
Canopy vignette

Yuchao Jiang
yuchaoj@upenn.edu

April 7, 2017

This is a demo for using the Canopy package in R. Canopy is a statistical framework and computational procedure
for identifying subpopulations within a tumor, determining the mutation profiles of each subpopulation, and infer-
ring the tumor’s phylogenetic history. The input to Canopy are variant allele frequencies of somatic single nucleotide
alterations (SNAs) along with allele-specific coverage ratios between the tumor and matched normal sample for so-
matic copy number alterations (CNAs). These quantities can be directly taken from the output of existing software.
Canopy provides a general mathematical framework for pooling data across samples and sites to infer the underlying
parameters. For SNAs that fall within CNA regions, Canopy infers their temporal ordering and resolves their phase.
When there are multiple evolutionary configurations consistent with the data, Canopy outputs all configurations
along with their confidence.

Below is an example on reconstructing tumor phylogeny of a transplantable metastasis model system derived from
a heterogeneous human breast cancer cell line MDA-MB-231. Cancer cells from the parental line MDA-MB-231 were
engrafted into mouse hosts leading to organ-specific metastasis. Mixed cell populations (MCPs) were in vivo selected
from either bone or lung metastasis and grew into phenotypically stable and metastatically competent cancer cell
lines. The parental line as well as the MCP sublines were whole-exome sequenced with somatic SNAs and CNAs
profiled. Canopy is used to infer metastatic phylogeny. Code for analysis of this dataset is broken down below with
explanations and is further available here.

Canopy’s webpage is here. Demo codes for Canopy under various settings/modes can be found here. Script
for dataset from the MDA231 study is attached below with step-by-step decomposition and explanation. Online
Q&A forum for Canopy is available here. If you’ve any questions regarding the software, you can also email us at
canopy phylogeny@googlegroups.com.

1. Installation

R package Canopy is availble from CRAN (https://CRAN.R-project.org/package=Canopy):

> install.packages('Canopy') # updated every 3-4 months

A devel version can be installed from GitHub ((https://github.com/yuchaojiang/Canopy):

> install.packages("devtools")

> library(devtools)

> install_github("yuchaojiang/Canopy/package") # STRONGLY recommended

1

mailto:yuchaoj@upenn.edu
https://github.com/yuchaojiang/Canopy/blob/master/demo_code/canopy_demo_MDA231.R
https://github.com/yuchaojiang/Canopy
https://github.com/yuchaojiang/Canopy/blob/master/demo_code
https://groups.google.com/d/forum/canopy_phylogeny
mailto:canopy_phylogeny@googlegroups.com
https://cran.r-project.org/web/packages/Canopy/index.html
https://github.com/yuchaojiang/Canopy

2. Canopy workflow

2.1 CNA and SNA input

The input to Canopy are variant allele frequencies of somatic SNAs along with allele-specific coverage ratios between
the tumor and matched normal sample for somatic CNAs. For SNAs, let the matrices R and X be, respectively,
the number of reads containing the mutant allele and the total number of reads for each locus across all samples.
The ratio R/X is the proportion of reads supporting the mutant allele, known as the variant allele frequency. For
CNAs, Canopy directly takes output from allele-specific copy number estimation softwares, such as FALCON-X or
Sequenza. These outputs are in the form of estimated major and minor copy number ratios, respectively denoted by
WM and Wm, with their corresponding standard errors εM and εm. Matrix Y specifies whether SNAs are affected
by CNAs; matrix C specifies whether CNA regions harbor specific CNAs (this input is only needed if overlapping
CNA events are observed).

How to generate CNA and SNA data input is futher discussed here. How to select informative SNA and CNA
input is discussed here.

Below is demo data input from project MDA231 (first case study in our paper).

> library(Canopy)

> data("MDA231")

> projectname = MDA231$projectname ## name of project

> R = MDA231$R; R ## mutant allele read depth (for SNAs)

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

BRAF 155 59 136 77 49

KRAS 44 21 54 19 17

ALPK2 37 17 28 10 7

RYR1 44 0 26 0 0

> X = MDA231$X; X ## total depth (for SNAs)

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

BRAF 157 111 177 146 71

KRAS 44 30 64 42 27

ALPK2 63 17 65 24 7

RYR1 107 56 165 55 43

> WM = MDA231$WM; WM ## observed major copy number (for CNA regions)

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

chr7 2.998 2.002 2.603 2.000 2.001

chr12 1.998 1.998 1.603 1.001 1.999

chr18 1.000 2.992 1.000 1.002 2.996

chr19 2.000 2.000 2.000 2.000 2.000

> Wm = MDA231$Wm; Wm ## observed minor copy number (for CNA regions)

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

chr7 0.002 0.998 0.397 1.000 0.999

chr12 0.002 0.998 0.397 1.000 0.999

chr18 1.000 0.004 1.000 0.999 0.002

chr19 1.000 1.000 1.000 1.000 1.000

2

https://CRAN.R-project.org/package=falconx
https://CRAN.R-project.org/package=sequenza
https://github.com/yuchaojiang/Canopy/blob/master/instruction/SNA_CNA_input.md
https://github.com/yuchaojiang/Canopy/blob/master/instruction/SNA_CNA_choice.md

> epsilonM = MDA231$epsilonM ## standard deviation of WM, pre-fixed here

> epsilonm = MDA231$epsilonm ## standard deviation of Wm, pre-fixed here

> ## Matrix C specifices whether CNA regions harbor specific CNAs

> ## only needed if overlapping CNAs are observed, specifying which CNAs overlap

> C = MDA231$C; C

chr7_1 chr7_2 chr12_1 chr12_2 chr18 chr19

chr7 1 1 0 0 0 0

chr12 0 0 1 1 0 0

chr18 0 0 0 0 1 0

chr19 0 0 0 0 0 1

> Y = MDA231$Y; Y ## whether SNAs are affected by CNAs

non-cna_region chr7 chr12 chr18 chr19

BRAF 0 1 0 0 0

KRAS 0 0 1 0 0

ALPK2 0 0 0 1 0

RYR1 0 0 0 0 1

2.2 Binomial clustering of SNAs

A multivariate binomial mixture clustering step can be applied to the SNAs before MCMC sampling. We show in our
paper via simulations that this pre-clustering method helps the Markov chain converge faster with smaller estimation
error (especially when mutations show clear cluster patterns by visualization). This clustering step can also remove
likely false positives before feeding the mutations to the MCMC algorithm.

Below is a toy example, where three bulk tumor samples were in silico simulated from a tree of 4 clones/leaves.
The 5 tree segments (excluding the leftmost branch, which corresponds to the normal clone) separate 200 mutations
into 5 mutation clusters. More detailed demo codes for clustering can be found here. Detailed methods can be found
in the supplements of our paper under section Binomial mixture clustering. BIC is used for model selection. 2D (two
longitudinal/spatial samples) or 3D (three samples) plots are generated for visualization.

> library(Canopy)

> data(toy3)

> R=toy3$R; X=toy3$X # 200 mutations across 3 samples

> num_cluster=2:9 # Range of number of clusters to run

> num_run=10 # How many EM runs per clustering step for each mutation cluster wave

> canopy.cluster=canopy.cluster(R = R,

+ X = X,

+ num_cluster = num_cluster,

+ num_run = num_run)

Running EM with 2 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 3 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 4 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 5 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 6 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 7 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 8 clusters... 1 2 3 4 5 6 7 8 9 10

Running EM with 9 clusters... 1 2 3 4 5 6 7 8 9 10

3

https://github.com/yuchaojiang/Canopy/blob/master/clustering/binomial_EM.R
http://www.pnas.org/content/suppl/2016/08/26/1522203113.DCSupplemental/pnas.1522203113.sapp.pdf

> bic_output=canopy.cluster$bic_output # BIC for model selection (# of clusters)

> Mu=canopy.cluster$Mu # VAF centroid for each cluster

> Tau=canopy.cluster$Tau # Prior for mutation cluster, with a K+1 component

> sna_cluster=canopy.cluster$sna_cluster # cluster identity for each mutation

●

●

●
● ● ● ● ●

2 3 4 5 6 7 8 9

−
29

20
00

−
28

60
00

BIC for model selection

Number of mutation clusters

B
IC

VAF clustering across 3 samples

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Sample1 VAF

S
am

pl
e2

 V
A

F

S
am

pl
e3

 V
A

F

●●●
●
●●●
●●●●●●●●

●●
●●●●
●●

●●●●
●●
●●
●●●●
●●●●●●●

Figure 1: BIC to select the optimal number of clusters and Binomial mixture clustering results.

Below is real dataset from Ding et al. (Nature 2012), where a leukemia patient was sequenced at two timepoints
– primary tumor (sample 1) and relapse genome (sample 2). The real dataset is noisier and can potentially contain
false positives for somatic mutations. We thus include in the mixture a multivariate uniform component on the unit
interval, which corresponds to mutations that have high standard errors during sequencing or that are likely to be
false positives. The code and SNA input for this dataset can be found here.

> library(Canopy)

> data(AML43)

> R=AML43$R; X=AML43$X

> num_cluster=4 # Range of number of clusters to run

> num_run=6 # How many EM runs per clustering step for each mutation cluster wave

> Tau_Kplus1=0.05 # Pre-specified proportion of noise component

> Mu.init=cbind(c(0.01,0.15,0.25,0.45),

+ c(0.2,0.2,0.01,0.2)) # Initial value for centroid

> canopy.cluster=canopy.cluster(R = R,

+ X = X,

+ num_cluster = num_cluster,

+ num_run = num_run,

+ Mu.init = Mu.init,

+ Tau_Kplus1=Tau_Kplus1)

Running EM with 4 clusters... 1 2 3 4 5 6

> Mu=canopy.cluster$Mu # VAF centroid for each cluster

> Tau=canopy.cluster$Tau # Prior for mutation cluster, with a K+1 component

4

https://github.com/yuchaojiang/Canopy/blob/master/clustering/binomial_EM.R

> sna_cluster=canopy.cluster$sna_cluster # cluster identity for each mutation

> R.qc=R[sna_cluster<=4,] # exclude mutations in the noise cluster

> X.qc=X[sna_cluster<=4,]

> sna_cluster.qc=sna_cluster[sna_cluster<=4]

> R.cluster=round(Mu*100) # Generate pseudo-SNAs correponding to each cluster.

> X.cluster=pmax(R.cluster,100) # Total depth is set at 100 but can be obtained as median instead

> rownames(R.cluster)=rownames(X.cluster)=paste('SNA.cluster',1:4,sep='')

● ●●●●● ●● ●●● ●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

Sample1 VAF

S
am

pl
e2

 V
A

F

Figure 2: Binomial mixture clustering on real dataset of primary tumor and relapse genome.

2.3 Phylogenetic tree (unknown)

Each sampled tree is modeled as a list by Canopy. Below are the tree elements of the most likely tree from the project
MDA231 (first case study in the paper). The most likely tree is obtained from the posterior distribution in the tree
space from the MCMC sampling (detailed in section 2.3). How to visualize/plot the sampled trees is discussed later.

> data('MDA231_tree')
> MDA231_tree$Z # Z matrix specifies the position of the SNAs along the tree branch

clone1 clone2 clone3 clone4

BRAF 0 1 1 1

KRAS 0 1 1 1

ALPK2 0 1 1 1

RYR1 0 0 1 0

> MDA231_tree$cna.copy # major and minor copy number (interger values) for each CNA

chr7_LOH chr7_dup chr12_dup chr12_LOH chr18_LOH chr19_dup

major_copy 3 2 2 2 3 2

minor_copy 0 1 1 0 0 1

5

> MDA231_tree$CM # Major copy per clone for each CNA

clone1 clone2 clone3 clone4

chr7 1 2 3 2

chr12 1 1 2 2

chr18 1 1 1 3

chr19 1 2 2 2

> MDA231_tree$Cm # Minor copy per clone for each CNA

clone1 clone2 clone3 clone4

chr7 1 1 0 1

chr12 1 1 0 1

chr18 1 1 1 0

chr19 1 1 1 1

> MDA231_tree$Q # whether an SNA precedes a CNA

chr7_LOH chr7_dup chr12_dup chr12_LOH chr18_LOH chr19_dup

BRAF 1 1 0 0 0 0

KRAS 0 0 1 1 0 0

ALPK2 0 0 0 0 1 0

RYR1 0 0 0 0 0 0

> MDA231_tree$H # if an SNA precedes a CNA, whether it resides in the major copy

chr7_LOH chr7_dup chr12_dup chr12_LOH chr18_LOH chr19_dup

BRAF 1 1 0 0 0 0

KRAS 0 0 1 1 0 0

ALPK2 0 0 0 0 1 0

RYR1 0 0 0 0 0 0

> MDA231_tree$P # clonal compostion for each sample

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

clone1 0.000 0.000 0.000 0.000 0.000

clone2 0.006 0.000 0.399 0.992 0.003

clone3 0.991 0.001 0.600 0.001 0.001

clone4 0.003 0.999 0.001 0.007 0.996

> MDA231_tree$VAF # VAF based on current tree structure

MCP1833_bone MCP1834_lung MCP2287_bone MDA-MB-231_parental MCP3481_lung

BRAF 0.997 0.667 0.867 0.667 0.667

KRAS 0.996 0.667 0.800 0.502 0.667

ALPK2 0.502 1.000 0.501 0.505 0.999

RYR1 0.330 0.000 0.200 0.000 0.000

2.4 MCMC sampling

Canopy samples in subtree space with varying number of subclones (denoted as K) by a Markov chain Monte Carlo
(MCMC) method. A plot of posterior likelihood (pdf format) will be generated for each subtree space and we recom-
mend users to refer to the plot as a sanity check for sampling convergence and to choose the number of burn-ins and

6

thinning accordingly. Note that this step can be time-consuming, especially with larger number of chains (numchain
specifies the number of chains with random initiations, a larger value of which is in favor of not getting stuck in
local optima) and longer chains (simrun specifies number of iterations per chain). MCMC sampling is the most
computationally heavy step in Canopy. It is recommended that jobs are run in parallel on high-performance cluster.

There are four modes of MCMC sampling embedded in Canopy: (1) canopy.sample which takes both SNA and CNA
as input by default; (2) canopy.sample.nocna for cases where there is no CNA input; (3) canopy.sample.cluster
for cases where SNAs are pre-clustered by the Binomial mixture EM algorithm; (4) canopy.sample.cluster.nocna
for cases where there is no CNA input and SNAs are pre-clustered by the Binomial mixture EM algorithm. More
details can be found here.

Below is sampling code for the MDA231 dataset where both SNA and CNA are used as input.

> K = 3:6 # number of subclones

> numchain = 20 # number of chains with random initiations

> sampchain = canopy.sample(R = R, X = X, WM = WM, Wm = Wm, epsilonM = epsilonM,

+ epsilonm = epsilonm, C = C, Y = Y, K = K, numchain = numchain,

+ max.simrun = 50000, min.simrun = 10000,

+ writeskip = 200, projectname = projectname, cell.line = TRUE,

+ plot.likelihood = TRUE)

> save.image(file = paste(projectname, '_postmcmc_image.rda',sep=''),
+ compress = 'xz')

> length(sampchain) ## number of subtree spaces (K=3:6)

[1] 4

> length(sampchain[[which(K==4)]]) ## number of chains for subtree space with 4 subclones

[1] 20

> length(sampchain[[which(K==4)]][[1]]) ## number of posterior trees in each chain

[1] 250

2.5 BIC for model selection

Canopy uses BIC as a model selection criterion to determine to optimal number of subclones.

> burnin = 100

> thin = 5 # If there is error in the bic and canopy.post step below, make sure

> # burnin and thinning parameters are wisely selected so that there are

> # posterior trees left.

> bic = canopy.BIC(sampchain = sampchain, projectname = projectname, K = K,

+ numchain = numchain, burnin = burnin, thin = thin, pdf = FALSE)

k = 3 : mean likelihood -17243.57 ; BIC -34650.33 .

k = 4 : mean likelihood -548.2876 ; BIC -1305.67 .

k = 5 : mean likelihood -611.4774 ; BIC -1477.948 .

k = 6 : mean likelihood -586.8295 ; BIC -1474.551 .

> optK = K[which.max(bic)]

7

https://github.com/yuchaojiang/Canopy/blob/master/instruction/sampling_mode.md

0 50 100 150 200 250

−
80

00
0

−
50

00
0

−
20

00
0

Iteration

Lo
g−

lik
el

ih
oo

d

Posterior likelihood 3 clones 20 chains

●

● ● ●

−
35

00
0

−
20

00
0

−
50

00

Number of subclones

B
IC

3 4 5 6

BIC for model selection

Figure 3: Posterior likelihood of MCMC (chains are colored differently) and BIC as a model selection method.

2.6 Posterior evaluation of sampled trees

Canopy then runs a posterior evaluation of all sampled trees by MCMC. If modes of posterior probabilities (second
column of config.summary) aren’t obvious, check if the algorithm has converged (and run sampling longer if not).

> post = canopy.post(sampchain = sampchain, projectname = projectname, K = K,

+ numchain = numchain, burnin = burnin, thin = thin, optK = optK,

+ C = C, post.config.cutoff = 0.05)

> samptreethin = post[[1]] # list of all post-burnin and thinning trees

> samptreethin.lik = post[[2]] # likelihoods of trees in samptree

> config = post[[3]] # configuration for each posterior tree

> config.summary = post[[4]] # configuration summary

> print(config.summary)

Configuration Post_prob Mean_post_lik

[1,] 1 0.562 -547.55

[2,] 2 0.066 -549.68

[3,] 3 0.073 -548.62

[4,] 4 0.146 -547.68

[5,] 5 0.153 -547.80

> # first column: tree configuration

> # second column: posterior configuration probability in the entire tree space

> # third column: posterior configuration likelihood in the subtree space

2.7 Tree output and plotting

One can then use Canopy to output and plot the most likely tree (i.e., tree with the highest posterior likelihood).
Mutations, clonal frequencies, and tree topology, etc., of the tree are obtained from the posterior distributions of
subtree space with trees having the same configuration. In our MDA231 example, the most likely tree is the tree
with configuration 3.

Note: A separate txt file can be generated (with txt=TRUE and txt.name=’*.txt’) if the figure legend of mu-
tational profiles (texts below the phylogenetic tree) in the plot is too long to be fitted entirely.

8

> config.i = config.summary[which.max(config.summary[,3]),1]

> cat('Configuration', config.i, 'has the highest posterior likelihood!\n')

Configuration 1 has the highest posterior likelihood!

> # plot the most likely tree in the posterior tree space

> output.tree = canopy.output(post, config.i, C)

> canopy.plottree(output.tree)

> # plot the tree with configuration 1 in the posterior tree space

> output.tree = canopy.output(post, 1, C)

> canopy.plottree(output.tree, pdf=TRUE, pdf.name =

+ paste(projectname,'_first_config.pdf',sep=''))

5

6

7

1 2 3 4

mut1

mut2 mut3

Normal Clone1 Clone2 Clone3

MCP1833_bone

MCP1834_lung

MCP2287_bone

MDA−MB−231_parental

MCP3481_lung

0.000

0.000

0.000

0.000

0.000

0.003

0.000

0.401

0.992

0.003

0.994

0.001

0.598

0.005

0.001

0.003

0.999

0.001

0.003

0.996

mut1: BRAF, KRAS, ALPK2, chr7_dup, chr19_dup
mut2: RYR1, chr7_LOH, chr12_LOH
mut3: chr12_dup, chr18_LOH

Figure 4: Most likely tree by Canopy for project MDA231.

9

3. Try it yourself

Now try Canopy yourself using the simulated toy dataset below! Note that no overlapping CNAs are used as input
and thus matrix C doesn’t need to be specified.

> library(Canopy)

> data(toy)

> projectname = 'toy'
> R = toy$R; X = toy$X; WM = toy$WM; Wm = toy$Wm

> epsilonM = toy$epsilonM; epsilonm = toy$epsilonm; Y = toy$Y

> K = 3:6; numchain = 10

> sampchain = canopy.sample(R = R, X = X, WM = WM, Wm = Wm, epsilonM = epsilonM,

+ epsilonm = epsilonm, C = NULL, Y = Y, K = K,

+ numchain = numchain, simrun = 50000, writeskip = 200,

+ projectname = projectname, cell.line = FALSE,

+ plot.likelihood = TRUE)

The most likely tree is shown below. There should be only one tree configuration from the posterior tree space. The
code for this toy dataset analysis can be found here.

5

6

7

1 2 3 4

mut1

mut2

mut3

mut4 mut5

Normal Clone1 Clone2 Clone3

sample1

sample2

sample3

0.202

0.307

0.203

0.183

0.203

0.285

0.279

0.020

0.509

0.336

0.470

0.003

mut1: sna3
mut2: cna2_del
mut3: sna4, cna1_LOH, cna3_dup
mut4: sna2
mut5: sna1

Figure 5: Most likely tree by Canopy for simulated toy dataset.

10

https://github.com/yuchaojiang/Canopy/blob/master/demo_code/canopy_demo_toy.R

The second toy example has a different tree topology. Feel free to try Canopy on this dataset too! There should
be also just one tree configuration as is shown below from the posterior tree space. The code for this toy dataset
analysis can be found here.

> library(Canopy)

> data(toy2)

> projectname = 'toy2'
> R = toy2$R; X = toy2$X; WM = toy2$WM; Wm = toy2$Wm

> epsilonM = toy2$epsilonM; epsilonm = toy2$epsilonm; Y = toy2$Y

> true.tree = toy2$true.tree # true underlying tree

> K = 3:6; numchain = 15

> sampchain = canopy.sample(R = R, X = X, WM = WM, Wm = Wm, epsilonM = epsilonM,

+ epsilonm = epsilonm, C = NULL, Y = Y, K = K,

+ numchain = numchain, max.simrun = 100000,

+ min.simrun = 10000, writeskip = 200,

+ projectname = projectname, cell.line = FALSE,

+ plot.likelihood = TRUE)

6

7

8 9

1 2 3 4 5

mut1

mut2

mut3 mut4

mut5

mut6 mut7

Normal Clone1 Clone2 Clone3 Clone4

sample1
sample2
sample3
sample4
sample5
sample6
sample7
sample8
sample9
sample10

0.200

0.200

0.300

0.300

0.100

0.200

0.200

0.200

0.200

0.200

0.200

0.000

0.000

0.000

0.000

0.000

0.800

0.000

0.200

0.200

0.600

0.000

0.000

0.700

0.300

0.450

0.000

0.000

0.000

0.000

0.000

0.200

0.000

0.000

0.000

0.000

0.000

0.800

0.600

0.000

0.000

0.600

0.700

0.000

0.600

0.350

0.000

0.000

0.000

0.600

mut1: SNA1
mut2: SNA2
mut3: SNA4
mut4: CNA2
mut5: CNA1, CNA3
mut6: SNA5
mut7: SNA3

Figure 6: Most likely tree by Canopy for simulated toy dataset 2.

11

https://github.com/yuchaojiang/Canopy/blob/master/demo_code/canopy_demo_toy2.R

The third toy example consists of three bulk tumor samples, in silico simulated from a tree of 4 clones/leaves.
The 5 tree segments (excluding the leftmost branch, which corresponds to the normal clone) separate 200 mutations
into 5 mutation clusters. The SNA clustering details are outlined in section “Binomial clustering of SNAs”. The code
for this toy dataset analysis is briefly attached below. Code in more details with visualization and posterior analysis
can be found here.

> library(Canopy)

> data(toy3)

> R=toy3$R; X=toy3$X

> num_cluster=2:9 # Range of number of clusters to run

> num_run=10 # How many EM runs per clustering step for each mutation cluster wave

> canopy.cluster=canopy.cluster(R = R,

+ X = X,

+ num_cluster = num_cluster,

+ num_run = num_run)

> bic_output=canopy.cluster$bic_output # BIC for model selection (# of clusters)

> Mu=canopy.cluster$Mu # VAF centroid for each cluster

> Tau=canopy.cluster$Tau # Prior for mutation cluster, with a K+1 component

> sna_cluster=canopy.cluster$sna_cluster # cluster identity for each mutation

> projectname='toy3'
> K = 3:5 # number of subclones

> numchain = 15 # number of chains with random initiations

> sampchain = canopy.sample.cluster.nocna(R = R, X = X, sna_cluster = sna_cluster,

+ K = K, numchain = numchain,

+ max.simrun = 100000, min.simrun = 20000,

+ writeskip = 200, projectname = projectname,

+ cell.line = FALSE, plot.likelihood = TRUE)

> save.image(file = paste(projectname, '_postmcmc_image.rda',sep=''),
+ compress = 'xz')

4. Citation

Assessing intra-tumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-
generation sequencing, Yuchao Jiang, Yu Qiu, Andy J Minn, Nancy R zhang, Proceedings of the National Academy
of Sciences, 2016. (html, pdf)

5. Session information:

Output of sessionInfo on the system on which this document was compiled:

• R version 3.3.3 (2017-03-06), x86_64-apple-darwin13.4.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

• Other packages: Canopy 1.2.0, ape 4.1, fields 8.10, maps 3.1.1, pheatmap 1.0.8, scatterplot3d 0.3-39,
spam 1.4-0

• Loaded via a namespace (and not attached): RColorBrewer 1.1-2, Rcpp 0.12.10, colorspace 1.3-2, gtable 0.2.0,
lattice 0.20-35, munsell 0.4.3, nlme 3.1-131, parallel 3.3.3, plyr 1.8.4, scales 0.4.1, tools 3.3.3

12

https://github.com/yuchaojiang/Canopy/blob/master/demo_code/canopy_demo_toy3.R
http://www.pnas.org/content/early/2016/08/26/1522203113
http://www.pnas.org/content/early/2016/08/26/1522203113.full.pdf

