
Package widals

Dave Zes

March 2, 2014

1 Intro: What the Heck Is “WIDALS”?

WIDALS stands for weighting by inverse distance with adaptive least squares. WIDALS is an

algorithm that can be used to predict space-time data where sensors have fixed location, and the

time intervals are (about) equal. The WIDALS algorithm is — comparatively — very fast, meaning

that it is well suited for very large data sets, e.g., the number of time points is in the hundreds or

thousands, and the number of spacial locations is in the thousands or even tens-of-thousands.

The algorithm, in essence, is brutishly simple. An initial adaptive least squares (ALS) stage fits

inputs (covariates) to the observations (data). The second stage attempts to improve prediction

quality by summing to the ALS predictions a “stochastic adjustment” calculated from spacial cor-

relation present in the ALS residuals.

WIDALS is fairly easy to fit, very robust, and has the side-effect, because of the adaptive least

squares (ALS) stage, of offering the user a sense of how strongly inputs (the user supplied covariates)

contribute to the observations.

The bad news is that WIDALS is purely pragmatic. Almost no theory exists describing properties

of the WIDALS predictors — what we mean by this is that given data that arose from the sort of

generative system commonly regarded as sufficiently flexible to describe phenomenon of interest,

like, say, air pollution, little if nothing is known about the theoretical properties of WIDALS’s

predictions. That said, the silver lining is that if we are in fact handling a massive data set, we

can use its size to our advantage. We can, for example, use empiric techniques, such as resampling,

to get a sense of how well WIDALS is performing.

The most remarkable feature of WIDALS, though, is its tiny hyperparameter space. A full model

can be fit with a mere 5 non-negative values (2 ALS, 3 weighting). This implies something more:

1

multiple ALS stages can be run, either in parallel or in series, or in some combination, akin to

path-model solutions. This extensibility is not explored in the R documentation per se, but we will

give it a try here in these vignettes.

Finally, before diving in, the user should be cautioned that while, given hyperparameters, this

package makes it very easy to interpolate (predict to unmonitored locations), providing means

of locating these hyperparameters, i.e., fitting, brings some coding complexities. In this package,

we fit WIDALS using (metaheuristic) stochastic search using MSS.snow(). This function creates

functions using fun.load(). Both call upon variables out-of-scope. This property may madden

a CS “best-practices” user, but by abiding certain cautions, potential mis-assignments are easily

avoided.

For any given R session, only work with widals.

Prior to fitting with MSS.snow(), make sure all these values are correctly assigned (and living in

the Global Environment):

Z — should always be the data matrix of supporting sites.

Z.na — if used, should always be a boolean matrix indicating missing locations in Z.

locs — should always be the spacial locations associated with Z.

Hs — should always be the spacial covariates associated with Z.

Ht — should always be the temporal covariates associated with Z.

Hst.ls — should always be the space-time covariates associated with Z.

These are additional arguments and should be correctly assigned prior to calling MSS.snow():

lags

b.lag

cv

xgeodesic

ltco

GP

run.parallel

stnd.d

train.rng

test.rng

2

2 ALS Examples

Let’s jump in and work with the included Californis Ozone [1] demonstration data set.

Important: It is intended that the User run through all the code in this Section and the next.

options(stringsAsFactors=FALSE)

k.cpus <- 2 #### set the number of cpus for snowfall

library(widals)

data(O3)

Z.all <- as.matrix(O3$Z)[366:730,]

locs.all <- O3$locs[, c(2,1)]

hsa.all <- O3$helevs

xdate <- rownames(Z.all)

tau <- nrow(Z.all)

n.all <- ncol(Z.all)

xgeodesic <- TRUE

Notice above that we use Z.all, locs.all, hsa.all, n.all, to hold our “full” data, locations,

spacial covariate, number of sites, respectively.

From these, we can make assignments to the objects needed to fit our ALS model:

Z <- Z.all

locs <- locs.all

n <- n.all

dateDate <- strptime(xdate, "%Y%m%d")

doy <- as.integer(format(dateDate, "%j"))

Ht <- cbind(sin(2*pi*doy/365), cos(2*pi*doy/365))

Hs.all <- matrix(1, nrow=n.all)

Hst.ls.all <- NULL

Hs <- Hs.all

Hst.ls <- Hst.ls.all

Ht.original <- Ht

##########################

rm.ndx <- create.rm.ndx.ls(n, 14)

b.lag <- 0

train.rng <- 30:tau

3

test.rng <- train.rng

GP <- c(1/10, 1)

k.glob <- 9

rho.upper.limit <- 100

rgr.lower.limit <- 10^(-7)

sds.mx <- seq(2, 0.01, length=k.glob) * matrix(1, k.glob, length(GP))

run.parallel <- TRUE

sfInit(TRUE, k.cpus)

FUN.source <- fun.load.hals.a

FUN.source()

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Let’s confirm the observation RMSE:

Z.als <- Hals.snow(1, Z = Z, Hs = Hs, Ht = Ht, Hst.ls = Hst.ls,

b.lag = b.lag, GP.mx = matrix(GP, 1, 2))

resids <- Z-Z.als

sqrt(mean(resids[test.rng,]^2))

Add site elevations to the spacial covariates:

Hs.all <- cbind(matrix(1, nrow=n.all), hsa.all)

Hs <- Hs.all

GP <- c(1/10, 1)

sfInit(TRUE, k.cpus)

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Add incident solar area (ISA) to the space-time covariates:

Hst.ls.all <- H.Earth.solar(locs[, 2], locs[, 1], dateDate)

Hst.ls <- Hst.ls.all

4

GP <- c(1/10, 1)

sfInit(TRUE, k.cpus)

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Add the ISA-elevation interaction to the space-time covariates:

Hst.ls.all2 <- list()

for(tt in 1:tau) {

Hst.ls.all2[[tt]] <- cbind(Hst.ls.all[[tt]], Hst.ls.all[[tt]]*hsa.all)

colnames(Hst.ls.all2[[tt]]) <- c("ISA", "ISAxElev")

}

Hst.ls <- Hst.ls.all2

GP <- c(1/10, 1)

sfInit(TRUE, k.cpus)

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Let’s look at the “effective prediction errors” for the ALS partial slopes:

Hals.ses(Z, Hs, Ht, Hst.ls, GP[1], GP[2], b.lag, test.rng)

Does standardizing the covariates help?:

Z <- Z.all

Hst.ls <- stnd.Hst.ls(Hst.ls.all2)$sHst.ls

Hs <- stnd.Hs(Hs.all)$sHs

Ht <- stnd.Ht(Ht, nrow(Hs))

GP <- c(1/10, 1)

sfInit(TRUE, k.cpus)

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

5

k.glob, k.loc.coef=7, X = NULL)

sfStop()

How about standardizing the response?:

z.mean <- mean(Z.all)

z.sd <- sd(as.vector(Z.all))

Z <- (Z.all - z.mean) / z.sd

GP <- c(1/10, 1)

sfInit(TRUE, k.cpus)

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

our.cost * z.sd

3 WIDALS Examples

Now, WIDALS.

We’ll start by fitting using cross-validation (the same rm.ndx list we’ve been using with ALS above).

This will take a few minutes.

Z <- Z.all

Hst.ls <- Hst.ls.all2

Hs <- Hs.all

Ht <- Ht.original

FUN.source <- fun.load.widals.a

d.alpha.lower.limit <- 0

GP <- c(1/1000, 1, 0.01, 3, 1)

cv <- 2

lags <- c(0)

b.lag <- 0

sds.mx <- seq(2, 0.01, length=k.glob) * matrix(1, k.glob, length(GP))

ltco <- -10

6

stnd.d <- TRUE

sfInit(TRUE, k.cpus)

FUN.source()

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Try a fast WIDALS fit using pseudo CV (set cv to −2, set b.lag to −1).

rm.ndx <- 1:n

Z <- Z.all

Hst.ls <- Hst.ls.all2

Hs <- Hs.all

Ht <- Ht.original

FUN.source <- fun.load.widals.a

d.alpha.lower.limit <- 0

GP <- c(1/1000, 1, 0.01, 3, 1)

cv <- -2

lags <- c(0)

b.lag <- -1

sds.mx <- seq(2, 0.01, length=k.glob) * matrix(1, k.glob, length(GP))

ltco <- -10

stnd.d <- TRUE

sfInit(TRUE, k.cpus)

FUN.source()

MSS.snow(FUN.source, NA, p.ndx.ls, f.d, sds.mx=sds.mx,

k.glob, k.loc.coef=7, X = NULL)

sfStop()

Hals.ses(Z, Hs, Ht, Hst.ls, GP[1], GP[2], b.lag, test.rng)

Plot interpolation:

Z <- Z.all

Hst.ls <- Hst.ls.all2

7

Hs <- Hs.all

Ht <- Ht.original

Hs0 <- cbind(matrix(1, length(O3$helevs0)), O3$helevs0)

Hst0isa.ls <- H.Earth.solar(O3$locs0[, 1], O3$locs0[, 2], dateDate)

Hst0.ls <- list()

for(tt in 1:tau) {

Hst0.ls[[tt]] <- cbind(Hst0isa.ls[[tt]], Hst0isa.ls[[tt]]*O3$helevs0)

colnames(Hst0.ls[[tt]]) <- c("ISA", "ISAxElev")

}

locs0 <- O3$locs0[, c(2,1)]

Z0.hat <- widals.predict(Z, Hs, Ht, Hst.ls, locs, lags, b.lag, Hs0, Hst0.ls,

locs0=locs0, geodesic=xgeodesic, wrap.around=NULL, GP, stnd.d, ltco)[10:tau,]

ydate <- xdate[10:tau]

#xcol.vec <- heat.colors(max(round(Z0.hat)))

#xcol.vec <- rev(rainbow(max(round(Z0.hat))))

xcol.vec <- rev(rainbow(630)[1:max(round(Z0.hat))])

xleg.vals <- round(seq(1, max(Z0.hat)-1, length=(5)) / 1) * 1

xleg.cols <- xcol.vec[xleg.vals+1]

for(tt in 1:nrow(Z0.hat)) {

plot(0, 0, xlim=c(-124.1, -113.9), ylim=c(32.5, 42), type="n", main=ydate[tt])

points(locs0[, c(2,1)], cex=Z0.hat[tt,] / 30) ## uncomment to see sites

this.zvec <- round(Z0.hat[tt,])

this.zvec[this.zvec < 1] <- 1

this.color <- xcol.vec[this.zvec]

points(locs0[, c(2,1)], cex=1.14, col=this.color, pch=19)

#points(locs[, c(2,1)], cex=Z[tt,] / 30, col="red")

legend(-116, 40, legend=rev(xleg.vals), fill=FALSE, col=rev(xleg.cols),

border=NA, bty="n", text.col=rev(xleg.cols))

Sys.sleep(0.1)

}

8

ydate <- xdate[10:tau]

tt <- 180

plot(0, 0, xlim=c(-124.1, -113.9), ylim=c(32.5, 42), type="n", main=ydate[tt],

xlab="", ylab="")

points(locs0[, c(2,1)], cex=Z0.hat[tt,] / 30) ## uncomment to see sites

this.zvec <- round(Z0.hat[tt,])

this.zvec[this.zvec < 1] <- 1

this.color <- xcol.vec[this.zvec]

points(locs0[, c(2,1)], cex=1.14, col=this.color, pch=19)

#points(locs[, c(2,1)], cex=Z[tt,] / 30, col="red")

legend(-116, 40, legend=rev(xleg.vals), fill=FALSE, col=rev(xleg.cols), border=NA,

bty="n", text.col=rev(xleg.cols))

−124 −122 −120 −118 −116 −114

34
36

38
40

42

20060708

●●
●●

●●
●●
●●
●●
●

●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●

●●
●●
●●
●●
●●
●●
●

●●

●●
●●
●●
●●
●●

●●
●●●●

249
187
125
63
1

9

References

[1] California Air Resources Board. California Air Resources Board DVD-ROM.

http://www.arb.ca.gov/aqd/aqdcd/aqdcd.htm, 2011. [Online; last accessed 2012-11-04].

10

	Intro: What the Heck Is ``WIDALS''?
	ALS Examples
	WIDALS Examples

