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Behind FLSSS
Charlie Wusuo Liu

Abstract

The design of the R package FLSSS, Fixed Length Subset Sum Solver with error specification, and its extension
to multidimensional domain and to the general-purpose Knapsack Problem. If the animations cannot run properly in
web browser, please read the article in Adobe or other PDF viewer.
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I. Introduction

Well, although typing in Latex, I definitely do not want
to write it like a publishable paper. Instead, I would like to
go for a personal memo style. The more academic papers
I read nowadays, the more often I am annoyed by those
playing “sophisticated” games like hide–and–seek, putting
out fancy irrelevance, using over–complicated notations,
covering simple math with a big pile of garbage... Where
are all the suggestive and unpretentious forms of knowl-
edge? Sigh. I must have not read enough to gain the
capability of seeing through these camouflages without
having a headache.

I will try to explain everything as intuitive as possible.
However, math equations, algorithm tables are inevitable
because the details will be kicking in sooner or later. To
resolve the conflict, I write section IV “The Big Picture”.
For those who do not want to dive in the skills and proofs,
this section alone can provide enough information on the
algorithmic framework, at least for the single–dimensional
scenario.

Hope the article can interest you in the topic or inspire
you for solving problems of your own.

And special thanks to Dirk Eddelbuettel, Romain Fran-
cois and other contributors of R package Rcpp [1]; JJ
Allaire, Romain Francois and other contributors of R
package RcppParallel [3]; JJ Allaire and Hadley Wickham,
founder and chief scientist at Rstudio, Inc [4]. Their con-
tributions made coding and compiling C++ for R package
production extremely easy and smooth, and undoubtedly,
pushed the power of R to a completely new level. And
thanks to Henrik Bengtsson, creator of the R package
R.rsp [5] which is a nice tool able to easily build R package
with static PDF vignette.

II. Motivation

Combinatorics always interests me. It can be extremely
challenging yet anyone with high school education is able
to mess with it. Like Terrence Tao said, it is the field which
still has large areas closely resembling its classical roots
without being informed by modern algebra. So, average
people like me, grasp the fun while you still can!

During years I often feel many hard statistical problems
eventually come down to the combinatorics. You can avoid
confronting it by all means in statistics, but the shadow
of the mountain would continuously remind you that you
have never truly climbed over it, even after you went far
away enough that the mountain shrank to a pin, in the
butt!

When I was still processing filings in Division of Insur-
ance, once I got the annual losses of about 100 insurers
and the aggregated loss of 4 companies to be investigated,
whose names were unknown yet. While waiting for more
information to come in, I tried programming to find those
babies out because the loss values looked pretty unique so

it should not be too hard to uncover which summed up to
the given total. Well then, once the gate got open, things
pouring out, hard to close ever since.

III. FLSSS

Let’s review the problem:

Given a real set/vector X = (x1, x2, . . . , xN ), a
target value T , a subset/subvector size L where
L ≤ N , an error E, find one or more subsets of X
of size L like Xc = (xc1 , xc2 , . . . , xcL), such that∑L
i=1 xci ∈ [T − E, T + E] = [Min, Max].

We will restrict X to be a sorted vector so x1 ≤ x2 . . . ≤
xN , which is important. A fancy view of my algorithm’s
essence is it would drain every advantage of the reduction
in the information entropy caused by this sorting. Am I
talking like fabulous or what!

Since X is sorted, we additionally focus only on the
subset’s index vector C = (c1, c2 . . . , cL) ⊂ (1, 2, . . . , N)
and also restrict c1 < c2 < . . . < cL. Two important
properties on index vector are:

• every subset of X is associated to a unique index
vector.

• for any ci, cj ∈ (1, 2, . . . , N), we have ci < cj =⇒
xci ≤ xcj .

Define S as the operator for summing up elements in
X’s subset indexed by C. Then,

• C = (c1, c2, . . . , cL) is a qualified solution ⇐⇒
S(c1, c2, . . . , cL) ∈ [Min, Max].

• for another index vector C ′ = (c′1, c
′
2, . . . , c

′
L), we

have
c1 < c′1, c2 < c′2, . . . , cL < c′L =⇒
S(c1, c2, . . . , cL) ≤ S(c′1, c

′
2, . . . , c

′
L)

IV. The Big Picture

Remember the Sandwich Theorem from Calculus?
FLSSS has the same taste. It follows a paradigm similar to
branch–and–bound: we squeeze the combinatorial space,
or the initial solution space, over and over, until it will
not shrink anymore. Then we take a lower–dimensional
subspace, do the evil again. Eventually we can or we
cannot squeeze out some solution(s).

So, there are two major components in the algorithm.
One is to squeeze the combinatorial space, the other is to
take a lower–dimensional subspace.

The domain of index vector C = (c1, c2, . . . , cL) is
seen as the initial solution space. Let’s look at it element–
wisely: because of the restriction c1 < c2 < . . . < cL, the
lower bounds for all elements in C should be (1, 2, . . . , L)
and the upper bounds should be (N − L + 1, N − L +
2, . . . , N).

In other words, c1’s domain is the integer sequence 1 :
N−L+1, c2’s domain is the integer sequence 2 : N−L+2,
. . . , and cL’s domain is the integer sequence L : N .
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We call (1, 2, . . . , L) “lower bound vector” and (N −
L+ 1, N − L+ 2, . . . , N) “upper bound vector”.

Given the initial bounding vectors which are
(1, 2, . . . , L) and (N − L + 1, N − L + 2, . . . , N),
the squeezing procedure aims to pull up elements in the
lower bound vector and to pull down those in the upper
bound vector as much as possible, during which the
restriction c1 < c2 < . . . < cL must not be violated.

One may ask based on what can we squeeze the
bounds? The answer is the prerequisite subset sum
range [Min, Max]. To have the subset sum indexed by
c1, c2, . . . , cL bounded by [Min, Max], simple logic tells
us none of the elements ci, i ∈ (1, 2, . . . , L) can be
unbounded, and the bound is not necessarily the initial
one: [i, N − L + i]. For more details, please read section
V.

The squeezing procedure runs in an iterative fashion.
Soon, it will sense the lower and upper bounds are no
longer updated. At this time we call the bounding vectors
infimum (greatest lower bound) and supremum (lowest up-
per bound) vectors, denoted by C inf = (cinf1 , cinf2 , . . . , cinfL )
and Csup = (csup1 , csup2 , . . . , csupL ).

If C inf = Csup, C inf is a solution.

When the bounding vectors are unequal yet cannot be
updated anymore, we initialize a depth/best–first search,
which prompts the subspacing procedure. In short, we
select an i ∈ (1, 2, . . . , L) and loop ci over its domain:
integer sequence cinfi : csupi . Within each iteration, ci
is fixed and we focus on the L − 1 dimensional sub-
space (c1, . . . , ci−1, ci+1, . . . , cL). Another set of initial
bounding vectors of size L − 1 can be obtained through
appropriate calculation.

Naturally, we again impose squeezing, approaching the
L−2 dimensional subspace to continue the vicious cycle. In
any subspace, we bounce back to the parent if no solution
or not enough solutions are found from itself and the
children.

Choosing the best i ∈ (1, 2, . . . , L) for subspacing is a
typical heuristic. Intuitively, selecting i such that ci has
the least width of domain, or csupi − cinfi , will expand the
least number of searching branches, or subspaces.

Under this criterion, the best situation for subspacing
would be having an i where cinfi = csupi , meaning a squeez-
ing call can simply reduce the combinatorial space by 1
dimension. However this does not mean the succeeding
branchings and the current one will line up as the global
optimal sequence of subspacing. What is more, the best
sequence of subspacing for dimension reduction does not
necessarily mean it will find the first solution in the
shortest time.

Discussion above can gradually become clearer in the
way to section VI. The current version of FLSSS and its
extension uses the least width of domain as the criterion
to pick i.

V. Squeezing

As mentioned, we update the bounding vectors itera-
tively. More specifically, we update the lower bound vector
according to the upper bound vector and vice versa, like
the E–step and M–step in the Expectation Maximization
algorithm.

Keep in mind we want the subset elements to sum in
[Min,Max], and we have defined function

S(c1, c2, . . . , cL) =

L∑
k=1

xck (1)

When the upper bound vector CUB= (cUB
1 , cUB

2 , . . .
,cUB
L ) is known, the lowest possible value ci can hit is

when the rest elements, (c1, . . . , ci−1, ci+1, . . . , cL), reach
their individual greatest possible values, which is easy to
understand by looking at the following inequality:

S(c1, . . . , ci, . . . , cL) ≥ Min ⇐⇒
S(ci) ≥ Min− S(c1, . . . , ci−1, ci+1, . . . , cL)

(2)

One might think (c1, . . . , ci−1, ci+1, . . . , cL)’s individ-
ual greatest values should just be their current upper
bounds listed in CUB. However, this thinking ignores the
primary restriction c1 < c2 < . . . < cL, which indicates ci
itself caps c1, c2, . . . , ci−1. Therefore, the correct greatest
value for cj{j<i} should be min

(
ci− (i− j), cUB

j

)
, and for

cj{j>i}, it is simply cUB
j .

Based on eq. 2, the lower bound of ci, or cLBi , must meet
the following two requirements:

S
(

min
(
cLBi − (i− 1), cUB

1

)
, . . . , min

(
cLBi − 1, cUB

i−1
))

+ S(cLBi ) ≥ Min− S
(
cUB
i+1, . . . , c

UB
L

)
S
(

min
(
cLBi − 1− (i− 1), cUB

1

)
, . . . , min

(
cLBi − 1− 1, cUB

i−1
))

+ S(cLBi − 1) < Min− S
(
cUB
i+1, . . . , c

UB
L

)
(3)

The two inequalities in 3 guarantees that, from low to
high, cLBi is the first value in ci’s domain that can make
the subset sum ≥ Min while c1, . . . , ci−1, ci+1, . . . , cL are
at their individual greatest possible values.

I doubt there exists an analytical solution to system 3,
but if my work is ever gonna attract some math genius
proving me wrong, the world would be much more fun!

A. Locating cLBi and Engineering

Based on the explanation, you might already have the
idea of linear searching for cLBi : start from the current
lower bound of ci, increment it by 1 each time until the
first inequality in 3 becomes true.

Some early versions of FLSSS used linear search with
some improvements, making it efficient enough to be
released. Speaking of which, I would claim the implemen-
tation of this algorithm is so vital to the speed that it
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almost belittles the mathematics. A good implementation
must well consider the details in memory management,
object efficiency and complier friendliness. A better data
structure or a smarter way of programming could lead
to speed increase in the order of magnitude due to the
algorithmic complexity. Through the article not all the
important engineering details will be touched, and better
ones may be discovered later then the package will be
updated accordingly.

We will first discuss linear search. It helps clear the
concepts and proofs, based on which a binary search
method with an auxiliary data structure will then be
introduced.

B. Linear Method

Starting from the current lower bound of ci, each time
we increment ci as ci ← ci + 1, we exam inequality 4:

S
(

min
(
ci − (i− 1), cUB

1

)
, . . . , min

(
ci − 1, cUB

i−1
))

+ S(ci) ≥ Min− S
(
cUB
i+1, . . . , c

UB
L

) (4)

Once it becomes true, ci becomes the new lower bound.

Valuing ineq. 4 directly would be unnecessarily heavy.
Some work can be done to reduce the complexity, and 4
will eventually become 8.

Observing ineq. 4, the right side does not change while
incrementing ci. On the left side, an important property
is

If j ∈ [1, i] and

min
(
ci − (i− j), cUB

j

)
= cUB

j ,

then for any k ≤ j,
min

(
ci − (i− k), cUB

k

)
= cUB

k is true

(5)

The proof of property 5 is showed in the following box.
Feel free to skip it if not interested.

Consider the primary restriction c1 < c2 < . . . < ci
and the fact that they are integers, we have cj −
ck ≥ j − k, which leads to cUB

j − cUB
k ≥ j − k.

If ci − (i − j) ≥ cUB
j is true, then ci − (i − j) +

(k− j) ≥ cUB
j +(cUB

k − cUB
j ) is also true. Therefore,

min
(
ci − (i− k), cUB

k

)
= cUB

k

In plain words, property 5 states that during increment-
ing ci, if any one on ci’s left has reached its individual
upper bound, then everyone on that one’s left have also
reached their individual upper bounds.

A picture is said worth a thousand words. I guess an
animation is worth ten thousand. Figure 1 may provide
an intuition of the practical meaning of property 5 and its
contrapositive, which is showed in below:

Fig. 1: Linear Method for cLBi

If j ∈ [1, i] and

min
(
ci − (i− j), cUB

j

)
= ci − (i− j),

then for any k where j ≤ k ≤ i,
min

(
ci − (i− k), cUB

k

)
= ci − (i− k) is true

(6)

In plain words, property 6 says if any one on the left of ci
has not reached its individual upper bound, then everyone
between that one and ci have not reached their individual
upper bounds either.

Properties 5 and 6 reveal a fact: during incrementing
ci, there always exists a j ∈ [1, i] where c1, . . . , cj−1 have
reached their upper bounds and cj , . . . , ci have not. In
other words, the left side of ineq. 4 can be written as

S
(

min
(
ci − (i− 1), cUB

1

)
, . . . , min

(
ci − 1, cUB

i−1
)
, ci

)
=S
(
cUB
1 , . . . , cUB

j−1, ci − (i− j), . . . , ci−1, ci
)

=S
(
cUB
1 , . . . , cUB

j−1

)
+ S

(
ci − (i− j), . . . , ci

)
(7)

Thus, ineq. 4 becomes

SL︷ ︸︸ ︷
S
(
ci − (i− j), . . . , ci

)
≥

Min− S
(
cUB
i+1, . . . , c

UB
L

)
− S

(
cUB
1 , . . . , cUB

j−1
)︸ ︷︷ ︸

SR

(8)

We will refer j as the “freedom point” in the rest of the
article.
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Valuing ineq. 8 has a good advantage. Let SL be the left
side sum in ineq. 8. Instead of recalculating SL ← S

(
ci −

(i − j), . . . , ci
)

after ci ← ci + 1, one can update SL by
SL ← SL−S

(
ci−(i−j)

)
+S
(
ci+1

)
before ci is incremented,

because the consecutive sequence ci− (i−j)+1 : ci before
ci incremented will be exactly the same as the sequence
ci − (i− j) : ci − 1 after ci incremented.

In other words, prior to ci being incremented, the new
sum SL can be computed by simply subtracting the tail
S
(
ci − (i − j)

)
then adding the new head S

(
ci + 1

)
. One

can see the amount of arithmetic is significantly reduced
compared to naively repeating the sequence summation
for updating SL.

Denote the right side value of ineq. 8 by SR. The freedom
point j could change throughout finding cLBi and SR need
be changed correspondingly. When ci is increased to the
extent that ci − (i − j) = cUB

j , meaning cj reaches its
upper bound, and if ineq. 8 is still false, we update SR by
SR ← SR − S(cUB

j ) then increment j ← j + 1.

Once cLBi is found, increment i ← i + 1 to continue.
Algorithm 1 and 2 summarize the linear search method
for locating cLB1 and cLBi, i≥2 respectively.

Algorithm 1 Linear search for cLB1
KNOWN:

Previous lower bound cLBp
1

All the upper bounds (cUB
1 , . . . , cUB

L )
Sum of the upper bounds SUB = S(cUB

1 , . . . , cUB
L )

COMPUTE: New lower bound cLB1 .

1: Initialize c1 ← cLBp
1 , SL ← S(c1), SR ← Min− SUB +

S(cUB
1 )

2: loop
3: if SL < SR then
4: if c1 = cUB

1 then
5: return. C solution does not exist
6: end if
7: c1 ← c1 + 1
8: SL ← S(c1)
9: else

10: cLB1 ← c1; break
11: end if
12: end loop

C. Locate cUB
i

In the same rationale of finding cLBi , cUB
i should be the

greatest integer when (c1, . . . , ci−1, ci+1, . . . , cL) are at
their individual lower bounds while the subset sum is no
greater than Max. The definitional inequalities 3 for cLBi

Algorithm 2 Linear search for cLBi , i ≥ 2

KNOWN: cLBi−1, cLBp
i , SL, SR, j, (cUB

1 , . . . , cUB
L )

COMPUTE: New lower bound cLBi .

1: Initialize ci ← cLBp
i

2: if ci ≤ cLBi−1 + 1 then
3: ci ← cLBi−1 + 1
4: SR ← SR + cUB

i

5: SL ← SL + ci
6: else
7: k ← ci − (cLBi−1 + 1)
8: while ci − (i− j) + k ≥ cUB

j do
9: SR ← SR − S

(
cUB
j

)
10: j ← j + 1
11: end while
12: SL ← S

(
ci − (i− j), . . . , ci

)
13: end if
14: loop
15: if SL < SR then
16: if ci = cUB

i then
17: return. C solution does not exist
18: end if
19: SL ← SL − S

(
ci − (i− j)

)
+ S(ci + 1)

20: ci ← ci + 1
21: while ci − (i− j) = cUB

j do
22: SL ← SL − S

(
ci − (i− j)

)
23: SR ← SR − S(cUB

j )
24: j ← j + 1
25: end while
26: else
27: cLBi ← ci
28: i← i+ 1
29: end if
30: end loop

can be adjusted to inequalities 9 for defining cUB
i .

S
(

max
(
cUB
i + 1, cLBi+1

)
, . . . , max

(
cUB
i + L− i, cLBL

))
+ S(cUB

i ) ≤ Max− S
(
cLB1 , . . . , cLBi−1

)
S
(

max
(
cUB
i + 2, cUB

i+1

)
, . . . , max

(
cUB
i + 1 + L− i, cUB

L

))
+ S(cUB

i + 1) > Max− S
(
cLB1 , . . . , cLBi−1

)
(9)

We go in the reverse direction for locating the upper
bounds, in other words, compute cUB

i after cUB
i+1 found.

D. Cumulative Sum Matrix

From inequality 8 or animation 1, one can see we
repetitively value sum of the subset indexed by consecutive
sequence ci − (i − j), . . . , ci. The size of the sequence
ranges from 1 to L where L is the subset size. Considering
that the superset X has N elements, the number of
different consecutive sequences representing a subset of
size k ∈ [1, L] is N−k+1. We write all the subset sums of
size k = 1, . . . , L indexed by a consecutive sequence in a
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quasi–triangle matrix M, showed in fig. 2. In this matrix,



x1 x1 + x2
∑3
t=1 xt . . .

∑L
t=1 xt

x2 x2 + x3
∑4
t=2 xt . . .

...
...

...
...

N∑
t=N−L+1

xt

xN−2 xN−2 + xN−1
N∑

t=N−2
xt

xN−1 xN−1 + xN
xN


Fig. 2: Cumulative Sum Matrix M

column k contains the sums of all possible subsets indexed
by a consecutive sequence of size k in ascending order.

Matrix M will be used to support a binary search
method for cLBi and cUB

i .

E. Binary Method for cLBi
UsingM, we will first find the freedom point j, that is,

we can predict the value of j when inequality 8 becomes
true. But beforehand we will discuss what happens next
once j is found .

Entries in each column ofM are naturally ordered from
low to high because x1 ≤ x2 ≤ . . . ≤ xN . The consecutive
sequence sum SL = S

(
ci−(i−j), . . . , ci

)
must be lying in

column i− j + 1. Therefore, we can apply a binary search
on column i− j + 1 to locate index of the lowest SL that
satisfies ineq. 8. Assume the index is found to be k, cLBi
will immediately be known as cLBi ← i− j + k.

F. Locate Freedom Point

Remember in the linear search method, j can only go
in one direction: being incremented. This tells us we can
directly increment the previous j by one at a time to detect
the new j. Animation 3 illustrates the logic. In fact, the
new j must be the first j from low to high that makes
ineq. 8 come true.

Like the animation shows, each time j is incremented,
the free consecutive sequence sum SL should be recalcu-
lated and it must be equal to M[cUB

j−1 + 1, i − j + 1].
Meanwhile, S(cUB

j−1) should be subtracted from SR. Then
inequality 8 is evaluated again. More details can be found
in algorithm 3.

VI. Subspacing

As discussed in section “The Big Picture”, after the
greatest lower bound and lowest upper bound vectors, C inf

and Csup, are found, in the current version of FLSSS, we
select the i such that the least searching branches will be
spawn, or i = arg min

i∈[1, L]
(csupi − cinfi ) for subspacing. More

specifically, we fix ci to each of the elements in integer
sequence cinfi : csupi , and repeat the squeezing in the one-
less dimensional combinatorial space.

Fig. 3: Binary Method for cLBi

A. Give Birth

The child space (subspace) will inherit the bounding
vectors from its parent with certain adjustment. When ci
is fixed to an integer in cinfi : csupi , equivalently we are
imposing cLBi = cUB

i = ci. Due to the primary restriction
c1 < c2 < . . . < cL, the upper bounds on ci’s left, or
cUB
1 , . . . , cUB

i−1, should all be less than ci, and the lower
bounds on ci’s right, or cLBi+1, . . . , c

LB
L , should all be greater

than ci. We need to refresh the inherited bounding vectors
in the child space after squeezing.

The earliest version of FLSSS does explicit recursion for
the depth/best-first search. Later it was reimplemented as
an iterative process via a stack scheme. The speed and
space efficiency gain is significant.

In the algorithm, each subspace is an object of 9 mem-
bers:

• i, as the optimal i for subspacing in the parent space.
• csupi , the supremum for ci computed in this space.
• ci, the current fixation in the sequence of cinfi : csupi .
• T , the target subset sum for this space.
• CLB and CUB, the bounding vectors for this space.
• SLB and SUB, sums of subsets indexed by the bound-

ing vectors.
• CUBLR. After the squeezing procedure and the op-

timal i is selected, CUBLR is a copy of elements
csup1 : csupi−1. “UBLR” stands for “upper bound left
reserve”. Further explanation will be made later.

Each space object gives birth to the child space in stack,
as explained in algorithm 4.
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Algorithm 3 Binary search for cLBi , i ≥ 2

KNOWN: cLBi−1, cLBp
i , SR, j, (cUB

1 , . . . , cUB
L ),

Bsrch:=binary search function, M (cumulative sum
matrix).
NOTE: When i = 1, follow algorithm 1 and set j = 1.
COMPUTE: New lower bound cLBi .

1: Initialize ci ← cLBp
i

2: if ci ≤ cLBi−1 + 1 then
3: ci ← cLBi−1 + 1
4: end if
5: loop
6: if i < j then
7: return. C solution does not exist
8: end if
9: if ci− (i−j) ≥ cUB

j orM[ci− (i−j), i−j+1] < SR
then

10: SR ← SR − cUB
j

11: j ← j + 1
12: else break
13: end if
14: end loop
15: u ← &

[
M[cUB

j−1 + 1, i − j + 1]
]
C & maps memory

address
16: v ← &

[
M[ci − (i− j), i− j + 1]

]
17: Iθ ← Bsrch(u, v, SR) C assume Bsrch() takes in the

beginning and the end of a sorted sequence, returning
the index of the least element no less than SR.

18: cLBi ← i− j + Iθ

B. Update

If the child does not return enough solutions, the parent
will update itself, explained in algorithm 5, and then give
birth to the next child as replacement.

A number of details are omitted from algorithm 4 and
5. For example, the scenarios when i = 1 and i = L are
treated differently to gain speed and space efficiency.

If no more children can be born or enough solutions have
been received, the parent will be cleared from stack and
the function will return to the grandparent level.

C. Does M Still Work in Subspace

If you managed to understand everything all the way
down here, something might strike you suddenly: after cUB

i

and cLBi are erased from CUB and CLB, it seems the sub-
space becomes nonconsecutive with respect to the parent
space, so will M, which stores the sums of consecutive
sequences in the parent space, work as it is supposed to?

The answer is yes. Remember when cUB
i and cLBi are

erased, the new shorter bounding vectors for the subspace
are also refreshed correspondingly. Squeezing them is ab-
solutely no different than squeezing the parent’s bounding
vectors with cUB

i = cLBi = ci enforced. Thus M can
stay intact and is applied to the squeezing procedure in
subspace at any level.

Algorithm 4 Give birth to a child

KNOWN: i, csupi , ci, T , CLB, CUB, SLB, SUB, CUBLR; E
(the error), M (the cumulative sum matrix)
CONSTRUCT: The child space object

1: B Make a copy of the parent as the child. Do the
followings in the child space.

2: B Feed T , CLB, CUB, SLB, SUB, E to the squeezing
function. CLB and CUB are updated to C inf and Csup

3: i← arg min
i∈[1, L]

(cUB
i − cLBi ) C least branches

4: ci ← cLBi
5: csupi ← cUB

i C fix ci to the start and memorize the end
of the sequence

6: SLB ← SLB − S(cLBi )
7: Erase cLBi from CLB

8: SUB ← SUB − S(cUB
i )

9: Erase cUB
i from CUB

10: T ← T − S(ci)
11: CUBLR ← csup1 : csupi−1 C usefulness comes in alg. 5

12: B Since ci is fixed, the upper bounds should be
refreshed as

(
min(ci − (i − 1), cUB

1 ), . . . , min(ci −
1, cUB

i−1), cUB
i+1, . . . , c

UB
L

)
. The following loop refreshes

the upper bounds and SUB.

13: for k in 1 : i− 1 do
14: if ci − k < cUB

i−k then cUB
i−k ← ci − k

15: else break
16: end if
17: end for
18: if k > 1 then
19: SUB ← SUB −M(cUB

i−k − 1, k − 1) +M(cUB
i−k, k − 1)

20: end if

VII. Summary on FLSSS

The above are the core ideas of FLSSS. In implemen-
tation, C++ STL vector is used as the fundamental data
container. Originally, the index vectors store pointers to
the elements in the superset. Considering most computers
nowadays are 64–bit addressed, making a pointer 8 bytes,
so in the current version, index vectors store various types
of offsetting integers depending on the superset size. If
superset size is less than 256, unsigned char is used; Else if
it is less than 65536, unsigned short is used; Else unsigned
is used. Compared to previous version, the current one
has memory consumption decreased, but the speed is not
found significant improved experiment.

A. Conjugate Problem

There exists a conjugate to every fixed size subset
sum problem: given numeric vector X = (x1, x2, . . . , xN ),
target

∑
X − T , error E, find one or more subsets of X

of size N − L like Xc = (xc1 , xc2 , . . . , xcN−L
), such that∑N−L

i=1 xci ∈ [
∑
X − T − E,

∑
X − T + E ]. Apparently,

a fixed size subset sum problem and its conjugate are
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Algorithm 5 Update space object

KNOWN: Current space object.
Update: The current space object

1: if ci = csupi then
2: return B cannot be updated anymore
3: end if

4: B We intend to increment ci by 1. This action
needs refreshing the bounding vectors to follow up.
First, the lower bounds should be refreshed as(
cLB1 , . . . , cLBi−1, max(ci + 1, cLBi+1), . . . , max(ci + L −
i, cLBL )

)
.

5: ci ← ci + 1
6: for k in 1 : L− i do
7: if ci + k > cLBi+k then cLBi+k ← ci + k
8: else break
9: end if

10: end for
11: if k > 1 then
12: SLB ← SLB −M(cLBi+1 − 1, k − 1) +M(cLBi+1, k − 1)
13: end if

14: B Second, the upper bounds should be refreshed
as

(
min(ci − (i − 1), cUBLR

1 ), . . . , min(ci −
1, cUBLR

i−1 ), cUB
i+1, . . . , c

UB
L

)
. We can see the use

of CUBLR is to prevent the upper bounds from
being lifted up through their maximums — Csup

in algorithm 4. Refreshing the lower bounds does
not need similar implementation is because as ci
incremented, the lower bounds can only go up from
the beginning when they were equal to the parent’s
lower bounds.

15: for k in 1 : i− 1 do
16: if ci − k ≤ cUBLR

i−k then
17: B Be careful when ci − k = cUBLR

i−k , we keep
refreshing the left, since ci was incremented at line
5.

18: cUBLR
i−k ← ci − k

19: else break
20: end if
21: end for
22: if k > 1 then
23: SUB ← SUB −M(cUB

i−k − 1, k − 1) +M(cUB
i−k, k − 1)

24: end if

equivalent. If one of the two finds a solution, then its
complement will be a solution to the conjugate problem.

Results from experiments showed there usually exist a
pronounced difference between the time costs of solving a
fixed size subset sum problem and its conjugate, which is
understandable: the pair of problems go through different
searching trees.

Figure 4 shows the time costs (in seconds) of searching
for 1,000 solutions where X = (13, 23, . . . , 993, 1003), L =
20, E = 0.1 and T equals sum of 20 random elements in
X. The hardware parameters are Intel(R) Core(TM) i7-

Original Conjugate
0.37 1.94
16.96 0.4
0.08 0.02
15.16 0.47
0.85 1.29

Fig. 4: 1000 solutions Time Cost (in seconds)

4770 CPU @ 3.40GHz and 16GB RAM. The compiler is
gcc 4.9.3 embedded in Rtools.

B. General Subset Sum

An obvious way of solving the subset sum in general
(unfixed subset size) is looping over the subset sizes from
1 to N .

A more “mathematically elegant” way is to pad N 0s in
the superset and to solve a size–N subset from the size–2N
superset. Once a solution is found, we can eliminate the
indexes pointing to those redundant 0s and map the rest
to the original superset. In the package, defining subset
size 0 will note the function to run this method of solving
the general subset sum problem. Details and examples can
be found in the package manual.

This method would take larger memory and might easily
increase the total time cost because of larger combinatorial
space. However it could save user from the thinking of how
to allot appropriate amount of individual running time for
different subset sizes.

VIII. Multidimensional Fixed Size Subset Sum

Alright, let’s be more ambitious. What if the superset
is multivariate, say something like

X = {(1, 13, 208), (64, 3.4, 7), . . . , (7, 9, 103)}

and we want a subset of size 10 such that the sum of the
elements falls in

[(436, 334, 354)− (1, 12, 8), (436, 334, 354) + (1, 12, 8)]

To analyze the problem, denote the d–variate superset
vector by an N × d matrix

X = (X1, . . . , Xd)
T

= (x1, . . . , xN )

=

 x11 . . . x1d
...

...
...

xN1 . . . xNd

 (10)

where X1, . . . , Xd are column vectors and x1, . . . , xN are
row vectors. Additionally, denote the multivariate target
by

T = (t1, . . . , td)
T (11)

and the multivariate error by

E = (e1, . . . , ed)
T (12)
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One may come up with the idea of extending all the
arithmetic operators from single–dimension to multidi-
mension and load them on the existing algorithm of
FLSSS. For example, the less than operator for two d–
variates u and v would be:

u < v := u1 < v1 ∩ . . . ∩ ud < vd (13)

and the additive operator would be:

u + v := (u1 + v1, . . . , ud + vd) (14)

However, to expect this to work, like the single–
dimensional FLSSS, the superset must have:

x1 ≤ . . . ≤ xN (15)

In other words, the column vectors (X1, . . . , Xd) must
be perfectly rank–correlated — comonotonic, so that ineq.
15 is possibly achieved via sorting.

Are you frustrated to see the way is blocked? I was.
But later I found some trick to poke X around. Consider
a simple example of a two–variate superset

X =

 −1 5
2 1
3 4


and assume an L–size subset sum problem about X has

T = (t1, t2); E = (e1 = 0, e2)

There is no way of sorting X to satisfy ineq. 15.
However, if we scale the first column by a certain amount
and add it to the second, like

X∗ =

 −1 5 + (−1)× 10 = −5
2 1 + 2× 10 = 21
3 4 + 3× 10 = 34


then the second column becomes sorted. More impor-
tantly, we can be sure any solution to an L–size subset
sum problem about X∗ with

T ∗ = (t1, t2 + 10t1); E∗ = (e1 = 0, e2)

is also a solution to the original problem about X. The
proof is trivial.

A. Dimension Shadowing

Let’s call the idea described above “dimension shadow-
ing”. We will study the possibility of using one dimension
(key column) to shadow the rest.

The key column and any other constant /variable /vec-
tor /matrix that is shadowed by it will be superscripted
with a star symbol ∗.

Consider the following superset

X = (X∗, X2, . . . , Xd)
T

=

 x∗1 x12 . . . x1d
...

...
...

...
x∗N xN2 . . . xNd

 (16)

where the rows have been ordered by the key (which
column should be chosen as the key will be discussed
later) — the first column. To shadow a certain column
Xi (2 ≤ i ≤ d), we add the scaled vector αiX

∗ where
αi ≥ 0 to Xi such that

X∗i = αiX
∗ +Xi (17)

in which the elements satisfy

x∗1i ≤ x∗2i ≤ . . . ≤ x∗Ni (18)

To find αi, define d as the vector differential operator,
so ineq. 18 is equivalent to

d(αiX
∗ +Xi) = dX∗i

= (x∗2i − x∗1i, x∗3i − x∗2i, . . . , x∗Ni − x∗(N−1)i) ≥ 0
(19)

Thus αi must satisfy( N⋂
k=2

αi(x
∗
k − x∗k−1) + xki − x(k−1)i ≥ 0

)
∩ αi ≥ 0

⇐⇒
( N⋂
k=2

αi ≥ −
xki − x(k−1)i
x∗k − x∗k−1

)
∩ αi ≥ 0

⇐⇒ αi = max
(
− dXi

dX∗
, 0
)

(20)

Apparently, to make it work, none of the elements in dX∗

can equal 0. In other words,

The key column must be a strictly increasing vector
(21)

Let [t∗−, t∗+] be the subset sum range for the key
column, [t−i , t+i ] be the subset sum range for Xi. We need
to calculate the appropriate subset sum range [t∗−i , t∗+i ]
for X∗i .

Assume the key meets requirement 21. Suppose after all
the rest dimensions are shadowed and running mFLSSS
(FLSSS extended to multidimensional space) on X∗ pro-
vides a solution, then the solution must satisfy:

t∗− ≤ s∗ ≤ t∗+

t∗−i ≤ s
∗
i ≤ t∗+i

(22)

where

• s∗ is the subset sum of the solution’s key column.
• s∗i is the subset sum of the solution’s ith column.

Based on eq. 17, sum of the pre–shadowed ith column
of the solution would be

si = s∗i − αis∗ (23)

And from eq. 22 we get the bounds for si:

t∗−i − αit
∗+ ≤ si ≤ t∗+i − αit

∗− (24)

Equalize the bounds to si ∈ [t−i , t
+
i ], we can solve t∗−i and

t∗+i :
[t∗−i , t∗+i ] = [t−i + αit

∗+, t+i + αit
∗−] (25)

Here comes a problem: to make eq. 25 legit, the upper
bound must be no less than the lower bound, that is

t−i + αit
∗+ ≤ t+i + αit

∗− ⇐⇒ αi ≤
t+i − t

−
i

t∗+ − t∗−
(26)
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However, αi is calculated from eq. 20. We have no guar-
antee of ineq. 26 being true.

B. Key Dimension Adjustment

In the best scenario, after calculating αi, i ∈ [2, d], none
of them fails ineq. 26. Then we can compute [t−i , t

+
i ] and

load mFLSSS. But the world is not perfect. We must think
of a backup plan.

Observing ineq. 26, the upper bound of αi is controlled
by the key column subset sum range width t∗+− t∗−. If it
is infinitely small, or just 0, then αi is bounded by nothing,
and ineq. 25 would always be legit.

Holding this idea, how about we adding a redundant
column as the key dimension in which the elements are
an integer sequence? Summing integers will always be an
integer, so the subset sum range width can be set to 0.

Add the key column 1 : N to X:

X = (X∗, X1, . . . , Xd)
T

=

 1 x11 . . . x1d
...

...
...

...
N xN1 . . . xNd

 (27)

Then eq. 25 becomes

[t∗−i , t∗+i ] = [t−i , t
+
i ] + αit

∗ (28)

where t∗ is the key column subset sum. No bounding issue
will happen to αi any more.

Yet we have a new problem: what is the value of t∗? The
original X does not have this redundant column, thus no
requirement on the subset sum on this dimension. So t∗

could be any value.

Fortunately, because X∗ is an integer sequence, sum-
ming up any L (subset size) of them can be no less than∑L
k=1 k and no greater than

∑N
k=N−L+1 k. Therefore, all

the possible subset sums for the key column would be an
integer sequence of size L(N − L) + 1:

t∗ ∈
( L∑
k=1

k
)

:
( N∑
k=N−L+1

k
)

=
1

2
L(1 + L) :

1

2
L(2N − L+ 1)

(29)

This implies that to finally solve the problem, we could
kick off L(N−L)+1 mFLSSS function calls, each of which
has a different key column subset sum in sequence 29 with
0 error.

A better way is to design a non–zero error so the number
of mFLSSS calls may be reduced. More specifically, from
ineq. 26 we know the range of key column subset sum must
satisfy:

t∗+ − t∗− ≤ t+i − t
−
i

αi
(30)

Therefore, let

2e∗ = t∗+ − t∗− = min
( t+1 − t−1

α1
, . . . ,

t+d − t
−
d

αd

)
(31)

If 2e∗ is less than 1, it means the subset sum range
is not wide enough to cover more than one integer in
an consecutive integer sequence, then we stay with the
original method of calling mFLSSS L(N − L) + 1 times.
Otherwise, the total number of mFLSSS calls can be
reduced to

dL(N − L)

2e∗
e (32)

with key column subset sum ranges:[1

2
(1 + L)L, b1

2
(1 + L)L+ 2e∗c

]
,[

d1
2

(1 + L)L+ 2e∗e, b1
2

(1 + L)L+ 4e∗c
]
,[

d1
2

(1 + L)L+ 4e∗e, b1
2

(1 + L)L+ 6e∗c
]
,

...

(33)

C. Algorithm

Algorithm 6 is a summary of the multidimensional
FLSSS implementation.

The for loop at line 16 and 22 can be parallelized.
Several earlier versions of FLSSS simply randomly sam-
pled (N−L)L+1

D (D being the number of threads) or
dL(N−L)/2e∗e

D elements from the subset sum sequence for
each thread. However, because the time mFLSSS would
take for a certain β is unpredictable, it is often the case
that some threads quit too early. This problem has been
resolved in the current version by enforcing communica-
tion among threads to dynamically control the number of
βs each thread will work on.

D. Conjugate Pair

Difference in the time costs of solving a multidimen-
sional fixed size subset sum problem and its conjugate
is more pronounced than that for FLSSS, which was
discussed in section VII. It is recommended to try both
simultaneously. However, if computing resource allows,
spawning as many as possible threads is still the best way
to find the required number of solutions in the shortest
time. Such time cost is not linear to the number of threads
invoked, but usually, decreases much faster as the threads
grow.

IX. Multi–objective Multidimensional Knapsack
Problem

One of the main values of the Multidimensional Fixed
Size Subset Sum Solver (MFSSSS) is that it can be
applied to solve a general–purpose Knapsack Problem.
To MFSSSS, there is no difference among whether the
knapsack problem is multi–objective or multidimensional
or both.

Consider the following N × d multidimensional multi-
objective knapsack problem:

X = (X1, X2, . . . , XV , XV+1, . . . , Xd) (34)
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Algorithm 6 Multidimensional FLSSS

KNOWN:

1) Matrix X = [X1, . . . , Xd] where Xi is the ith
column.

2) Subset size L.
3) Subset sum bounds. (t−1 , . . . , t

−
d ) and (t+1 , . . . , t

+
d ).

4) mFLSSS — the multivariate version of FLSSS.

SOLVE: Multidimensional Fixed Size Subset Sum
Problem

1: Calculate the rank–correlations among columns in X.
Denote the correlation matrix by RX .

2: For RX , calculate the column sum or row sum vector
SRX

. Denote the ith element by SRX
(i).

3: if
∑d
i=1 SRX

(i) = d2 then

4: Load mFLSSS and return. B The condition means
all the columns are perfectly rank correlated.

5: end if

6: Select i ∈ 1 : d where SRX
(i) is the largest as the key.

Switch the key with the first column in X, which then
becomes [X∗, X2, . . . , Xd]. If dX∗ contains 0, find the
next largest SRX

(i) and select the corresponding Xi as
the key column. Keep doing such until the differential
of the key contains no 0. If no such column found, head
to line 13.

7: Calculate αi for all i ∈ 2 : d based on eq. 20.

8: if αi satisfy eq. 26 for all i ∈ 2 : d then

9: Shadow X2, . . . , Xd according to eq. 17

10: Compute [t∗−i , t∗+i ] for all i ∈ 1 : d from eq. 25.

11: Load mFLSSS on the shadowed matrix and return.

12: end if

13: Add integer key column 1 : N to X, as in eq. 27.

14: Calculate αi for all i ∈ 1 : d, shadow the matrix and
subset sum ranges.

15: if 2e∗ < 1 in eq. 31 then
16: for β in L

2 (1 + L) : L2 (2N − L+ 1) do
17: Compute [t∗−i , t∗+i ] from eq. 28 for all i ∈ 1 : d.
18: Set subset sum range for the key as [β − ε, β + ε]

where 0 < ε < 1.
19: Load mFLSSS on the shadowed matrix with the

new target range.
20: end for B This loop is parallelizable.
21: else
22: for β in 1 : dL(N−L)2e∗ e do
23: Set the key column subset sum range to the ith

element in sequence 33.
24: Load mFLSSS on the shadowed matrix with the

new subset sum range.
25: end for
26: end if

27: Collect the solutions and return.

where

• X1, . . . , XV are the value dimensions. A knapsack
problem asks for a subset of the N objects such
that the sum among these dimensions are as large
as possible.

• XV+1, . . . , Xd are the capacity dimensions. A knap-
sack problem would require a subset of the N objects
to sum less than a value or within a certain range
among these dimensions.

If we fix the subset size to L, this knapsack problem
essentially becomes a multidimensional fixed size subset
sum problem. Several aspects can be noted:

• Any size–L subset sum will be no greater than sum of
the L largest elements and no less than sum of the L
smallest elements in the superset, so any dimension is
potentially bounded from two sides. For this reason,
to maximize the value dimensions, one can first set the
lower bound of the subset sum range close to sum of
the L largest elements in superset. If it fails/succeed
for a solution, lower/raise the bound and try again.
The trial and error procedure can be automated, and
practically, a heuristic solution — where the subset
sum is close enough to the maximum — is often
satisfactory.

• Minimizing a value dimension is equivalent to maxi-
mizing its negative.

• For any of the weight dimensions, if it is bounded only
from one side, set the bound on the other side to sum
of the L largest/smallest elements in superset.

For the unfixed general–purpose knapsack problem, we
can apply the zero–padding method discussed in section
VII-B. Practical examples can be found in the package
manual.

X. Summary

So that is how long FLSSS have gone so far. I hope more
advancements can be made in future, for example, if only
we can mine some information about the bounding vectors
of the old child for those of the new one to converge faster
in the squeezing procedure. I have some intuitions but they
seem not to work based on experiments. I believe the only
way to confirm the road is dead–end or the opposite is to
dig the math more rigorously.

Many people nowadays are fascinated about applying
machine learning algorithms or Mont Carlo–based meth-
ods, which are usually inherently slow, to combinatoric
problems. One of the most recent papers [2] covered some
work on using recurrent neural network for the subset
sum problem. However it only gives benchmarks on a
naive example and no concrete code is provided either.
My colleague once took months to run a relatively small
asset management optimization with genetic algorithm.
I think people like these algorithms is because they are
in tread, mathematically elegant, and can provide a rich
research resource. Additionally, they usually do not require
high programming skills. However, making good efforts
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in thinking of classical non–statistical based algorithms is
still worthy. FLSSS is probably a good example.
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