=expression(paste('Extinction probability ( ', epsilon, ' )')),

ylim=c(0,1), col=4)

axis(1, at=1:9, labels=nd$year[1:9])

arrows(1:9, lower, 1:9, upper, code=3, angle=90, length=0.03, col=4)

points((1:9)-0.1, 1-phi, col=1, lwd = 1, pch=16)

legend(7, 1, c('Parameter', 'Estimate'), col=c(1,4), pch=c(16, 1),

cex=0.8)

})

> with(E.col, { # Plot for colonization probability

plot(1:9, Predicted, pch=1, xaxt='n', xlab='Year',

ylab=expression(paste('Colonization probability ( ', gamma, ' )')),

ylim=c(0,1), col=4)

axis(1, at=1:9, labels=nd$year[1:9])

arrows(1:9, lower, 1:9, upper, code=3, angle=90, length=0.03, col=4)

points((1:9)-0.1, gamma, col=1, lwd = 1, pch=16)

legend(7, 1, c('Parameter', 'Estimate'), col=c(1,4), pch=c(16, 1),

cex=0.8)

})

> with(E.det, { # Plot for detection probability: note 10 years

plot(1:10, Predicted, pch=1, xaxt='n', xlab='Year',

ylab=expression(paste('Detection probability ( ', p, ' )')),

ylim=c(0,1), col=4)

axis(1, at=1:10, labels=nd$year)

arrows(1:10, lower, 1:10, upper, code=3, angle=90, length=0.03, col=4)

points((1:10)-0.1, p, col=1, lwd = 1, pch=16)

legend(7.5, 1, c('Parameter','Estimate'), col=c(1,4), pch=c(16, 1),

cex=0.8)

})

> par(op)

Figure 2 shows that the 95% confidence intervals include the true parameter values, and
the point estimates are not too far off.
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Figure 2: Yearly estimates of ε, γ and p.
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3.4 Derived parameters

Estimates of occupancy probability in years T > 1 must be derived from the estimates
of first-year occupancy and the two parameters governing the dynamics, extinction/survival
and colonization. unmarked does this automatically in two ways. First, the
population-level estimates of occupancy probability ψt = ψt−1φt−1 + (1− φt−1)γ are
calculated and stored in the slot named projected. Slots can be accessed using the @
operator, e.g. fm@projected. In some cases, interest may lie in making inference about the
proportion of the sampled sites that are occupied, rather than the entire population of sites.
These estimates are contained in the smoothed slot of the fitted model. Thus, the projected
values are estimates of population parameters, and the smoothed estimates are of the
finite-sample quantities. Discussions of the differences can be found in Weir et al. (2009).

Bootstrap methods can be used to compute standard errors of derived parameter
estimates. Here we employ a non-parametric bootstrap to obtain standard errors of the
smoothed estimates of occupancy probability during each year.

> m1 <- nonparboot(m1, B = 10)

> cbind(psi=psi, smoothed=smoothed(m1)[2,], SE=m1@smoothed.mean.bsse[2,])

psi smoothed SE

1 0.4000000 0.4320671 0.05781066

2 0.3493746 0.4110124 0.03605041

3 0.2977125 0.3139967 0.02811819

4 0.3148447 0.3278179 0.02861192

5 0.3192990 0.2316695 0.06840470

6 0.2915934 0.2528485 0.03243467

7 0.3114415 0.2928429 0.02950853

8 0.3636580 0.3504885 0.03023857

9 0.3654064 0.3936991 0.02617258

10 0.3460641 0.3095786 0.07354332

In practice, B should be much higher, possibly > 1000 for complex models .
Another derived parameters of interest is turnover probability

τt =
γt−1(1− ψt−1)

γt−1(1− ψt−1) + φt−1ψt−1

The following function returns these estimates.

> turnover <- function(fm) {

psi.hat <- plogis(coef(fm, type="psi"))

if(length(psi.hat) > 1)

stop("this function only works if psi is scalar")

T <- getData(fm)@numPrimary

tau.hat <- numeric(T-1)

gamma.hat <- plogis(coef(fm, type="col"))
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phi.hat <- 1 - plogis(coef(fm, type="ext"))

if(length(gamma.hat) != T-1 | length(phi.hat) != T-1)

stop("this function only works if gamma and phi T-1 vectors")

for(t in 2:T) {

psi.hat[t] <- psi.hat[t-1]*phi.hat[t-1] +

(1-psi.hat[t-1])*gamma.hat[t-1]

tau.hat[t-1] <- gamma.hat[t-1]*(1-psi.hat[t-1]) / psi.hat[t]

}

return(tau.hat)

}

The bootstrap again offers a means of estimating variance. Here we show how to
generate 95% confidence intervals for the turnover estimates using the parametric
bootstrap.

> pb <- parboot(m1, statistic=turnover, nsim=2)

> turnCI <- cbind(pb@t0,

t(apply(pb@t.star, 2, quantile, probs=c(0.025, 0.975))))

> colnames(turnCI) <- c("tau", "lower", "upper")

> turnCI

tau lower upper

t*1 0.1532645 0.09613841 0.1060208

t*2 0.1911530 0.14770601 0.1694802

t*3 0.2537292 0.18514773 0.2469985

t*4 0.2604356 0.18947604 0.2029920

t*5 0.3989303 0.49754613 0.5671067

t*6 0.3758690 0.28901007 0.3022026

t*7 0.3537473 0.39050385 0.4278534

t*8 0.3174983 0.25300357 0.3222170

t*9 0.1704449 0.14896392 0.1815896

Which bootstrap method is most appropriate for variance estimation? For detailed
distinctions between the non-parametric and the parametric bootstrap, see Davison and
Hinkley (1997). We note simply that the parametric bootstrap resamples from the fitted
model, and thus the measures of uncertainty are purely functions of the distributions
assumed by the model. Non-parametric bootstrap samples, in contrast, are obtained by
resampling the data, not the model, and thus are not necessarily affected by the variance
formulas of the model’s distributions.

3.5 Goodness-of-fit

In addition to estimating the variance of an estimate, the parametric bootstrap can be
used to assess goodness-of-fit. For this purpose, a fit-statistic, i.e. one that compares
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observed and expected values, is evaluated using the original fitted model, and numerous
other models fitted to simulated datasets. The simulation yields an approximation of the
distribution of the fit-statistic, and a P -value can be computed as the proportion of
simulated values greater than the observed value.

Hosmer et al. (1997) found that a χ2 statistic performed reasonably well in assessing
lack of fit for logistic regression models. We know of no studies formally evaluating the
performance of various fit-statistics for dynamic occupancy models, so this approach should
be considered experimental. Fit-statistics applied to aggregated encounter histories offer an
alternative approach (MacKenzie and Bailey 2004), but are difficult to implement when
J*T is high and missing values or continuous covariates are present.

> chisq <- function(fm) {

umf <- getData(fm)

y <- getY(umf)

sr <- fm@sitesRemoved

if(length(sr)>0)

y <- y[-sr,,drop=FALSE]

fv <- fitted(fm, na.rm=TRUE)

y[is.na(fv)] <- NA

sum((y-fv)^2/(fv*(1-fv)))

}

> set.seed(344)

> pb.gof <- parboot(m0, statistic=chisq, nsim=100)

Figure 3 indicates that, as expected, the constant parameter model does not fit the
data well.

4 Dynamic occupancy models for crossbill data from

the Swiss MHB

4.1 The crossbill data set

The crossbill data are included with the unmarked package. The dataset contains the
results of nine years of surveys (1999–2007) for the European crossbill (Loxia curvirostra),
a pine-seed eating finch, in 267 1-km2 sample quadrats in Switzerland. Quadrats are
surveyed annually as part of the Swiss breeding bird survey MHB (Schmid et al. 2004).
They are laid out as a grid over Switzerland and surveyed 2 or 3 times every breeding
season (mid-April to late June) by experienced field ornithologists along a haphazard
survey route of length 1–9 km (average 5 km). High-elevation sites are only surveyed twice
per breeding season.
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Figure 3: Goodness-of-fit

4.2 Importing, formatting, and summarizing data

The data can be loaded into an open R workspace using the data command.

> data(crossbill)

> colnames(crossbill)

[1] "id" "ele" "forest" "surveys" "det991" "det992"

[7] "det993" "det001" "det002" "det003" "det011" "det012"

[13] "det013" "det021" "det022" "det023" "det031" "det032"

[19] "det033" "det041" "det042" "det043" "det051" "det052"

[25] "det053" "det061" "det062" "det063" "det071" "det072"

[31] "det073" "date991" "date992" "date993" "date001" "date002"

[37] "date003" "date011" "date012" "date013" "date021" "date022"

[43] "date023" "date031" "date032" "date033" "date041" "date042"

[49] "date043" "date051" "date052" "date053" "date061" "date062"
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[55] "date063" "date071" "date072" "date073"

We have three covariates that vary by site: median elevation of the quadrat (ele, in
metres), forest cover of the quadrat (forest, in percent) and the number of surveys per
season (i.e., 2 or 3, surveys). These are called site covariates, because they vary by sites
only. The 27 columns entitled “det991”–“det073” contain the crossbill
detection/nondetection data during all surveys over the 9 years. They contain a 1 when at
least one crossbill was recorded during a survey and a 0 otherwise. NAs indicate surveys
that did not take place, either because a site is high-elevation and has no third survey or
because it failed to be surveyed altogether in a year. The final 27 columns entitled
“date991” – “date073” give the Julian date of each survey. They represent a
‘survey-covariate’ or ‘observation covariate’. We note that the paper by Royle and Kéry
(2007) used a subset of this data set.

AIC-based model selection (see section 4.4.) requires that all models are fit to the same
data. unmarked removes missing data in a context specific way. For missing siteCovs, the
entire row of data must be removed. However, for missing yearlySiteCovs or obsCovs, only
the corresponding observation are removed. Thus, if unmarked removes different
observations from different models, the models cannot be compared using AIC. A way
around this is to remove the detection data corresponding to missing covariates before
fitting the models. The crossbill data have missing dates and so we remove the associated
detection/non-detection data.

> DATE <- as.matrix(crossbill[,32:58])

> y.cross <- as.matrix(crossbill[,5:31])

> y.cross[is.na(DATE) != is.na(y.cross)] <- NA

In addition, continuous covariates should be transformed in a way that brings their
values close to zero in order to improve or even enable numerical convergence of the
maximum-likelihood routine. We do this “by hand” and note that we could also have used
the R function scale. We subtract the mean and divide by the standard deviation.

> sd.DATE <- sd(c(DATE), na.rm=TRUE)

> mean.DATE <- mean(DATE, na.rm=TRUE)

> DATE <- (DATE - mean.DATE) / sd.DATE

Before we can fit occupancy models, we need to format this data set appropriately.

> years <- as.character(1999:2007)

> years <- matrix(years, nrow(crossbill), 9, byrow=TRUE)

> umf <- unmarkedMultFrame(y=y.cross,

siteCovs=crossbill[,2:3], yearlySiteCovs=list(year=years),

obsCovs=list(date=DATE),

numPrimary=9)
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4.3 Model fitting

We fit a series of models that represent different hypotheses about the
colonization-extinction dynamics of Swiss crossbills at a spatial scale of 1 km2. We fit year
effects on colonization and extinction in the means parameterization, but for detection
probability, we choose an effects parameterization. The latter is more useful for getting
predictions in the presence of other explanatory variables for that parameter. For model
fm5 with more complex covariate relationships, we use as starting values for the
optimization routine the solution from a “neighboring” model with slightly less complexity,
model fm4. Wise choice of starting values can be decisive for success or failure of maximum
likelihood estimation.

> # A model with constant parameters

> fm0 <- colext(~1, ~1, ~1, ~1, umf)

> # Like fm0, but with year-dependent detection

> fm1 <- colext(~1, ~1, ~1, ~year, umf)

> # Like fm0, but with year-dependent colonization and extinction

> fm2 <- colext(~1, ~year-1, ~year-1, ~1, umf)

> # A fully time-dependent model

> fm3 <- colext(~1, ~year-1, ~year-1, ~year, umf)

> # Like fm3 with forest-dependence of 1st-year occupancy

> fm4 <- colext(~forest, ~year-1, ~year-1, ~year, umf)

> # Like fm4 with date- and year-dependence of detection

> fm5 <- colext(~forest, ~year-1, ~year-1, ~year + date + I(date^2),

umf, starts=c(coef(fm4), 0, 0))

> # Same as fm5, but with detection in addition depending on forest cover

> fm6 <- colext(~forest, ~year-1, ~year-1, ~year + date + I(date^2) +

forest, umf)
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4.4 Model selection

We can compare models using the Akaike information criterion (AIC). Note that
unmarked yields AIC, not AICc because the latter would require the sample size, which
is not really known for hierarchical models such as the dynamic occupancy model.

Model selection and model-averaged prediction in unmarked require that we create a
list of models using fitList. This function organizes models and conducts a series of tests to
ensure that the models were fit to the same data.

> models <- fitList('psi(.)gam(.)eps(.)p(.)' = fm0,

'psi(.)gam(.)eps(.)p(Y)' = fm1,

'psi(.)gam(Y)eps(Y)p(.)' = fm2,

'psi(.)gam(Y)eps(Y)p(Y)' = fm3,

'psi(F)gam(Y)eps(Y)p(Y)' = fm4,

'psi(F)gam(Y)eps(Y)p(YD2)' = fm5,

'psi(F)gam(Y)eps(Y)p(YD2F)' = fm6)

> ms <- modSel(models)

> ms

nPars AIC delta AICwt cumltvWt

psi(F)gam(Y)eps(Y)p(YD2F) 30 4986.39 0.00 1.0e+00 1.00

psi(F)gam(Y)eps(Y)p(YD2) 29 5059.30 72.91 1.5e-16 1.00

psi(F)gam(Y)eps(Y)p(Y) 27 5095.38 108.99 2.2e-24 1.00

psi(.)gam(.)eps(.)p(Y) 12 5111.32 124.93 7.5e-28 1.00

psi(.)gam(Y)eps(Y)p(Y) 26 5127.63 141.24 2.1e-31 1.00

psi(.)gam(Y)eps(Y)p(.) 18 5170.54 184.15 1.0e-40 1.00

psi(.)gam(.)eps(.)p(.) 4 5193.50 207.11 1.1e-45 1.00

One model has overwhelming support, so we can base inference on that one alone.
Before doing so, we point out how to extract coefficients from a fitList object, and convert
the results to a data.frame, which could be exported from R.

> coef(ms) # Estimates only

> SE(ms) # Standard errors only

> toExport <- as(ms, "data.frame") # Everything

4.5 Manipulating results: Prediction and plotting

Fitted models can be used to predict expected outcomes when given new data. For
example, one could ask “how many crossbills would you expect to find in a quadrat with
50% forest cover?” Prediction also offers a way of presenting the results of an analysis. We
illustrate by plotting the predictions of ψ and p over the range of covariate values studied.
Note that because we standardized date, we need to transform it back to its original scale
after obtaining predictions on the standardized scale.
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> op <- par(mfrow=c(1,2), mai=c(0.8,0.8,0.1,0.1))

> nd <- data.frame(forest=seq(0, 100, length=50))

> E.psi <- predict(fm6, type="psi", newdata=nd, appendData=TRUE)

> with(E.psi, {

plot(forest, Predicted, ylim=c(0,1), type="l",

xlab="Percent cover of forest",

ylab=expression(hat(psi)), cex.lab=0.8, cex.axis=0.8)

lines(forest, Predicted+1.96*SE, col=gray(0.7))

lines(forest, Predicted-1.96*SE, col=gray(0.7))

})

> nd <- data.frame(date=seq(-2, 2, length=50),

year=factor("2005", levels=c(unique(years))),

forest=50)

> E.p <- predict(fm6, type="det", newdata=nd, appendData=TRUE)

> E.p$dateOrig <- E.p$date*sd.DATE + mean.DATE

> with(E.p, {

plot(dateOrig, Predicted, ylim=c(0,1), type="l",

xlab="Julian date", ylab=expression( italic(p) ),

cex.lab=0.8, cex.axis=0.8)

lines(dateOrig, Predicted+1.96*SE, col=gray(0.7))

lines(dateOrig, Predicted-1.96*SE, col=gray(0.7))

})

> par(op)
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Figure 4: Covariates
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