Extreme Gradient Boosting


[Up] [Top]

Documentation for package ‘xgboost’ version 0.4-4

Help Pages

agaricus.test Test part from Mushroom Data Set
agaricus.train Training part from Mushroom Data Set
getinfo Get information of an xgb.DMatrix object
getinfo-method Get information of an xgb.DMatrix object
nrow-method Number of xgb.DMatrix rows
predict-method Predict method for eXtreme Gradient Boosting model
predict-method Predict method for eXtreme Gradient Boosting model handle
setinfo Set information of an xgb.DMatrix object
setinfo-method Set information of an xgb.DMatrix object
slice Get a new DMatrix containing the specified rows of orginal xgb.DMatrix object
slice-method Get a new DMatrix containing the specified rows of orginal xgb.DMatrix object
xgb.cv Cross Validation
xgb.DMatrix Contruct xgb.DMatrix object
xgb.DMatrix.save Save xgb.DMatrix object to binary file
xgb.dump Save xgboost model to text file
xgb.importance Show importance of features in a model
xgb.load Load xgboost model from binary file
xgb.model.dt.tree Convert tree model dump to data.table
xgb.plot.importance Plot feature importance bar graph
xgb.plot.tree Plot a boosted tree model
xgb.save Save xgboost model to binary file
xgb.save.raw Save xgboost model to R's raw vector, user can call xgb.load to load the model back from raw vector
xgb.train eXtreme Gradient Boosting Training
xgboost eXtreme Gradient Boosting (Tree) library