
GPrank User Guide

Hande Topa and Antti Honkela

December 21, 2016

Contents

1 Introduction 1

2 Citing GPrank 2

3 Methods overview 2

4 General usage of GPrank 2
4.1 Installing the package . 2
4.2 Necessary data . 2
4.3 Fitting the models . 3
4.4 Visualizing the models . 3
4.5 Building SQLite database . 4

5 Applications 5
5.1 RNA-seq transcript expression analysis using BitSeq 5

5.1.1 Sample data . 5
5.1.2 Fitting the models . 5
5.1.3 Visualizing the models . 6

5.2 Quantitative analysis of population sequencing data 8
5.2.1 Sample data . 8
5.2.2 Fitting the models . 9
5.2.3 Visualizing the models . 9

6 Session info 9

1 Introduction

The GPrank package has been built upon the gptk (Gaussian process toolkit)
package (Kalaitzis and Lawrence, 2011) with the addition of “fixed variance”
kernel which allows to incorporate additional variance information from pre-
processing of the observations into the Gaussian process (GP) regression models.

GPs are an ideal model for short and irregularly sampled time series and
they can be used to model and rank multiple time series, each generated by
different items within an experiment.

In (Topa et al., 2015) and (Topa and Honkela, 2016), we have evaluated
the performance of our GP-based ranking method by comparing the precision
and recall under different scenarios with and without variance usage. Simulation

1

results have shown that variance usage leads to a higher average precision, which
means less false positives appearing in the top of the ranked list. Motivated by
these results, here we will explain how to use GPrank package and then provide
examples for two different applications we had in our papers.

2 Citing GPrank

To cite GPrank in publications, please cite relevant of the two methodology
papers (Topa et al., 2015; Topa and Honkela, 2016) that the software is based
on.

3 Methods overview

Our GP-based ranking method uses Bayes factors to rank muliple time series
where the Bayes factors are computed for each item by the ratio of its marginal
likelihood under two alternative GP models, namely time-dependent and time-
independent. Time-independent model (which is referred as the null model in
the package) assumes no temporal dependency between observations and uses
only a white noise kernel to model the noise. Time-dependent model (which is
referred as the model in the package) on the other hand, assumes a smooth tem-
poral behavior, and in addition to the white noise kernel, it also includes a radial
basis function (RBF) kernel to capture the temporal dependency. Furthermore,
we use a fixed variance kernel in both models in order to incorporate variance
information which could be obtained by appropriate estimation methods during
pre-processing. For more technical details about the GP models, please refer to
the papers mentioned in Section 2.

4 General usage of GPrank

4.1 Installing the package

In order to install GPrank package from the GitHub repository, start R and run
the following command:

> devtools::install_github("PROBIC/GPrank")

In order to install from CRAN, simply use the following command:

> install.packages("GPrank")

To load the package, run:

> library("GPrank")

4.2 Necessary data

In order to construct a GP model, three vectors must be provided for each item.
These vectors are:

• t: vector containing the input values, i.e., sampled time points.

2

• y: vector containing the observed values at the corresponding time points
in vector t.

• v: vector containing the variances at the corresponding time points in
vector t.

Once we have obtained these vectors, we can construct a GP model with con-

structModel function using different kernels such as “rbf”, “white”, and “fixed-
variance”: Example:

> t=seq(0,20,5)

> y=sin(t)

> v=0.01*runif(5)

> kernelTypes=c('rbf','white','fixedvariance')
> model=constructModel(t,y,v,kernelTypes)

Please make sure that the three vectors have the same length with each
other. If the data is replicated, please remember to adjust the input vector
accordingly. For example, if there are two replicates observed at n time points
from time t1 to tn, vector t must be defined as: t = [t1, t1, t2, t2, . . . , tn, tn].

4.3 Fitting the models

apply_gpTest function takes t, y, and v vectors as input arguments and fits
two alternative GP models to the data, and computes the log Bayes factors:

> test_result=apply_gpTest(t,y,v,

+ nullModelKernelTypes=c("white","fixedvariance"),

+ modelKernelTypes=c("rbf","white","fixedvariance"))

> null_model=test_result$nullModel

> model=test_result$model

> logBF=test_result$logBF

4.4 Visualizing the models

In order to visualize the fitted GP model, one can use the plotGP function.
One can also specify the color of the plot with the second argument. One can
optionally specify the limits of the y axis as the third argument. This helps to
adjust the plotting area when GP models of multiple items are displayed in a
single figure. For example, y-axis limits can be determined by using getYlim-

its function in such cases. This function adjusts the plotting area between the
minimum and maximum values of multiple models also taking into account two
standard deviation confidence intervals. In addition, a color palette contain-
ing the distinctive colors from RColorBrewer package can be obtained with the
function getColorVector. The generated plot in Figure 1 displays ±2 stan-
dard deviations confidence region (estimated from the fitted model) around the
fitted line and errorbars denoting ±2 standard deviations (provided from fixed
variances) around the observations.

> color="lightpink" # color=getColorVector()[1]

> ylimits=getYlimits(y,v) # optional argument, also default

> plotGP(model, color, ylimits)

> title(xlab="t", ylab="y")

3

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

●

●

●

●

t

y

Figure 1: Fitted GP model for the example in Section 4.4.

4.5 Building SQLite database

Once we have had all the results ready, and saved the figures in png format, we
can use createDatabase function to create a database which can be used to view
the results in the web browser with the help of tigreBrowser package (Honkela
et al., 2011). tigreBrowser can be used to display the GP profiles on a browser
and to filter them according to provided parameters such as Bayes factors. tigre-
Browser is available on https://github.com/PROBIC/tigreBrowser and can
be installed with the command: python setup.py install –user.

Following is a simplified example to create a database containing the pro-
vided parameters (Bayes factors and fold changes) and the figures for the genes
geneA and geneB:

> BF=c(3,5) # Bayes factors

> FoldChange=c(1.2,0.8) # Fold changes

> dbParams=list("BF"=BF,"Fold change"=FoldChange)

> identifiers=c("geneA","geneB")

> dbInfo=list(database_name="testdb","database_params"=dbParams,

+ "identifiers"=identifiers)

> figures=c("figures/geneA_GP.png","figures/geneB_GP.png")

> createDatabase(dbInfo,figures)

Note: Please name the figures starting with their corresponding identifiers fol-
lowed by an underscore and the type of the figure. Specifying the type of the

4

https://github.com/PROBIC/tigreBrowser

figures allows to display multiple figures for each item.
Once the database is created, it can be viewed with the command:

python tigreServer.py -d database name.sqlite.

5 Applications

5.1 RNA-seq transcript expression analysis using BitSeq

5.1.1 Sample data

For demonstrating the usage of the functions with examples, we will be using
a small sample data from an RNA-seq time series experiment which was intro-
duced in (Honkela et al., 2015). The sample data set, named RNAseqDATA,
contains mean and standard deviation information on the expression levels of 5
transcripts (which were originated from 2 genes) at 10 time points (0, 5, 10, 20,
40, 80, 160, 320, 640, 1280 mins) for three settings: “gene”, “abstr” (absolute
transcript), and “reltr” (relative transcript) expression levels. In addition, the
fields “gene mapping” and “time mapping” includes information which is use-
ful to match the genes with transcripts and the time points with data files,
respectively. In order to load the data set, type:

> library("GPrank")

> data(RNAseqDATA)

If one is interested in getting this data structure from raw BitSeq output files
himself, he may use the bitseq_rnaSeqData function:

> t=log(c(0,5,10,20,40,80,160,320,640,1280)+5) # One can apply

> #transforation on time points

> names(t)=c("t0000.rpkm","t0005.rpkm","t0010.rpkm","t0020.rpkm",

+ "t0040.rpkm","t0080.rpkm","t0160.rpkm","t0320.rpkm","t0640.rpkm",

+ "t1280.rpkm") # matches with the names of the BitSeq output files

> trFileName="example_tr"

> bitseq_sampleData=bitseq_rnaSeqData(t,trFileName)

5.1.2 Fitting the models

From now on, let us continue with the gene-level data although one can simply
perform the same with reltr and abstr levels as well. The function bit-

seq_fitGPs can be used to fit two GP models to each gene and compute the
log Bayes factors:

> gene_gpData=RNAseqDATA$gene

> gene_GP_models=bitseq_fitGPs(gene_gpData)

If one is interested in saving the results into files, one should remember
to specify the file names for fileName_logBF, fileName_ModelParams, file-
Name_NullModelParams and input them as arguments in the bitseq_fitGPs

function:

> gene_GP_models=bitseq_fitGPs(gene_gpData, fileName_logBF,

+ fileName_ModelParams,fileName_NullModelParams)

5

5.1.3 Visualizing the models

Having the GP models fitted to the genes, one can plot the GP profile of a
specified gene with the function bitseq_plotGP. For example, the GP profile
of the gene ARAP2 shown in Figure 2 can be obtained by the following codes:

> item="ARAP2"

> multi=0 # single GP plot in the figure

> ylimits=NULL

> x_ticks=NULL

> x_label="log(5 + t/min)"

> y_label="Expression level (log-rpkm)"

> bitseq_plotGP(item, gene_GP_models, gene_gpData, multi, ylimits,

+ x_ticks, x_label, y_label)

2 3 4 5 6 7

2.
2

2.
4

2.
6

2.
8

3.
0

●

●

●

●

●
●

●

●

●

●

log(5 + t/min)

E
xp

re
ss

io
n

le
ve

l (
lo

g−
rp

km
)

ARAP2
logBF: 2.393

Figure 2: Fitted GP model for the overall gene expression levels

In order to save the figure, one can also specify the figure name in plotName

option:

> bitseq_plotGP(item, gene_GP_models, gene_gpData, multi, ylimits,

+ x_ticks, x_label, y_label, plotName="ARAP2_gene.png")

The input multi determines whether multiple plots (=1) or only a single
plot (=0) will be plotted on the same figure. For example, if we would like to
plot the GP profiles of all the transcripts of ARAP2 gene, we can display all

6

on the same plot by setting multi to 1. Let’s try that for absolute transcript
expression levels and produce Figure 3:

> abstr_gpData=RNAseqDATA$abstr

> abstr_GP_models=bitseq_fitGPs(abstr_gpData)

> item="ARAP2"

> multi=1

> ylimits=NULL

> x_ticks=NULL

> x_label="log(5 + t/min)"

> y_label="Expression level (log-rpkm)"

> bitseq_plotGP(item, abstr_GP_models, abstr_gpData, multi, ylimits,

+ x_ticks, x_label, y_label)

2 3 4 5 6 7

−
4

−
2

0
2 ●

●
●

●
● ●

●
●

●
●

●
●

● ●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

log(5 + t/min)

E
xp

re
ss

io
n

le
ve

l (
lo

g−
rp

km
)

ARAP2−004 ARAP2−005 ARAP2−001
logBF: 3.731 logBF: 3.387 logBF: 1.036

Figure 3: Fitted GP model for the absolute transcript expression levels

Let us also do the same for relative transcript expression levels and obtain
Figure 4:

> reltr_gpData=RNAseqDATA$reltr

> reltr_GP_models=bitseq_fitGPs(reltr_gpData)

> item="ARAP2"

> multi=1

> ylimits=c(0,1) # ratio range between 0 and 1

> x_ticks=NULL

7

> x_label="log(5 + t/min)"

> y_label="Relative expression level"

> plotName="ARAP2_reltr.pdf"

> bitseq_plotGP(item, reltr_GP_models, reltr_gpData, multi, ylimits,

+ x_ticks, x_label, y_label)

2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

log(5 + t/min)

R
el

at
iv

e
ex

pr
es

si
on

 le
ve

l

ARAP2−001 ARAP2−005 ARAP2−004
logBF: 3.710 logBF: 3.506 logBF: 3.237

Figure 4: Fitted GP model for the relative transcript expression levels

5.2 Quantitative analysis of population sequencing data

In (Topa et al., 2015), we developed a GP-based method BBGP — beta binomial
Gaussian process — for modeling the SNP frequencies in fruit fly populations
across several generations in an experimental evolution study. The same method
can in principle be used to analyse any population sequencing data where one is
interested in the proportion of reads aligning to a specific location that contain
a specific feature (such as a SNP).

5.2.1 Sample data

Here we will use a small sample data set named snpData. This sample data set
contains 5 replicates of counts and sequencing depth information for 5 SNPs at
the generations (0, 10, 20, 30, 40, 50, 60). In order to load the data set, run the
command:

8

> data(snpData)

If one is interested in getting this data structure from raw sample files him-
self, he may use the bbgp_snpData function:

> dataFileName="sampleCountsData"

> sampleSNPdata=bbgp_snpData(dataFileName)

5.2.2 Fitting the models

Given the counts and sequencing depth, we can use get_bbgpMeanStd function
in order to get the posterior means and standard deviations of the frequencies
using a beta binomial model with parameters α and β set to 1.

> x=as.matrix(as.numeric(colnames(snpData$counts)))

> # take the fifth SNP in the sample data as example:

> counts=as.matrix(snpData$counts[5,])

> seq_depth=as.matrix(snpData$seq_depth[5,])

> bbgp=get_bbgpMeanStd(x,counts,seq_depth)

> t=bbgp$time

> y=bbgp$posteriorMean

> v=(bbgp$posteriorStd)^2

Then, we can perform our GP-based test with apply_gpTest function:

> snp_gpTest=apply_gpTest(t,y,v)

5.2.3 Visualizing the models

Once we have fitted the GP model, we can visualize it using plotGP function
and obtain Figure 5:

> model=snp_gpTest$model

> ylims=c(0,1)

> plotGP(model, ylimits=ylims)

> title(xlab="Time", ylab="SNP frequency")

6 Session info

> sessionInfo()

R version 3.3.1 (2016-06-21)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.11.6 (El Capitan)

locale:

[1] C/UTF-8/C/C/C/C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

9

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●
●

●●
●

Time

F
re

qu
en

cy

Figure 5: Fitted GP model of the SNP frequencies across generations

[1] GPrank_0.1.2

loaded via a namespace (and not attached):

[1] Matrix_1.2-6 DBI_0.5-1 tools_3.3.1

[4] gptk_1.08 RColorBrewer_1.1-2 fields_8.4-1

[7] maps_3.1.1 memoise_1.0.0 Rcpp_0.12.8

[10] tigreBrowserWriter_0.1.4 RSQLite_1.1-1 grid_3.3.1

[13] digest_0.6.10 spam_1.4-0 matrixStats_0.51.0

[16] lattice_0.20-33

References

Honkela, A et al. (2011). tigre: Transcription factor inference through gaussian process reconstruc-

tion of expression for bioconductor. Bioinformatics, 27(7), 1026–1027.

Honkela, A et al. (2015). Genome-wide modeling of transcription kinetics reveals patterns of RNA

production delays. Proceedings of the National Academy of Sciences, 112(42), 13115–13120.

Kalaitzis, A. A. and Lawrence, N. D. (2011). A simple approach to ranking differentially expressed

gene expression time courses through Gaussian process regression. BMC Bioinformatics, 12,

180.

Topa, H. and Honkela, A. (2016). Analysis of differential splicing suggests different modes of short-

term splicing regulation. Bioinformatics, 32(12), i147–i155.

10

Topa, H et al. (2015). Gaussian process test for high-throughput sequencing time series: application

to experimental evolution. Bioinformatics, 31(11), 1762–1770.

11

	Introduction
	Citing GPrank
	Methods overview
	General usage of GPrank
	Installing the package
	Necessary data
	Fitting the models
	Visualizing the models
	Building SQLite database

	Applications
	RNA-seq transcript expression analysis using BitSeq
	Sample data
	Fitting the models
	Visualizing the models

	Quantitative analysis of population sequencing data
	Sample data
	Fitting the models
	Visualizing the models

	Session info

