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1 Introduction

1.1 Background & Computational history

Whole genome analysis is receiving wide attention in the statistical genetics community.

In the context of plant breeding experiments the focus is on quantitative trait loci (QTL)

which attempt to explain the link between a trait of interest and the underlying genetics

of the plant. Many approaches of QTL analysis are available such as marker regression

methods (Hayley & Knott, 1992; Martinez & Curnow, 1992) and interval mapping (Zeng,

1994; Whittaker et al., 1996). These methods are common place in QTL software and are

available for use in R packages such as Karl Bromans qtl package (Broman & Wu, 2014).

This particular suite of software is also complemented with a book (Broman & Sen, 2009)

which has been favourably reviewed (Zhou, 2010).

There has also been some focus on the use of numerical integration techniques for the

analysis of QTL. Xu (2003) and Zhang et al. (2008) suggest the use of Bayesian variable

shrinkage and utilise Markov chain Monte Carlo (MCMC) to perform the analysis. An

MCMC approach is also adopted in the R package qtlbim (Yandell et al., 2005). The

package builds on the qtl package and the Bayesian paradigm allows an extensible list of

trait types to be analysed. The package also makes use of the new model selection tech-

nique, the Deviance Information Criterion (Shriner & Yi, 2009), to aid in identifying the

correct QTL model. Similarly, a non-MCMC approach is adopted in the BayesQTLBIC

package (Ball, 2010) where the QTL analysis involves the use of the Bayesian Information

Criterion (Schwarz, 1978) as a QTL model selection tool.

Unfortunately many of the aforementioned methods and their software lack the ability to

account for complex extraneous variation usually associated with plant or animal based

QTL studies. Limited covariate additions are possible in R package qtlbim and through

the inventive on-line GridQTL software which uses the ideas of Seaton et al. (2002).

Kang et al. (2008) uses linear mixed models in the R package EMMA but it does not

allow for extraneous random effects and possible complex variance structures that may

be needed to capture environmental processes, such as spatial layouts, existing in the

experiment.
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1 Introduction

1.2 WGAIM and software package

In this vignette we discuss the whole genome average interval mapping (WGAIM) ap-

proach of Verbyla et al. (2007) and its related software, the R package wgaim. The

package can be downloaded from the Comprehensive R Archive Network (CRAN) at

http://CRAN.R-project.org/package=wgaim. This approach allows the simultaneous

modelling of genetic and non-genetic variation through extensions of the linear mixed

model. The extended model allows complex extraneous variation to be captured as well

as simultaneously incorporating a whole genome analysis to detection and selection of

QTL using a linkage map. The underlying linear mixed modelling analysis is performed

computationally using the R package ASReml-R. The simulation results in Verbyla et al.

(2007) show that WGAIM is a powerful tool for QTL detection and outperforms more

rudimentary methods such as composite interval mapping. As it incorporates the whole

genome into the analysis it eliminates the necessity for piecemeal model fitting along the

genome which in turn avoids the use of model selection criteria or thresholding to control

the number of false positive QTL. In wgaim the false positives are controlled naturally

by assuming a background level of QTL variation through a single variance component

associated with a contiguous set of QTL across the whole genome. This parameter can

then be tested to determine the presence of QTL somewhere on the genome. As a result,

a less cumbersome approach to detecting and selecting QTL is ensured.

1.3 Software Prerequisites

The WGAIM method uses an extension of interval mapping to perform its analysis. For

convenience and flexibility, the wgaim package provides the ability to convert genetic

data objects created in the qtl package to objects for use in wgaim. The converted

objects retain a similar structure to ones created in qtl and therefore can still be used

with functions within the package. Users of wgaim need to be aware that it is a software

package intended for the analysis and summary of QTL and currently only contains min-

imal tools for exploratory linkage map manipulation. Much of the exploratory work can

be handled with functions supplied in the qtl package and users should consult its docu-

mentation if required. In addition, the interval mapping approach of Verbyla et al. (2007)

and its implementation in wgaim is also restricted to populations with only two distinct

genotypes. Some of these populations include, doubled haploid (DH), back-crosses and

recombinant inbred lines (RIL). To ensure this rule is adhered to, error trapping has been

placed in the appropriate functions.

Throughout the WGAIM procedure the underlying linear mixed model analysis uses the

highly flexible R software package ASReml-R, built as a front end wrapper for the stand

alone version, ASReml (Gilmour et al., 2009). This software allows the user the abil-

ity to flexibly model spatial or environmental variation as well as possible variation that

may arise from additional components associated with the experimental design. It uses
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1 Introduction

an average information algorithm developed in Gilmour et al. (1995) that allows efficient

computing of residual maximum likelihood (REML) (Patterson & Thompson, 1971) es-

timates for the variance parameters. The use of REML estimation in the linear mixed

model context becomes increasingly necessary in situations where the data is unbalanced.

Much of its sophistication has been influenced from its common use in the analysis of

crop variety trials (Smith et al., 2001, 2005, 2006) where complex additional components

such as spatial correlation structures or multiplicative factor analytic models need to be

incorporated into the mixed model. If available, the software also allows complex pedigree

information to be included (Oakey et al., 2006). Many of these additional flexibilities in

ASReml have also established it as a valuable software tool in the livestock industries. In

more recent years it has been used as a core engine for more complex genetic analyses as

in Gilmour (2007), Verbyla et al. (2007) and Huang & George (2009). If you are affiliated

with an academic institution, the stand alone software and the R package ASReml-R

Discovery is now freely available through http://www.vsni.co.uk.

3
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2 WGAIM: Theory

2.1 WGAIM Method

The WGAIM approach is a forward selection method that uses a whole genome approach

to genetic analysis at each iteration. Following Verbyla et al. (2007), initially a working

model is developed that assumes a QTL in every interval. Thus for a given set of trait

observations y = (y1, . . . , yn) consider the model

y = Xτ +Zeue +Zgg + e, (2.1)

where τ is a t length vector of fixed effects with an associated n × t explanatory design

matrix X and ue is a b×1 length vector of random effects with an associated n×b design

matrix Ze. Typically, the distribution of ue ∼ N(0, σ2G(ϕ)) and is assumed mutually

independent to the residual vector e ∼ N(0, σ2R(φ)) with ϕ and φ being vectors of

variance ratios.

The vector g in (2.1) represents a r length vector of genotypic random effects with its

associated design matrix Zg. Let m be the total number of markers, c be the number

of chromosomes, mk the number of markers on chromosome k, (k = 1, . . . , c), and qi,k:j
represent the parental allele type for line i in interval j on chromosome k. In WGAIM,

qi,k:j = ±1, reflecting two possible genotypes AA, BB for DH and RIL and AB, BB for

back-cross populations. The ith genetic component of this model is then given by

gi =
c∑

k=1

mk−1∑
j=1

qi,k:jak:j + pi, (2.2)

where ak:j is QTL effect size assumed to have distribution ak:j ∼ N(0, σ2γa) and pi ∼
N(0, σ2γp) represents a polygenic or residual genetic effect not captured by the QTL

effects.

As in interval mapping the vector of QTL allele types are replaced by the expectation of

the QTL genotype given the flanking markers. Let mk:j be the jth marker on the kth

4



2 WGAIM: Theory

chromosome then the vector of genotypic effects is

g =
c∑

k=1

mk−1∑
j=1

(mk:jλk:j,j +mk:j,j+1λk:j+1,j)ak:j + p

= MΛa+ p, (2.3)

where λk:j,j and λk:j+1,j are complicated expressions based on recombination fractions

between the marker and the QTL in the jth interval (see equation (5) and (6) on page

100 of Verbyla et al. (2007)). These parameters require estimation. Verbyla et al. (2007)

suggest applying a parameter reduction technique to produces a vector of genotypic effects

of the form

g =
c∑

k=1

mk−1∑
j=1

(mk:j +mk:j,j+1)λk:jak:j + p

= MΛEa+ p, (2.4)

where λk:j = θk:j,j+1/2dk:j,j+1(1 − θk:j,j+1) and θk:j,j+1, dk:j,j+1 are the the known recom-

bination fraction and Haldane’s genetic distance between marker j and j + 1 respectively

on the kth chromosome. Let ME = MΛE then ME is an r × (m − c) fully specified

known matrix of pseudo-markers spanning the whole genome. A more detailed overview

of this decomposition and its derivation can be found in Verbyla et al. (2007). The full

working statistical model for analysis is then

y = Xτ +Zeue +ZgMEa+Zgp+ e. (2.5)

After the fitting of (2.5) the simple hypothesis H0 : γa = 0 is tested based on the statistic

−2 log Ψ = −2(logL − logL0) where L and L0 is the residual likelihood of the working

model (2.5) with and without the random regression QTL effects, Zaa. Stram & Lee

(1994) suggest that under H0, −2 log Ψ is distributed as the mixture 1
2
(χ2

0 + χ2
1) due to

the necessity of testing whether the variance ratio is on the boundary on the parameter

space.

If γa is found to be significant a putative QTL is determined using an outlier detection

method based on the alternative outlier model (AOM) for linear mixed models from Gogel

(1997) and formalised in Gogel et al. (2001). Verbyla et al. (2007) uses the AOM to develop

a score statistic for each of the chromosomes. For example, for the kth chromosome let

ak0 = ak + δk where δk is a vector of random effects such that δk ∼ N(0, σ2γa,kImk−1).

The full outlier model is

y = Xτ +Zeue +ZgMEa+Zg,kME,kδk +Zgp+ e, (2.6)

where Zg,k is the matrix Zg appropriately subsetted to chromosome k. The REML score

is then derived for γa,k and evaluated at γa,k = 0, namely

Uk(0) = −1

2

(
tr(Ck,k)− 1

σ2γ2a
ãT
k ãk

)
, (2.7)
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2 WGAIM: Theory

where Ck,k = Zg,kMEPMEZg,k with P = H−1 −H−1X(XTH−1X)−1XTH−1, H =

σ2(R+ZGZT+γaZgMEM
T
EZ

T
a +γpZpZ

T
p ) and best linear unbiased predictors (BLUPS)

ãk = γaM
T
EZ

T
g,kPy. This score has mean zero and this will occur exactly when the terms

in the parentheses of (2.7) are equal. Scores that depart from zero suggest a departure

from γa,k = 0. A simple statistic that reflects this departure can be based on the “outlier”

statistic

t2k =
ãT
k ãk

σ2γ2atr(Ck,k)
=

∑mk−1
j=1 ã2k:j∑mk−1

j=1 var(ãk:j)
. (2.8)

This statistic can therefore be calculated from the BLUPS of the QTL sizes and their

prediction error variances arising from the working model. In most cases mixed model

software, including ASReml-R used in wgaim, provide the ability to extract these

components for this use.

In a similar manner to the above once the chromosome with the largest outlier statistic

is identified, the individual intervals within that chromosome are checked. For example

if the largest t2k is from the kth chromosome, a similar derivation can be followed for the

outlier statistic of the jth interval, namely

t2k:j =
ã2k:j

var(ãk:j)
. (2.9)

A putative QTL is then determined by choosing the largest t2k:j within that chromosome.

It must be stated at this point that although (2.6) is formulated to derive the theory for

QTL outlier detection there is no requirement to fit this model as the chromosome and

interval outlier statistics only contain components obtainable from a fit of the working

model proposed in (2.5). Thus there is only a minimal computational cost to determine

an appropriate QTL interval using this method.

Once a QTL interval is selected it is moved into the fixed effects of the working model

(2.5) and the process is repeated until γa is not significant. After the selection process is

complete the selected QTL intervals appear as fixed effects and the final model is

y = Xτ +ZgME,sas +Zeue +ZgME,−sa−s +Zgp+ e, (2.10)

where ME,s contain the the appropriate columns of ME for the selected QTL with as as

fixed effects andME,−s contain the columns of genetic information for the unselected QTL

with a−s as a set of random effects. The preservation of the unselected QTL component

in the model ensures the selected QTL are tested within the appropriate stratum of the

hierarchical model. This complete approach is known as the WGAIM algorithm.

2.2 Marker vs Interval

The WGAIM method derived in the previous section uses a whole genome extension

of interval mapping. The matrix Λ in (2.3) can be viewed as a mapping matrix that

6



2 WGAIM: Theory

appropriately maps the marker scores to midpoint pseudo-interval scores. In fact, the

genetic model proposed in (2.3) can be written as an approximate marker QTL regression

model

g = MaM + p (2.11)

where the marker QTL sizes are aM = Λa. This suggests the marker QTL sizes have an

assumed distribution of the form aM ∼ N(0, σ2γaΛΛT ) and are correlated. Therefore an

analysis assuming the genetic QTL model (2.11) with independent marker QTL effects

will be less efficient than the interval mapping equivalent (2.3). Whole genome marker or

interval analysis is possible with wgaim.

2.3 Recent advances: WGAIM v1.0+

WGAIM is always being developed to improve its efficiency and stability as well as advance

its capabilities. Recent research by Verbyla et al. (2012) has shown the WGAIM method

can be improved in several ways. These are outlined below.

2.3.1 The outlier statistics

There is a short relevant point in Verbyla et al. (2012) concerning the use of the outlier

statistics in the WGAIM algorithm. After much scrutiny it was found that the use of

the chromosome statistic was flawed for small linkage groups. Consider the scenario

of two markers on a linkage group k. After converting the marker information to a

single interval the chromosome and interval outlier statistics have the property t2k = t2k:1.

Thus, the chromosome statistic, in this instance, is based on the information contained in

one interval. This interval statistic, in some circumstances, may bias the choice toward

chromosome k and the selection of its only interval. Through simulation Verbyla et al.

(2012) shows that a better choice would be to only use the interval outlier statistic to

guide the selection process.

2.3.2 High dimensional analysis

Verbyla et al. (2012) show that provided there is some replication of genotypic individuals

existing in the data, high dimensional genetic marker components can be included in the

formulation of the working model (2.5). In fact, if the number of markers or intervals

exceeds the number of genetic individuals then a transformation is always warranted. This

ensures the maximum number of columns of marker or interval related information in the

working WGAIM model is equal to the number of genetic individuals. As expected, this

reduces computation times considerably for high dimensional problems. Further details

can be found in Verbyla et al. (2012).
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2 WGAIM: Theory

2.3.3 A random effects formulation

It is well known that there is (selection) bias involved in moving the selected QTL to

the fixed effects (Beavis, 1994, 1998). Xu (2003) provides a theoretical justification while

Melchinger et al. (1998) also conclude that sizes are inflated. There is a parallel in general

plant breeding analysis where genetic effects are assumed to be random rather than fixed.

This reduces the bias through shrinkage and provides a more realistic estimate of the size

of a genetic effect. Reducing the bias in QTL analysis would be desirable.

In a random effects formulation we assume that the ith selected QTL appearing in the

final model (2.10) has an assumed distribution ai ∼ N(0, σ2
ai

). That is, the size of the

QTL effects are assumed to be random and have a different variance to the unselected

effects. This makes sense as a putative QTL effects exhibit variation from zero because

they are QTL. Thus individual QTL have their own distribution and non-QTL come from

another distribution. The two distributions differ in their variances and not their means.

2.4 Summary assessment of QTL

2.4.1 Fixed effects formulation

A summary of the additive QTL fixed effect can be obtained by considering an appro-

priate hypothesis test. Let âkj be the fixed effect estimate of the QTL akj with variance

var(âkj) = σ2
PEV,kj. The test then considers the null hypothesis H0 : akj = 0 against the

alternative hypothesis Ha : akj 6= 0. A z-statistic for this QTL is then calculated using

zkj =
âkj

σPEV,kj

and therefore a p-value for the hypothesis test is

1− Pr
(
−zkj < Z < zkj)

LOD scores are generally not necessary for WGAIM but can be calculated using

LODkj =
1

2
log10exp(z2kj)

2.4.2 Random effects formulation

In this formulation, the size of the QTL effect is a best linear unbiased prediction (BLUP).

It is no longer appropriate to test the hypothesis that the effect is zero in order to assess

its significance. Tests of hypotheses pertain to unknown parameters, and random effects

involve distributions of effects.
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2 WGAIM: Theory

To provide a measure of the strength of a QTL, the conditional distribution of the true

(random) QTL effect akj say, given the data is used. That is under the normality assump-

tions for a linear mixed model,

akj|y2 ∼ N(ãkj, σ
2
PEV,kj)

where y2 is the component of the data free of fixed effects (Verbyla, 1990). The mean of

this conditional distribution is the BLUP of akj, that is the estimated size of the QTL ãkj,

and in this instance, the variance σ2
PEV,kj is the prediction error variance (PEV) of akj.

Thus the proper assessment of the impact of the QTL involves determining how far the

distribution is from zero. This can be quantified by calculating a probability somewhat

like a p-value, but for which values close to 0 indicate the QTL is strong. Consider the

statistic

X2
kj =

(
akj − ãkj
σPEV,kj

)2

which has a chi-squared distribution with one degree of freedom. Zero on the original

scale is c2kj = ã2kj/σ
2
PEV,kj on the chi-squared scale and therefore

Pr(X2
kj > c2kj)

provides a measure of strength of the putative QTL by how far ãkj is away from zero

relative to σPEV,kj. In a similar manner to the fixed effects formulation a LOD score can

be calculated using LODkj = log10exp(c2kj)/2.

2.4.3 Genetic variance contribution of QTL

It is often of interest to calculate the genetic variance contribution of the selected putative

QTL. This requires the total genetic variance of the genetic effects expression

g = ME,sas +ME,−sa−s + p

Following Verbyla et al. (2012), to facilitate an expression for the variance the first term

on the RHS is replaced by (2.2). For a single line i the variance then becomes

var(gi) =
s∑

l=1

a2l +
∑∑

l=l′

(1− 2θll′)alal′ + σ2
am

T
Ei,−smEi,−s + σ2

p

wheremEi,−s is the ith row ofME,−s. Using an average line effect, mE,−ss = mT
Ei,−smEi,−s/r

and ignoring covariances between QTL the total variance across all lines is

var(g∗) =
s∑

l=1

a2l + σ2
amE,−ss + σ2

p

The percentage contributions of the lth QTL to the genetic variance is then

PVl = 100
a2l

var(g∗)

Numerical calculations of the contributions are based on estimates of the parameters

obtained from the final QTL model.
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3 The R package wgaim: A casual

walk through

A typical QTL analysis with wgaim can be viewed as series of steps with the appropriate

functions

Step 1. Fit a base asreml() model

Fit a base asreml() model as in (2.5) but without the added marker/interval genetic

information term ZgMEa using

baseModel <- asreml(..., data = phenoData)

(see the ASReml-R package for arguments ...). The asreml() call allows very complex

structures for the variance matrices G(ϕ) and R(φ) through its random and rcov argu-

ments. This makes it an ideal modelling tool for capturing non-genetic variation, such as

design components and/or extraneous environmental variation.

For a comprehensive overview of the ASReml-R package, including thorough examples of

its flexibility, users should, in the first instance, consult the documentation that is included

with the package. Note: On any operating system that has ASReml-R installed,

the documentation can be found using the simple command asreml.man() in

R.

Step 2. Read in genetic data using read.cross()

Read in genetic data using

crossObj <- read.cross(...)

(see the qtl package for arguments ...). This function allows the reading in of genetic

information in a number of formats including files generated from commonly used genetic

10



3 The R package wgaim: A casual walk through

software programs such as Mapmaker and QTL Cartographer. At the current printing

of this document read.cross() accepts data in the following formats (from the help for

read.cross()),

• comma-delimited (“csv”)

• rotated comma-delimited (“csvr”)

• comma-delimited with separate files for genotype and phenotype data (“csvs”)

• rotated comma-delimited with separate files for genotype and phenotype data (“csvsr”)

• Mapmaker (“mm”)

• Map Manager QTX (“qtx”)

• Gary Churchill’s format (“gary”)

• Karl Broman’s format (“karl”).

For the exact requirements of all available file types and their nomenclature users should

consult the qtl documentation. The read.cross() function can also process more ad-

vanced genetic crosses. However, in wgaim the QTL analysis is restricted to populations

with two genotypic states. Thus users should be aware that the class of the cross object

needs to inherit one of "bc","dh","riself". This is checked when converting the object

in step 3.

The function read.cross() will also estimate map distances if they are not given in the

genetic file(s) before importation. It uses the Lander & Green (1987) hidden Markov

model for its estimation. This is an EM algorithm and therefore suffers from linear

convergence. On some occasions the algorithm may slowly converge or not converge at

all. In these instances users may need to investigate possible problems with their linkage

map before attempting to import.

Step 3. Convert genetic "cross" object to an "interval" object

This can be done using the wgaim function

intervalObj <- cross2int(crossObj, missgeno = "MartinezCurnow",

rem.mark = TRUE, id = "id", subset = NULL)

The function contains a number of arguments that provide some linkage map manipulation

before calculation of the interval information for each chromosome. They are detailed as

follows,

1 Sub-setting: The map can be subsetted by giving the subset argument a character

string vector of chromosome names.

11



3 The R package wgaim: A casual walk through

Table 3.1: Consensus marker outcomes for 3 markers in a doubled haploid population. The

consensus marker uses the name of the first marker in the set prefixed with a “(C)”.

Marker1 Marker2 Marker3 Marker1(C)

AA AA AA AA

BB BB BB BB

AA NA AA AA

BB NA BB BB

AA NA NA AA

BB NA NA BB

NA NA NA NA

AA BB AA NA

2 Co-locating markers: If rem.mark = TRUE then consensus markers are formed for

co-locating marker sets across the genome. This is achieved by combining markers

scores in the same marker set using the rules of Table 3.1. These rules have an

obvious extension to larger co-located marker sets. The final consensus marker uses

the name of the first marker with a “(C)” prefix to ensure the interpretation remains

simple post analysis. The markers involved in the formation of each consensus

markers, and their connections with one another, are returned as a named element

of intervalObj called "cor.markers".

3 Missing values: If missgeno = "MartinezCurnow", missing values within a chro-

mosome are imputed using the rules of Martinez & Curnow (1992). If missgeno =

"Broman" the they are calculated using the default values of argmax.geno() in the

qtl package

Note: This step is crucial in the process of QTL analysis using wgaim. The

imputation of the missing markers ensures the genetic data being passed into

wgaim.asreml() in the next step is a complete (i.e. no missing values) across

all linkage groups.

After the linkage map manipulation, for each chromosome, the imputed marker data

matrix is returned as an element of intervalObj. Along with this, several interval calcu-

lations are returned such as distances between markers, recombination fractions and most

importantly, the interval data matrix, ME defined shortly after (2.4).

The id argument is required to determine the unique rows of the genotypic data and is

passed to the imputed marker data and the interval data matrix. The final genetic data

object returned also retains the original class of the object for backward compatibility with

other functions in the qtl package as well as inherits the class "interval" for functionality

within the wgaim package.
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Step 4. Perform QTL analysis with wgaim()

QTLmodel <- wgaim(baseModel, phenoData, intervalObj, merge.by = NULL,

gen.type = "interval", method = "fixed", selection = "interval",

breakout = -1, TypeI = 0.05, attempts = 5, trace = TRUE,

verboseLev = 0, ...)

The baseModel argument must be an asreml.object and therefore have "asreml" as

its class attribute. Thus a call to wgaim() is actually a call to wgaim.asreml(). This

stipulation ensures that an asreml() call has been used to form the base model in step 1

before attempting QTL analysis. An error trapping function, wgaim.default() is called

if the class of the base model is not "asreml". The second argument phenoData is a data

object of phenotypic data usually used in the analysis of the base model in step 1. The

intervalObj contains the imputed genetic marker and interval data obtained from a call

to cross2int() in the step 3. Thus intervalObj must be of class "interval".

The character string merge.by is then used to identify the appropriate column of phenoData

and intervalObj which to merge the two data sets. This merging differs depending on

whether the problem is high dimensional, (r ×m − c) or not. Note: Unmatched el-

ements of merge.by are handled differently depending on whether they are

from the intervalObj or phenoData. If elements of merge.by exist in phenoData

and are unmatched with elements in intervalObj then they are kept to en-

sure completeness of the phenotypic data. If elements of merge.by exist in

intervalObj and not in phenoData they are dropped as there will be no pheno-

typic information available for that genetic line.

The gen.type allows the user to specify "interval" or "marker" depending on the

desired analysis. If gen.type = "marker" then the imputed marker matrix for each

linkage group in intervalObj is combined into a whole genome matrix before being

merged with phenoData. If gen.type = "interval" then the interval matrix for each

linkage group is combined and used instead.

Two choices are available for the method argument. If method = "fixed" the forward

selection algorithm moves the selected QTL to the fixed part of the model. This was the

only choice in earlier versions of wgaim and is part of the original algorithm discussed

in Verbyla et al. (2007). If method = "random" the forward selection algorithm uses the

updated algorithm of Verbyla et al. (2012), also discussed briefly in Section 2.3, and places

the selected QTL as an additive set of random effects.

The selection argument can either be "chromosome" or "interval". If "chromosome"

is chosen then selection of a QTL is based on outlier detection method discussed in Section

2 and in more detail in Verbyla et al. (2007). If "interval" is given then selection is

13
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based on outlier interval statistics only. Either selection procedure can be used with

both of choices of method discussed above. Note: All combinations of the arguments

discussed allow high dimensional genetic components to be added to the wgaim

call through intervalObj.

The breakout argument allows the user to breakout of the forward selection algorithm

at the desired iteration by providing a positive integer. The default of -1 ensures the

algorithm does not stop prematurely. TypeI argument allows users to change the sig-

nificance level for the testing of QTL effects variance component γa. As asreml() calls

output components of the fit to the screen there is an option to trace this to a file if

desired. The level of reporting can be changed using verboseLev. If verboseLev = 0

model fitting information and, if found, QTL locations will be printed. If verboseLev =

1 then the chromosome (if necessary) and interval outlier statistics from (2.8) and (2.9)

will be printed during each iteration.

Step 5. Summarise QTL with various method functions

summary(QTLmodel, intervalObj, LOD = TRUE, ...)

print(QTLmodel, intervalObj, ...)

tr(QTLmodel, iter = 1:length(object$QTL$effects), diag.out = TRUE, ...)

link.map(QTLmodel, intervalObj, chr, max.dist, marker.names = "markers",

list.col = list(q.col = "light blue", m.col = "red", t.col =

"light blue"), list.cex = list(t.cex = 0.6, m.cex = 0.6),

trait.labels = NULL, tick = FALSE, ...)

Various functions can be used to summarize and diagnostically check the QTL obtained

from a wgaim() analysis. The summary() function retrieves genetic marker information

and assesses the significance of the QTL effects (fixed or random). For an interval analysis

genetic information displayed includes chromosome and interval as well as name and

location of flanking markers. For a marker analysis, chromosome, name and location of

the closest linked marker are displayed. For both interval and marker analysis the size

of the QTL effect, its significance and percent contribution to the genetic variance are

also given. If method = "fixed" in the wgaim call then significance of the QTL effects

are assessed from p-values calculated using Section 2.4.1. If method = "random" then

probability values are calcualted using Section 2.4.2. LOD scores are also available for all

QTL effects.

The print() method provides a simple annotated summary of the QTL as they were

found during the wgaim() analysis.

tr() displays diagnostic information of the forward selection process underlying a wgaim()

analysis. It shows a summary of the Residual Maximum Log-Likelihood ratio tests of

14
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significance for the parameter γa at each iteration. There is also a triangular p-value or

probability value matrix that shows the significance of the QTL effects at each iteration.

Selected QTL can also be placed on a linkage map using link.map(). This function neatly

plots the linkage map and places "interval" or "marker" QTL at their appropriate

position. The function has added flexibility for colouring of QTL regions as well as colour

and size of printed text for all components of the map.

What is the best WGAIM analysis to use?

The different combination of the arguments, gen.type, method and selection in the

wgaim.asreml() call produce 6 distinct WGAIM QTL analyses. The question and an-

swers given below are to help guide users in choosing the appropriate combination of the

arguments for the genotypic and phenotypic data they have. It should be noted that some

of the answers provided are borne from gained knowledge and practical experience with

the algorithm and software since its inception.

Q: I have a high dimensional linkage map.

A: The wgaim package has been updated to allow high dimensional maps to be incorpo-

rated and analysed efficiently for all combinations of the arguments.

Q: My linkage map contains several linkage groups that have small numbers

of markers.

A: It is now known that using the using the chromosome outlier statistic wrongly favours

selection of QTL from small linkage groups. It is advised to use selection="interval"

in combination with the other arguments.

Q: My linkage map contains many linkage groups with sparsely spaced mark-

ers.

A: This would suggest the linkage map contains many wide intervals. It may be preferable

to perform a marker analysis using gen.type="marker" in combination with the other

arguments.

Q: My linkage map contains linkage groups with dense sets of markers.

A: With dense linkage maps QTL become tightly linked with markers. Therefore us-

ing either gen.type="interval" or gen.type="marker" will be efficient. The use of

selection="chromosome" may also provide slight improvement in QTL selection.

Q: I am interested in the least biased QTL effects for a particular trait.

A: Using method="random" ensures the selected QTL will be placed as additive random

components in the model. The QTL effects will therefore be shrunk and known to be less

biased.
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Q: It is suspected there are very closely linked QTL for a particular trait.

A: Very tightly linked QTL are difficult to determine and their simultaneous inclusion as

separate covariates in any model may produce biased effects for one or both of the linked

QTL. If these linked QTL are not of great interest users can adjust the exclusion.window

argument to ensure that a cM region around each selected QTL is excluded from further

analysis. If closely linked QTL are found using wgaim it may also be useful to post

process the model by dropping each QTL independently and rechecking the results.
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All results from the examples presented in this vignette are reproducible with data sets

and scripts provided with the package. The scripts and vignette for your installation of

wgaim and R can be found by typing the commands

R> docpath <- system.file("doc", package = "wgaim")

R> list.files(docpath)

The listed files in this directory should match

[1] "CxRExample.R" "index.html" "RxKExample.R" "SxTExample.R" "wgaim.pdf"

If they do not match this or nothing is found then an upgrade of wgaim is needed. The

newest version can be found at http://CRAN.R-project.org/package=wgaim. The data

sets used in this vignette and available with the package are

R> data(package = "wgaim")

Data sets in package ’wgaim’:

genoCxR Genotypic marker data for Cascades x RAC875-2

doubled haploid population in R/qtl format

genoRxK Genotypic marker data for RAC875 x Kukri doubled

haploid population in R/qtl format

genoSxT Genotypic marker data for Sunco x Tasman doubled

haploid population in R/qtl format

phenoCxR Phenotypic Cascades x RAC875-2 zinc experiment

data

phenoRxK Phenotypic RAC875 x Kukri trial data

phenoSxT Phenotypic Sunco x Tasman trial data

They have been bundled with the package in two locations. Firstly, they are available in

the “data” directory of the package and therefore can be locally retrieved using the usual
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data() call. They have also been individually placed in an external data directory in

CSV format. The path to this directory is locatable by printing the result of the following

command

wgpath <- system.file("extdata", package = "wgaim")

Note that the three genotypic marker data sets in this directory are in raw CSV format.

4.1 RAC875 x Kukri data

This first example is used to illustrate the required steps for a successful wgaim analysis.

It shows a more in depth view of the phenotypic and genotypic data and in particular

focusses on the R/qtl linkage map, its conversion and use within wgaim.

The example consists of phenotypic and genotypic data sets involving a Doubled Hap-

loid (DH) population derived from the interbreeding or crossing of the wheat varieties

RAC875 and Kukri. The main goal of the experiment was to to find causal links between

measured grain yield related traits and genetic markers associated with the population.

The experiment was a subset of a much larger set of trials used for assessing drought

tolerance of the breeding population across a variety of regions (see Bonneau et al., 2012;

Bennett et al., 2012a,b,c).

The phenotypic RAC875 x Kukri data can be accessed using

R> data(phenoRxK, package = "wgaim")

and relates to a field trial consisting of 520 plots. Two replicates of 256 DH lines from the

RAC875 x Kukri population were allocated to plots using a randomized complete block

design with 2 Blocks/Reps. The additional plots remaining in each block were filled with

one of each of the parents and controls (ATIL, SOKOLL, WEEBILL). A number of yield

related trait measurements were taken and grain yield (t/ha) and thousand grain weight

are included with this data.

The collected data frame consists of 520 Rows with 9 columns and an example of the first

ten rows of data are given in Table 4.2. From left to right the “Genotype” column is a

256 level factor consisting of the unique identification of the DH lines, the parents and

the controls. Type is a 4 level factor differentiating the DH lines from the parents and

controls. “Row” and “Range” are 20 and 26 level factors determining the position of the

experimental plot. “Rep” is a 2 level factor identifying the physical block each replicate

of the DH lines was placed in. “yld” and “tgw” are the physical measurements of grain

yield and thousand grain weight taken from each plot upon harvest. The final columns

“lrow” and “lrange” is a centred numerical version of “Row” and “Range” that is used in
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Table 4.1: The first 10 rows of the phenotypic RAC875 × Kukri experiment data
Genotype Type Row Range Rep yld tgw lrow lrange

DH R003 DH 1 1 1 2.24 33.40 -12.50 -9.50

DH R055 DH 2 1 1 1.16 31.60 -11.50 -9.50

DH R056 DH 3 1 1 1.64 48.30 -10.50 -9.50

DH R111 DH 4 1 1 2.40 31.60 -9.50 -9.50

DH R112 DH 5 1 1 1.97 33.40 -8.50 -9.50

DH R170 DH 6 1 1 1.27 26.30 -7.50 -9.50

DH R172 DH 7 1 1 1.96 27.00 -6.50 -9.50

DH R232 DH 8 1 1 2.17 28.40 -5.50 -9.50

DH R234 DH 9 1 1 1.36 32.40 -4.50 -9.50

DH R294 DH 10 1 1 1.07 29.40 -3.50 -9.50

the subsequent analysis.

4.1.1 Base Model

Initially, we begin with Step 1 of the previous chapter by exploring a suitable base model

for yield by considering (2.5) without the random regression effects, ZgMEa, attributed

to genetic markers/intervals, namely

R> rkyld.asi <- asreml(yld ~ Type, random = ~ Genotype + Rep,

+ rcov = ~ ar1(Range):ar1(Row), data = phenoRxK)

In the model, the Genotype variable is modelled as a set of polygenic random effects

represented as g in (2.5). The Rep is included as a random effect represented by ue

(Smith et al., 2005, see). To ensure genetic differences between parental and progeny

lines is captured the Type variable is modelled as a fixed effect, represented as τ in (2.5).

The residual error term, e, of 2.5 is also modelled using the rcov argument of the asreml

call. Typically, for a regular field trial of this type, a separable AR1 × AR1 process

(AR1 = auto-regressive or order 1) is used to parametrically model correlation of the

yield measurements existing due to adjacency of the plots in the field. A summary of the

models variance parameter estimates shows a moderate correlation exists in the Range

direction with a small correlation existing across the Rows.

R> summary(rkyld.asi)$varcomp

gamma component std.error z.ratio constraint

Genotype!Genotype.var 2.30479883 0.168047406 0.017093543 9.8310459 Positive

Rep!Rep.var 0.02371962 0.001729444 0.003916852 0.4415393 Positive

R!variance 1.00000000 0.072911963 0.007142522 10.2081538 Positive

R!Range.cor 0.24047738 0.240477376 0.068807980 3.4949053 Unconstrained
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Figure 4.1: Row residuals for all Ranges from the initial model for yield in the RAC875 ×
Kukri experiment

R!Row.cor 0.50675409 0.506754095 0.048829027 10.3781321 Unconstrained

This initial model needs checking diagnostically. A simple plot() of the model object,

which actually calls upon plot.asreml(), provides four diagnostic plots of the residuals

for visual inspection. Trends across the field can be checked using the in-built ASReml-

R variogram command or a simple trellis panel plot. For example, Figure 4.1 is produced

with the two plotting commands

R> plot(variogram(rkyld.asi))

R> row.ind <- c(1,seq(4, 20, by = 3))

R> xyplot(resid(rkyld.asi) ~ Range | Row, data = phenoRxK, type = "b",

+ panel = function(x, y, ...){

+ panel.abline(h = 0, lty = 2)

+ panel.xyplot(x, y, ...)},
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+ aspect = 4/5, layout = c(9,3), ylab = "Residuals",

+ scales = list(x = list(at = row.ind,labels = phenoRxK$Row[row.ind])))

The plots suggests there is a trend across the Rows for each of the Ranges. The variogram

also shows a possible Range effect. Incorporating a linear row (”lrow”) into the fixed

effects and a ”Range” random effect the full asreml model is

R> rkyld.asf <- asreml(yld ~ Type + lrow, random = ~ Genotype + Range,

+ rcov = ~ ar1(Range):ar1(Row), data = phenoRxK)

R> summary(rkyld.asf)$varcomp

gamma component std.error z.ratio constraint

Genotype!Genotype.var 3.11068122 0.165536298 0.016957534 9.7618141 Positive

Rep!Rep.var 0.06243523 0.003322519 0.005332801 0.6230345 Positive

Range!Range.var 0.29757224 0.015835440 0.006964592 2.2737068 Positive

R!variance 1.00000000 0.053215449 0.005157355 10.3183616 Positive

R!Range.cor 0.16334150 0.163341495 0.074785721 2.1841268 Unconstrained

R!Row.cor 0.26871404 0.268714042 0.072172541 3.7232172 Unconstarined

The summary suggests there is still a correlation in both the Row and Range direction

after a linear de-trending across the Ranges. The addition of the spatial terms in the

model has also reduced the residual variation without affecting the genetic variation.

This has increased the heritability of the trait.

4.1.2 Genetic linkage map

We can now move to Step 2 and read in a genetic marker map for the population. Similar

to the phenotypic data, the RAC875 × Kukri genetic marker data is available using

R> data("genoRxK", package = "wgaim")

If the genotypic data is accessed in this manner the resultant object is a preformatted as an

R/qtl "cross" object. Alternatively to illustrate the use of read.cross() in conjunction

with wgaim the same data is available as a raw CSV file from the extdata directory of

the package A subset of the data from the CSV file is given in Table 4.2. This reveals

that the CSV file is in the rotated CSV format (see read.cross() from the qtl package).

The genotypes are set as AA or BB and missing values are "-". The consecutive missing

values in the preview table are due to the combination of SSR and DaRT markers that

were scored for different genotypes in the population before constructing the map. An

appropriate call to read.cross() is

R> genoRxK <- read.cross("csvr", file="genoRxK.csv", genotypes=c("AA","BB"),

+ dir = wgpath, na.strings = c("-", "NA"))

R> class(raccas)
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Table 4.2: Rotated CSV format of genetic linkage map for the RAC875 × Kukri population

Genotype DH R001 DH R002 DH R003 DH R004 DH R005 DH R006

ksm0104a 1A 0.00 BB AA AA BB BB BB

wPt-2527 1A 3.93 BB AA AA BB BB BB

wPt-6564 1A 5.65 - - - - - -

cfa2153 1A 5.88 BB AA AA BB BB BB

wPt-7541 1A 6.79 - - - - - -

wPt-6709 1A 6.79 - - - - - -

gdm0033a 1A 8.05 BB AA AA BB BB BB

wPt-6179 1A 9.08 - - - - - -

wPt-8770 1A 9.08 BB AA AA BB - BB

[1] "bc" "cross"

The returned object inherits the class "bc" (short for ”back-cross”). If required, users can

convert to a "dh" class by directly applying it to the object using the function class().

For the purpose of analysis and discussion in this report the two class types are synony-

mous and so the "bc" class is retained.

It is important to understand the elements of the R/qtl object before proceeding. Looking

at the names of the object at the top level

R> names(genoRxK$geno)

[1] "geno" "pheno"

In an R/qtl object, the "pheno" element is used to store the genotype names as well as

hold other phenotypic information such as measured variables recorded for each genotype.

In wgaim only the genotype names are used from "pheno" to assist in the merging of

genotypic data with the external phenotypic data used to fit the base model described

above.

R> genoRxK$pheno[["Genotype"]][1:18]

[1] DH_R001 DH_R002 DH_R003 DH_R004 DH_R005 DH_R006 DH_R007 DH_R008 DH_R009

[10] DH_R010 DH_R011 DH_R012 DH_R013 DH_R014 DH_R015 DH_R016 DH_R017 DH_R018

A summary of the linkage map reveals there are 368 individuals genotyped with 500

markers spanning 21 linkage groups. Just over 10% of the marker scores are missing

R> summary(genoRxK)
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Backcross

No. individuals: 368

No. phenotypes: 1

Percent phenotyped: 100

No. chromosomes: 21

Autosomes: 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A

7B 7D

Total markers: 500

No. markers: 44 37 26 22 23 16 24 57 21 22 19 6 12 19 5 21 32 8 47 21

18

Percent genotyped: 89.5

Genotypes (%): AA:51.1 AB:48.9

Looking inside the "cross" object you will see the following

R> names(genoRxK$geno)

[1] "1A" "1B" "1D" "2A" "2B" "2D" "3A" "3B" "3D" "4A" "4B" "4D" "5A" "5B" "5D"

[16] "6A" "6B" "6D" "7A" "7B" "7D"

The genetic marker information is a named list format with the appropriate name for

each linkage group. Looking deeper into the genetic object we see

R> names(genoRxK$geno$"3D")

[1] "data" "map"

For each linkage group, "data" contains the actual marker data matrix, converted into

R/qtl format (AA = 1, BB = 2, missing values = NA). Marker names are placed as

the column names. The rows of the data are in order of the genotype names found in

genoRxK$pheno[["Genotype"]].

R> genoRxK$geno$"3D"$data[200:208,1:8]

wPt-2464 cfd0079 cfd0064 cfd0034 wmc0533 wPt-6262 wPt-7894 barc0042

[1,] 2 2 1 1 1 NA NA 1

[2,] 1 1 1 1 1 1 1 1

[3,] 1 1 1 1 1 1 NA 1

[4,] 1 1 1 1 1 2 2 2

[5,] 2 2 1 1 1 1 1 1
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[6,] 2 2 2 2 2 1 1 1

[7,] 2 1 1 1 1 NA NA 1

[8,] 2 2 2 2 2 2 2 2

[9,] 1 1 2 2 1 NA NA 1

The "map" element contains the map distances that may be either estimated using the

Lander-Green hidden Markov algorithm (Lander & Green, 1987), or in this case, read in

during the read.cross() process.

R> genoRxK$geno$"3D"$map

wPt-2464 cfd0079 cfd0064 cfd0034 wmc0533 wPt-6262 wPt-7894

0.000000 7.070536 53.420205 61.537557 70.659111 87.517197 94.406998

barc0042 gwm0664 gwm0383b gwm0314b cfd0223b barc0071 gwm0114a

108.448240 112.265676 116.367546 126.091701 134.965640 179.005013 181.480204

wPt-5506 gwm0858 wPt-7241 wPt-2923 wPt-3412 barc0284 wPt-0485

181.480205 181.840812 182.607135 182.607135 182.607136 183.997849 186.021461

The first marker of the linkage group is always set to zero.

Following Step 3 we now convert the "cross" object to an "interval" object. In doing

so missing marker scores are imputed using the rules of Martinez & Curnow (1992) and

consensus markers are created for co-located marker sets using the rules described in Table

3.1.

R> genoRxK <- cross2int(genoRxK, missgeno = "Mart", id = "Genotype",

+ rem.mark = TRUE)

R> class(genoRxK)

[1] "bc" "cross" "interval"

For this linkage map, a series of warning messages are outputted to the screen (omitted

here) due to several lines containing a complete set of missing values for a linkage group.

The missing values are replaced with zeros to ensure a complete linkage map (i.e. no

missing values) is constructed. The classes of genoRxK and their ordering is retained and

it now also inherits the class "interval" for use with functions in wgaim.

For a specific linkage group in the "interval" object, there are now additional compo-

nents

R> names(genoRxK$geno$"3D")
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[1] "data" "map" "dist" "theta" "imputed.data"

[6] "intval"

Thus for each linkage group, "data" and "map" are as before with the exception they now

contain reduced sets of markers from omitting co-located markers. Markers proceeded by

a ”(C)” are now consensus markers

R> genoRxK$geno$"3D"$map

wPt-2464 cfd0079 cfd0064 cfd0034 wmc0533 wPt-6262

0.000000 7.070536 53.420205 61.537557 70.659111 87.517197

wPt-7894 barc0042 gwm0664 gwm0383b gwm0314b cfd0223b

94.406998 108.448240 112.265676 116.367546 126.091701 134.965640

barc0071 gwm0114a(C) gwm0858 wPt-7241(C) barc0284 wPt-0485

179.005013 181.480204 181.840812 182.607135 183.997849 186.021461

The additional components, "dist" contain the interval distances and "theta" are the

recombination fractions between adjacent markers based on "dist". "imputed.data"

contains the marker data with all missing values imputed

R> genoRxK$geno$"3D"$imputed.data[200:208,1:8]

wPt-2464 cfd0079 cfd0064 cfd0034 wmc0533 wPt-6262 wPt-7894 barc0042

DH_R200 -1 -1 1 1 1 0.9333879 0.9370112 1

DH_R201 1 1 1 1 1 1.0000000 1.0000000 1

DH_R202 1 1 1 1 1 1.0000000 0.9809907 1

DH_R203 1 1 1 1 1 -1.0000000 -1.0000000 -1

DH_R204 -1 -1 1 1 1 1.0000000 1.0000000 1

DH_R205 -1 -1 -1 -1 -1 1.0000000 1.0000000 1

DH_R206 -1 1 1 1 1 0.9333879 0.9370112 1

DH_R207 -1 -1 -1 -1 -1 -1.0000000 -1.0000000 -1

DH_R208 1 1 -1 -1 1 0.9333879 0.9370112 1

and "intval" contains the interval data based on the mid-point pseudo-interval calcula-

tion of Verbyla et al. (2007) and defined as ME in section 2.1.

R> genoRxK$geno$"3D"$intval[200:208,1:6]

cfd0079 cfd0064 cfd0034 wmc0533 wPt-6262 wPt-7894

DH_R200 -0.9983369 0.0000000 0.9978094 0.9972358 0.9576392 0.9337226

DH_R201 0.9983369 0.9340516 0.9978094 0.9972358 0.9906333 0.9984207

DH_R202 0.9983369 0.9340516 0.9978094 0.9972358 0.9906333 0.9889310

DH_R203 0.9983369 0.9340516 0.9978094 0.9972358 0.0000000 -0.9984207

DH_R204 -0.9983369 0.0000000 0.9978094 0.9972358 0.9906333 0.9984207

25



4 Package Examples

DH_R205 -0.9983369 -0.9340516 -0.9978094 -0.9972358 0.0000000 0.9984207

DH_R206 0.0000000 0.9340516 0.9978094 0.9972358 0.9576392 0.9337226

DH_R207 -0.9983369 -0.9340516 -0.9978094 -0.9972358 -0.9906333 -0.9984207

DH_R208 0.9983369 0.0000000 -0.9978094 0.0000000 0.9576392 0.9337226

4.1.3 QTL analysis and summary

We have now have all the appropriate components of data to perform our wgaim QTL

analysis in Step 4. For this analysis we will use the calculated genetic intervals or

"intval" components of each linkage group and perform a fixed effects analysis, selecting

QTL using interval statistics only. It is worthwhile understanding how wgaim.asreml()

operates by breaking out of the forward selection algorithm after the first random effects

interval model fit using the breakout argument

R> rkyld.qtl0 <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK,

+ merge.by = "Genotype", trace = TRUE, na.method.X = "include",

+ gen.type = "interval", method = "fixed", selection = "interval",

+ breakout = 1, exclusion.window = 0)

In the initial hidden parts of this computation the phenotypic and genotypic interval

data components are merged using the merge.by argument. For high dimensional genetic

data a transformation is performed using section 2.3.2 and the details of Verbyla et al.

(2012). This first model fit is then equivalent to (2.5) where all the intervals are included

simultaneously into the linear mixed model with the extra term ZgMEa. The BLUPs

of the interval QTL effects are then recovered and the outlier statistics are formed to

choose the first QTL. Both of these are returned with the object and can be found under

rkyld.qtl1$QTL$diag. Figure 4.2 shows the scaled random interval QTL effects and the

interval outlier statistics from the model from using the out.stat() function

R> out.stat(rkyld.qtl1, genoRxK, iter = 1, stat= "blups")

R> out.stat(rkyld.qtl1, genoRxK, iter = 1, stat= "os")

The plots highlight the linkage groups with separate colours and show the causal rela-

tionships the intervals have with yield. The first QTL, on chromosome 3B, that will be

selected is also highlighted. A summary of the variance parameters of the model at this

stage can be found using

R> asreml:::summary.asreml(rkyld.qtl1)$varcomp

gamma component std.error z.ratio constraint

ints!grp("ints").var 49.45607404 2.642258814 0.624502193 4.2309840 Positive

Genotype!Genotype.var 1.06306579 0.056795753 0.009362024 6.0666101 Positive

Rep!Rep.var 0.05987626 0.003198972 0.005172746 0.6184281 Positive

Range!Range.var 0.29750605 0.015894670 0.006964489 2.2822450 Positive
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Figure 4.2: Scaled BLUPs of the interval QTL effects (TOP) and interval outlier statistics

across the complete linkage map after the first model fit (BOTTOM).

R!variance 1.00000000 0.053426376 0.005133952 10.4064809 Positive

R!Range.cor 0.15120605 0.151206051 0.068950181 2.1929754 Unconstrained

R!Row.cor 0.29683957 0.296839574 0.066471843 4.4656438 Unconstrained

Comparing this to the variance parameter summary for rkyld.asf in section 4.1.1 an

approximate percentage variance accounted for by the markers can be calculated as

100*(0.16553 - 0.0568)/0.16533 = 65.6%. This shortfall is not unusual for traits such

as yield as they are known to be genetically complex.

Returning to the analysis the breakout argument is omitted from the wgaim.asreml()

call (setting it back to default of -1) and the algorithm therefore continues until it halts.

R> rkyld.qtl1 <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK,

+ merge.by = "Genotype", trace = TRUE, na.method.X = "include",

+ gen.type = "interval", method = "fixed", selection = "interval",

+ exclusion.window = 0)

By default, the tracing argument is trace = TRUE which produces an annotated version

of the asreml models fitted throughout the forward selection algorithm. This output has

been omitted for brevity. After the analysis is complete the QTL can be diagnostically

checked and summarised using any of the method functions available in Step 5. In

this example the summary of the resulting QTL is found using the method function

summary.wgaim(), namely
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R> summary(rkyld.qtl1, genoRxK, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM) Size Pvalue % Var

1 1D wPt-1799 128.29 wPt-1263 166.85 -0.093 0.000 1.7

2 2A wmc0296 84.77 wPt-7306 86.58 -0.205 0.003 8.4

3 2A barc0220(C) 87.47 cfa2263 87.76 0.267 0.000 14.2

4 2B wPt-9644 25.24 wPt-5672 29.97 -0.098 0.000 1.9

5 2B wPt-3378 135.93 wPt-7360 136.11 -0.075 0.000 1.1

6 3B wPt-7984 6.65 barc0075 7 0.073 0.000 1.0

7 3B wmc0043 68.14 wPt-6973(C) 79.41 0.095 0.000 1.8

8 3B wPt-8021 244.67 gwm0114b 256.42 -0.355 0.000 25.1

9 3B gwm0114b 256.42 wPt-8845 265.8 0.181 0.000 6.5

10 3D cfd0064 53.42 cfd0034 61.54 0.105 0.000 2.2

11 4D gwm0297b 0 wmc0457 6.56 -0.195 0.006 7.6

12 4D wmc0457 6.56 barc0288 7.32 0.293 0.000 17.2

13 7B wPt-9925 93.88 wPt-5343 108.17 -0.063 0.003 0.8

The output for each QTL is summarised with the linkage group, the name and location of

the flanking markers on the linkage group and the size of the QTL effect. The significance

of the QTL effects are determined using the formula of section 2.4.1 and the percentage

contribution to the overall genetic variance is calculated using section 2.4.3. Although

Verbyla et al. (2007) recommends the use of p-values as the overall test of significance for

each of the QTL, the argument LOD = TRUE can be given to summary.wgaim() if LOD

scores are necessary. The analysis reveals 13 significant QTL across seven linkage groups.

The summary also shows linkage groups 2A, 3B and 4D appear to have linked QTL in

repulsion. Keen observers will realise the overall genetic contribution of the QTL is 89.5%

which exceeds the original estimate of 65.6%. As section 3 indicates, this is most likely

due to biased estimation of the individual genetic contributions of the tightly linked QTL.

This phenomenon will be explored further in the next example.

4.2 Sunco x Tasman data

This example stresses the importance of modelling extraneous variation to a ensure a more

appropriate QTL analysis. It is also used to highlight the diagnostic and visual features

of wgaim. The Sunco x Tasman data sets consist of phenotypic milling trial data as well

as a genetic linkage map involving a doubled haploid population formed from the crossing

of wheat varieties Sunco x Tasman. The aim of the experiment was to determine genetic

markers that may be linked to milling yield.

The phenotypic data can be accessed using

R> data(phenoSxT, package = "wgaim")
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The data relates to a two phase experiment involving 175 DH lines of Sunco x Tasman,

2 parents and 6 commercial lines. The first phase of the experiment was a field trial

conducted in the year 2000 consisting of 31 rows and 12 columns. DH lines were then

allocated to plots in this spatial array using a randomized complete block design with

2 Blocks. Additional plots were filled with the parents and commercial lines. A second

phase milling experiment was then carried out where 23% of the field plots were replicated

to produce a total of 456 milling samples. These partially replicated field samples were

then randomly allocated to 38 mill days with 12 milling samples per day. The focus is on

the trait milling yield.

The data frame consists of 456 rows with 12 columns

R> names(phenoSxT)

[1] "Expt" "Type" "id" "Range" "Row" "Rep" "Millday"

[8] "Millord" "myield" "lord" "lrow"

In this example “Type” is a 9 level factor distinguishing the DH, parents and commercial

lines. The “id” columns is a 183 level factor containing a unique identification of the

175 DH line and 8 other wheat varieties. The original field Row and Range (Column)

have been kept and are numeric factors of 31 and 12 levels respectively. “Rep” represents

the two level Blocking structure from the field. Similarly, “Millday” and “Millord” are

numeric factors of 38 and 12 levels respectively arising from the milling design. “myield”

is a quantitative variable capturing the milling yield of each of the samples. The final two

variables are centred quantitative equivalents of the factors Row and Millord.

4.2.1 Base model

It is important to understand the hierarchical structure of data arising from a two phase

experiment prior to statistical modelling. Smith et al. (2006) provides and excellent initial

reference and in particular the ANOVA table of a hypothetical milling experiment in Table

5 of this article shows terms appropriate for inclusion in an initial model. Using this table

as a guide an appropriate initial model would be

R> st.fmI <- asreml(myield ~ Type, random = ~ id + Rep + Range:Row +

+ Millday, rcov = ~ Millday:ar1(Millord), data = phenoSxT)

Due to the natural hierarchy existing in the data, diagnostically, there are several com-

ponents of this model that need checking. The (milling) residuals of the model can be

checked with
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Figure 4.3: Milling residuals from initial model of Sunco x Tasman milling experiment

R> xyplot(resid(st.fmI) ~ as.numeric(Millord) | Millday, data =

+ phenoSxT, type = "b")

and are given in Figure 4.3. The plot suggest there may be a slight downward trend

in milling yield across the order of milling samples each day. In a similar manner the

field residuals can also be plotted by extracting the random effect coefficients from the

"Range:Row" term of the model.

R> field.resid <- coef(st.fmI, pattern = "Range:Row")

R> rrd <- data.frame(field.resid = field.resid,

+ Range = factor(rep(1:12, each = 31)), Row = factor(rep(1:31,12)))

R> xyplot(field.resid ~ Row | Range, data = rrd, type = "b", layout = c(6,2))

Figure 4.4 shows the field residuals across Rows for given Ranges and indicates there is

slight donward trend in milling yield across the Rows of the field.

To compensate for these trends a linear row (”lrow”) and linear order (”lord”) terms are

fitted as fixed effects in the asreml model. Thus the full base asreml model is of the form

R> st.fmF <- asreml(myield ~ Type + lord + lrow, random = ~ id + Rep +

+ Range:Row + Millday, rcov = ~ Millday:ar1(Millord), data = phenoSxT)

R> summary(st.fmF)$varcomp

gamma component std.error z.ratio constraint

id 7.0925458 1.92573995 0.23965934 8.0353220 Positive

Rep 0.2843737 0.07721201 0.15604795 0.4947967 Positive

Range:Row 1.4973306 0.40654927 0.06206771 6.5500926 Positive
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Figure 4.4: Field residuals from initial model of Sunco x Tasman milling experiment

Millday 1.7795039 0.48316385 0.15646257 3.0880476 Positive

R!variance 1.0000000 0.27151604 0.08035809 3.3788264 Positive

R!Millord.cor 0.7109431 0.71094307 0.12682697 5.6056142 Unconstrained

The summary reveals a large genetic variance component. For comparison a NULL model

(no extraneous effects) is also fitted.

R> st.fmN <- asreml(myield ~ 1, random = ~ id, data = phenoSxT,

+ na.method.X = "include")

4.2.2 Linkage map

The genetic linkage map for the Sunco x Tasman population can be loaded using either

of the first two following commands

R> genoSxT <- data(genoSxT, package = "wgaim")

R> genoSxT <- read.cross("csv", file="genoSxT.csv", genotypes=c("AA","BB"),

+ dir = wgpath, na.strings = c("-", "NA"))

R> nmar(genoSxT)

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

9 16 15 13 12 22 12 16 13 19 13 8 18 17 8 5 16 6 31 13 5

The map consists of 190 individuals that have been genotyped with 287 markers. After

some exploration of the linkage map there appears to be some individuals that have less

than half of their markers scored. The individuals do not feature in the phenotypic data

set and therefore can be safely discarded.

R> nt <- ntyped(genoSxT, "ind")

R> nt[nt < 120]
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186 187 188 189 190 191 192 194 195 196

75 73 72 64 71 74 67 112 110 108

R> genoSxT <- subset(genoSxT, ind = 1:180)

R> genoSxT <- cross2int(genoSxT, missgeno="Mart", id = "id" rem.mark = FALSE)

After omitting the non-essential lines the linkage map is converted from a "cross" object

to an "interval" object. The original map did not contain co-located markers

It is possible to view the genetic map using link.map() in various ways. The function

allows sub-setting according to distance (cM) and/or chromosome. Figure 4.5 shows two

maps with the top one representing the all 21 linkage groups with no subsetting. The

bottom map is subsetted by using the "chr.dist" argument which takes either or both

start and end elements. These elements can have a single distance (cM) or a vector of

distances matching the number of chromosomes from "chr".

R> link.map(genoSxT, chr = names(nmar(genoSxT)), m.cex = 0.5)

R> link.map(genoSxT, names(nmar(genoSxT)[1:20]), m.cex = 0.5,

+ chr.dist = list(start = 25, end = 180), marker.names = "dist")

For larger maps a more aesthetic plot is reached by adjusting the marker character ex-

pansion (m.cex) parameter and increasing the plotting window width manually.

4.2.3 QTL analysis and diagnostics

A QTL analysis is now performed for the full model st.fmF and the null model st.fmN.

This time we pipe the non-essential output to a text file using a file name for the argument

trace. After doing this, only individual QTL found are annotated to the screen (omitted

here).

R> st.qtlN <- wgaim(st.fmN, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "interval", method = "fixed",

+ selection = "interval", trace = "nullmodel.txt",

+ exclusion.window = 0)

R> st.qtlF <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "interval", method = "fixed",

+ selection = "interval", trace = "fullmodel.txt",

+ exclusion.window = 0)

In a similar fashion to the last example, the process of selecting QTL is determined from

the outlier statistics. These are saved, along with the BLUP interval effects, for each

iteration and can be viewed using the out.stat() command. For the first two iterations

of the process the BLUP interval effects and interval outliers statistics are given in Figure
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4.6 are produced with

R> out.stat(st.qtlF, genoSxT, int = TRUE, iter = 1:2, cex = 0.6, stat = "os")

R> out.stat(st.qtlF, genoSxT, int = TRUE, iter = 1:2, cex = 0.6, stat = "blups")

The plots show the causal links between the interval QTL and milling yield. For larger or

denser linkage maps there is also an additional argument that allows the user to subset the

map to specific chromosomes which is only available when int = TRUE. (Figure omitted).

For this example, the plots highlight the large QTL existing on 2B and 6B and also show

the wide QTL existing on 1B.

R> out.stat(st.qtlF, genoSxT, int = TRUE, iter = 1:5, cex = 0.6,

+ chr = c("2B","4B","6B","7D"))

From a statistical standpoint the QTL selected across the genome cannot be expected to

be orthogonal. Thus the introduction of the next QTL in the forward selection process

will inevitably affect the significance of the previously selected QTL. A post diagnostic

evaluation of the QTL p-values in the forward selection process can be displayed using

R> tr(st.qtlF, iter = 1:10, digits = 3)

Incremental QTL P-value Matrix.

===============================

2B.5 6B.5 7D.2 4B.1 1B.13 4D.1 5A.13 2A.7 3D.5 1B.4

Iter.1 <0.001

Iter.2 <0.001 <0.001

Iter.3 <0.001 <0.001 <0.001

Iter.4 <0.001 <0.001 <0.001 <0.001

Iter.5 <0.001 <0.001 <0.001 <0.001 0.001

Iter.6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.7 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006

Iter.9 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.012

Iter.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 0.009 0.013

Likelihood Ratio Test of QTL Variance Component.

===========================================

L0 L1 Statistic Pvalue

Iter.1 -309.563 -251.036 117.054 <0.001

Iter.2 -279.819 -243.841 71.955 <0.001

Iter.3 -269.714 -239.729 59.97 <0.001

Iter.4 -262.115 -236.919 50.392 <0.001

Iter.5 -247.277 -233.758 27.038 <0.001

Iter.6 -241.707 -230.061 23.293 <0.001
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Iter.7 -236.851 -226.46 20.782 <0.001

Iter.8 -226.72 -222.799 7.842 0.003

Iter.9 -223.931 -221.89 4.081 0.022

Iter.10 -223.504 -221.524 3.96 0.023

Iter.11 -223.045 -221.349 3.391 0.033

Iter.12 -223.089 -221.038 4.102 0.021

Iter.13 -223.033 -221.352 3.363 0.033

Iter.14 -223.089 -221.659 2.86 0.045

Iter.15 -222.718 -221.791 1.854 0.087

The first of these displays shows the p-values of the selected QTL for the first ten iterations

occurring in the WGAIM process. An example of the dynamic changes in significance can

be seen for the selected QTL interval 2A.7. The second display presents the likelihood

ratio tests, −2 log Λ, for the significance of the QTL variance parameter, γa, in (2.5), with

the inclusion of the last hypothesis test where the null model is retained. Both of these

diagnostics are useful in determining the strength of the putative QTL entering the fixed

model and the effects it has on QTL already selected.

4.2.4 Visualising your QTL results

Similar to the previous example, full summaries are available through the summary.wgaim()

command. From an interval analysis complete information on each QTL is provided in-

cluding names and distances of the flanking markers as well size, signficance and the

contribution of the QTL to the overall genetic variance.

R> summary(st.qtlF, gneoSxT, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM) Size Pvalue % Var

1 1B Glu.B3 11.02 P34.M51.286 13.71 0.196 0.003 1.4

2 1B gwm11 90.88 gwm140 239.51 -0.812 0.000 23.4

3 2A wmc198 29.67 wmc170 40.92 -0.225 0.002 1.8

4 2B wmc474USQ 54.76 wmc35a 59.59 0.840 0.000 25.1

5 3D TeloPAGG2 54.99 TeloPAGG1 61.22 -0.215 0.002 1.6

6 4A germin 10.32 cdo795 11.39 0.153 0.021 0.8

7 4B barc193 0 csME1 11.98 -0.445 0.000 7.0

8 4D Rht2.mut 0 csME2 1.84 0.309 0.000 3.4

9 5A wmc159 63.07 gwm617b 69.53 -0.181 0.025 1.2

10 5A PAACTelo2 95.11 P46.M37.4 102.08 -0.273 0.001 2.6

11 5D cfd81 40.14 cdo57a 50.35 -0.145 0.029 0.7

12 6B cdo507 8.92 barc354 9.45 -0.644 0.000 14.7

13 6B barc24 21.58 barc178 25.68 0.252 0.009 2.3

14 7D gwm437 86.55 wmc94 93.99 0.305 0.000 3.3
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The summary shows some large milling yield QTL have been found on several chromo-

somes. Of particular note is the large QTL on 6B in a very small interval of 0.5cM. In

contrast, a large QTL was found on chromosome 1B in a 100+cM interval. There are also

tightly linked QTL found on 6B. These QTL wll be explored in more detail in section

4.2.6. The summary produces a data.frame of results that can be easily exported to

a spreadsheet program if desired. For multiple tables a simple table binding function

is provided which stacks the QTL tables making it instantly useful for exporting with

programs such as the the LaTeX table package xtable. (table omitted here.)

R> qtlTable(st.qtlF, st.qtlN, intervalObj = genoSxT, labels = c("Full",

+ "Null"), columns = 1:8)

The full and the NULL QTL models can be summarised visually using link.map(). In

this case it calls the method link.map.wgaim() to plot the QTL on the genetic map.

R> link.map(st.qtlF, genoSxT, marker.names = "dist", cex = 0.6,

+ trait.labels = "Full")

Multiple models or traits can be handled through link.map.default(). For example,

Figure 4.7 is produced with

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"))

The multiple QTL map reveals that an extra six QTL were detected in the full model

compared to the null model, highlighting the importance of modelling extraneous variation

appropriately in QTL analyses.

The QTL plotting procedures link.map.wgaim() and link.map.default() are highly

customisable. Through an argument list.col it allows the user to specify the QTL

colour between markers, the colour of the flanking QTL marker names, the colour of the

trait names and the rest of the marker names. If no colours are chosen q.col and t.col

defaults to rainbow(n) where n is the number of traits. You can also change the size of

the marker and trait name text with the argument list.cex.

Some customized examples are given below for the Full and Null QTL models for the

Sunco x Tasman data and can be seen in Figure 4.8. These have been produced using

the following criteria; change the colour of the QTL regions and the names and setting

the background marker text grey.

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col = c("skyblue3",

+ "salmon2"), m.col = "red", t.col = c("skyblue3", "salmon2")), col = "gray")
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A monochromatic plot with increased sizes for the trait labels.

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col =

+ rep(gray(0.8), 2), m.col = "black", t.col = "black"),

+ list.cex = list(t.cex = 0.8), col = "gray")

4.2.5 Marker analysis

The summary of the interval QTL analysis for the full model shows a putative QTL in a

very large interval on 1B. It may then be of interest to perform a marker analysis to see

if this QTL is more closely linked to either of the flanking markers. This can be done by

simply changing the gen.type argument in the call

R> st.qtlFM <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "marker", method = "fixed",

+ selection = "interval", trace = "fullmodel.txt", exclsuion.window = 0)

The wgaim model can be summarised in the usual way.

R> summary(st.qtlFM, genoSxT, LOD = TRUE)

Chromosome Marker dist(cM) Size Pvalue % Var LOD

1 1B P34.M51.286 13.71 0.203 0.002 1.1 2.135

2 1B cdo473 85.79 -0.304 0.000 2.4 4.414

3 1B ksuI27a 247.32 -0.230 0.000 1.4 3.097

4 2A wmc198 29.67 -0.180 0.008 0.8 1.504

5 2B wmc474USQ 54.76 0.774 0.000 15.6 26.492

6 3D TeloPAGG2 54.99 -0.190 0.004 0.9 1.785

7 4A germin 10.32 0.176 0.007 0.8 1.584

8 4B csME1 11.98 -0.411 0.000 4.4 7.274

9 4D Rht2.mut 0 0.287 0.000 2.1 4.652

10 5A P46.M37.4 102.08 -0.334 0.000 2.9 5.435

11 6B barc354 9.45 -1.244 0.000 40.4 4.472

12 6B gwm361 10.51 0.810 0.003 17.1 1.897

13 7D wmc94 93.99 0.289 0.000 2.2 4.672

For marker QTL analysis the summary output is identical to the output of the interval

QTL analysis with the exception that only the closest linked marker name and location

is given for each QTL. The summary shows the large QTL found on 1B in the interval

analysis has been reduced to two small QTL linked to the flanking markers. This indicates

there is most likely large QTL existing in the wide interval. The summary also shows a

large QTL on 2B in exactly the same region as the QTL found using interval analysis.
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The marker analysis also found 2 QTL on 6B in close proximity that soak up a sizeable

portion of the genetic variation.

The outlier statistics for this analysis are at the marker positions and can also be plotted

using out.stat. The marker outlier statistics for the first first five iterations can be seen

in Figure 4.9

R> out.stat(st.qtlFM, genoSxT, int = TRUE, iter = 1:5, cex = 0.6)

Fitting the Null model in a similar manner.

R> st.qtlNM <- wgaim(st.fmN, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "marker", method = "fixed",

+ selection = "interval", trace = "nullmodel.txt", exclusion.window = 0)

Similar to the interval analysis, the results from the Full model and the Null model can

be plotted on the linkage map and is given in Figure 4.10. The QTL are now highlighted

with plotting symbols that can be altered with the usual arguments, pch and cex.

R> link.map.default(list(st.qtlFM, st.qtlNM), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col = c("red",

+ "light blue"), m.col = "red", t.col = c("red", "light blue")),

+ list.cex = list(t.cex = 0.9, m.cex = 0.7), col = "black",

+ cex = 2, pch = 16)

Again, the plot reveals that the Null model discovered less QTL than the Full model.

4.2.6 Exclusion window

Both the interval analysis and the marker analysis of the full model indicate there were

two tightly linked QTL in repulsion selected on chromosome 6B. Checking the scaled

BLUPs from the interval analysis the reason for the selections are revealed.

R> out.stat(st.qtlF, genoSxT, iter = c(2,3,11), cex = 0.6,

+ chr = c("6B","7D"), stat = "blups")

After the selection of the first QTL on 6B in iteration 2 and its subsequent fixed effects

estimation, the BLUPs in the proximity of the chosen QTL appear to change sign from

negative to positive. This is not unusual and indicates that the first QTL was hiding

another tightly linked QTL of opposite effect. This QTL is eventually chosen in iteration

11 of the algorithm. Unfortunately very tightly linked QTL have minimal recombination

between them, indicating that the selection of the second QTL is heavily based on the

phenotypic information stemming from the small number of lines that have recombined
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Figure 4.11: Scaled BLUPs of the interval QTL effects for iterations 2, 3 and 11 for the QTL

analysis involving the full model.

between the QTL. Consequently, the dubiousness in selecting the second QTL increases as

the QTL are more tightly linked. This can be alleviated by choosing an exclusion window

around the region of the first selected QTL. In the next analysis an exclusion window of

20cM is added and the method = "random" formulation will be used

R> st.qtlFR <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "interval", method = "random",

+ selection = "interval", trace = "fullmodel.txt", exclusion.window = 20)

Its summary is then

R> summary(st.qtlFR, genoSxT, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM) Size Prob % Var

1 1B Glu.B3 11.02 P34.M51.286 13.71 0.159 0.003 1.5

2 1B gwm11 90.88 gwm140 239.51 -0.743 0.000 5.8

3 2A wmc198 29.67 wmc170 40.92 -0.182 0.003 1.8

4 2B wmc474USQ 54.76 wmc35a 59.59 0.809 0.000 34.5

5 3D TeloPAGG2 54.99 TeloPAGG1 61.22 -0.158 0.005 1.4

6 4A germin 10.32 cdo795 11.39 0.138 0.008 1.2

7 4B barc193 0 csME1 11.98 -0.436 0.000 9.4

8 4D Rht2.mut 0 csME2 1.84 0.285 0.000 4.6
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9 5A PAACTelo2 95.11 P46.M37.4 102.08 -0.323 0.000 5.4

10 6B cdo507 8.92 barc354 9.45 -0.444 0.000 11.0

11 7D gwm437 86.55 wmc94 93.99 0.285 0.000 4.3

The random QTL interval analysis summary output is identical to the fixed QTL interval

summary output with the exception of the significance of the QTL. From section 2.4.2 the

significance or strength of QTL are now determined by a probability statement. Values

displayed here then measure the probability that a QTL is actually zero and allow an

interpretation similar to a p-value. In comparison to the interval QTL analysis, this

summary indicates only one QTL was selected on chromosome 6B and three less QTL

were found in total. However, all QTL found from the interval random effects analysis

were shared with the interval fixed effects analysis.
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