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INTRODUCTION

Simulation of genotype data is of critical importance in genetic studies. Assessing accuracy of methods
for estimation of genetic parameters and evaluation of strategies generally is performed using simulated
datasets. Simulation software is especially of importance in the context of genetic marker data.

Software available for simulation of genotype data include SimPed (Leal et al., 2005), GWAsimu-
lator (Li and Li), genomeSIM (Dudek et al., 2006) and HAPSIMU (Zhang et al., 2008). Programs are
generally designed for specific purposes; GWAsimulator and genomeSIM are designed for case-control
studies. HAPSIMU is designed to evaluate the effect of population structure in population based asso-
ciation studies. SimPed is a more general simulation program for generating data of a large number of
marker loci in general pedigrees.

Simulations need to be realistic and an important aspect in simulation studies is evaluation of this.
Important aspects are if the simulated population is in mutation-drift equilibrium, patterns of linkage
disequilibria and number of heterozygous loci. Parameters from a simulated population need to be com-
parable to their theoretical expectations.

Posibilities for testing specific parameters is limited in most available simulation packages. Packages
are generally available as compiled executable files with limited input and output possibilies. Another
simulation paradigm is to provide users with specific tools or functions which can then be used for
building specific simulation scenaria.

In this paper, we introduce the package HaploSim for R (R Development Core Team, 2007). Hap-
loSim provides a series of simulation functions embedded in R. Integration into R allows to easily pro-
gram simulation scenaria and evaluate simulation outcome. The paper is organized as follows. First, we
briefly introduce HaploSim. Next, we show three examples and analyse some outcome. We conclude the
paper with final remarks.

DESCRIPTION

HaploSim uses S4 class definitions (Chambers, 1998). Class haplotype exploits the biallelic nature of
SNP markers by only storing genome positions of one allele of a marker locus (say the 1 allele). The
1 alleles in an object of class haplotype are represented as integers which denote their relative position
on the chromosome and are stored in the snp slot the object. The other slots of class haplotype are
qtl, which is a list with the additive effects of the genes on the chromosome; hID which represents the
objects ID number (in correctly programmed simulation unique for each haplotype object); phID0 and
phID1 which represent the ID number of the two parental haplotypes.

The following example shows object haplo. The object is of class haplotype and has a 1 allele at
positions (46,288,409,453,525,548,788,881,887,937)’. The object’s empty qtl slot demonstrates that
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there are no gene alleles with additive effect different from 0 in this object. The object’s ID number is 1
and parental haplotypes are unknown.

An object of class "haplotype"
Slot "snp":
[1] 46 288 409 453 525 548 788 881 887 937

Slot "qtl":
$`103`
[1] 0.957

$`573`
[1] 0.453

$`899`
[1] 0.678

Slot "hID":
[1] 1

Slot "phID0":
[1] NaN

Slot "phID1":
[1] NaN

Package HaploSim provides class haploList to store objects of class haplotype. Class haploList
extends the standard list class of R and includes slot genDist which specifies the haplotype size in
Morgan and slot nDec which specifies the number of decimal positions of the marker locations. The
combination of genDist and nDec gives the number of marker positions. In the previous example,
genDist was 1 Morgan and nDec was 3. Consequently, there where 1,000 marker positions on the
haplotype.

Package HaploSim utilizes the Haldane mapping function to model recombinations (Haldane, 1919).
The number of recombinations in each meiosis is drawn from a poisson(genDist) distribution. The
recombinations are subsequently positioned at random positions along the chromosome and absence
of interference is assumed. Only an odd number of recombinations in a segment produce recombi-
nant segments in the offspring haplotype. The basic function is HaploSim is SampleHaplotype,
which is available for custom use and is used in higher level functions as SampleHaplotypes and
SamplePedigree.

Currently, HaploSim does only implement additive gene action of genes, which are refered to as
Quantitative Trait Loci (QTL). QTL are stored in slot qtl of class haplotype which is a list. The
elements of the list can be accessed by index or by name. The names are integers which represent the
qtl positions on the chromosome and the elements are the additive effects. To avoid computational load,
HaploSim does only additive effects different from 0.

The following example shows object haplo again. QTL are located at positions (691,889,955)’ and
additive effects vary between 0.042 and 0.328.

An object of class "haplotype"
Slot "snp":
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[1] 46 288 409 453 525 548 788 881 887 937

Slot "qtl":
$`691`
[1] 0.246

$`889`
[1] 0.0421

$`955`
[1] 0.328

Slot "hID":
[1] 1

Slot "phID0":
[1] NaN

Slot "phID1":
[1] NaN

Function AssignQTL assigns qtl loci to the haplotypes of object of class hList. Arguments of
AssignQTL include sigma2qtl which represents the genetic variance of each QTL and MAF which
represents the Minor Allele Frequency above which SNP loci are candidate for becoming QTL. Setting
argument rmCausSNP = FALSE removes causative marker loci from the locus panel.

Function getAll retrieves alleles from an object of class hList and returns a matrix with number
of rows equal to the number of haplotypes and number of columns equal to the total number of locus
positions in the object. To retrieve qtl alleles from an object of class hList, one should set argument
what = ’qtl’.

DEMONSTRATION

We show three reproducible examples of implementing HaploSim. The first example simulates a random
mating population for 100 generations. The second example simulates a crossbred population. The third
generation simulates haplotypes through a known pedigree.

Example 1: Random Mating population

In this example, we simulate a random population for 100 generations. Chromosome length is 1 Morgan
and the number of marker positions is 10,000. The base population consists of 200 haplotypes which are
heterozygous at 100 marker positions with MAF equal to 0.5.

> nDec <- 3
> genDist <- 1
> nLoc <- 100
> pSnp <- seq(0, 1, length.out = nLoc)
> baseHaplos <- SampleHaplotypes(nHaplotypes = 200, genDist = genDist,
+ nDec = nDec, pSnp = pSnp)
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Mutation probability is maintained at 1E-05 along the generations. The number of haplotypes is
maintained at 200 and mating is random. Effective population size is 199 (Ne = 2N−1, (Ne = 2N−1,
Crow and Kimura (1970) p99)). In the following code lines, we program the script to simulate the 100
random generations. The objects of class haplotype are stored in object hList of class haploList and
the hList object in each generation simply overwrites hList of the previous generation.

Every thenth generation, allele frequencies are calculated with function calc.freq and a ma-
trix with pattern of Linkage Disequilibrium decay is calculated with function ldDecay. Functions
calc.freq and ldDecay are from additional package mfwSchatting which provides a series of func-
tions to analyse output from package HaploSim. The allele frequencies and LD pattern are stored in
object output. The names of output identify the generation number.

> hList <- SampleHaplotypes(orig = baseHaplos, prMut = 1e-05)
> output <- list()
> for (g in 2:10) {
+ hList <- SampleHaplotypes(orig = hList, prMut = 1e-05)
+ if (g%%2 == 0)
+ output[[as.character(g)]] <-
+ list(calc.freq(hList),ldDecay(hList,min(100,
+ maxSnp = min(dim(getAll(hList))[2]))))
+ }

Elements of output were extracted and used to generate Figures and . The histograms in the
panels of Figure vary between generations and indicate that the population was not in an equilibrium
situation. Note peaks at extreme that the allele frequencies will have a peak at low frequency, due to the
combination of drift and mutations. The number of cases at high frequencies is expected to be lower
because the probability of the combination of drift and mutation is less likely.

Figure shows strength of Linkage Disequilibrium plotted against distance between markers over
generations. Again, there is no evidence for an equilibrium situation. The line plotted in the panels
shows the theoretical expectation of LD pattern (Sved, 1971).

Figures and indicate that an equilibrium situation was not reached after 100 generations. We simu-
lated the population for 900 additional generations. Distribution of allele frequencies is shown in the left
panel of Figure ?? and the right panel of this figure shows the Linkage Disequilibrium pattern with the
theoretical expectation.

Example 2: Crossbreeding population

In this section simulate a crossbred population. The parental individuals each crossbred individual orig-
inate from two populations and consequently have different genetic background. Parental population p0
is simulated from the haplotypes simulated in example 1 and now are assigned to object hList0. Hap-
lotypes for parental population p1 are simulated identically as in example 1 and are assigned to object
hList1.

Parental individuals are simulated from independent populations. We use equal parameters for sim-
ulation of both populations. simulating the data as in the previous example to simulate purebred parental
populations p0 and p1.
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Figure 1: Distribution of allele frequency over 100 generations. Unstable distribution shows that the
population is far from an equilibrium situation.
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Figure 2: Linkage Disequilibrium pattern each 25th generation. Line is the theoretical Linkage Dise-
quilibrium pattern from (Sved, 1971). Difference between observations and line give indicate that the
population is not in an equilibrium situation.
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Figure 3: Histogram of allele frequencies (a) and pattern of Linkage Disequilibrium (b) after 1,000
generations.

A practical way to simulate individuals in HaploSim is to simply record which haplotype pair belongs
to which individual. In this example, we simulate p0 individuals by combining two random haplotypes
from hList0. Two consecutive elements in vector i0 identify the two haplotypes of an individual.
Individuals in p1 are simulated identically. Finally, we reorder hList0 and hList1 according to i0
and i1.

> i0 <- sample(1:length(hList0))
> hList0 <- hList0[i0]
> i1 <- sample(1:length(hList1))
> hList1 <- hList1[i1]

In the previous example, we did not simulate gene loci. Here, we will assign additive effects to alleles
of specific marker loci on the haplotypes in hList0 and hList1. We use function AssignQTL for this
purpose. In this example, we use equal variance for all gene loci, specified with argument sigma2qtl
= 1. Ten percent of the markers with MAF> 0.1 are selected to become QTL and consequently are
removed from the marker panel of both populations.

> hList0 <- AssignQTL(hList0, frqtl = 0.1, sigma2qtl = 1,
+ MAF = 0.1)
> hList1 <- AssignQTL(hList1, frqtl = 0.1, sigma2qtl = 1,
+ MAF = 0.1)

We simulate the crossbred population by simulating haplotypes from both populations and combining
them into one object of class haploList. We use the gg argument of function SampleHaplotypes
to communicate that consequtive haplotypes belong to one individual. We set argument QTL = TRUE
because we have QTL. Finally, we create haplotype combinations and reorder cb according to these
combinations.

> cb <- SampleHaplotypes(orig = hList0, gg = 1:length(hList0),
+ nMeioses = 1, QTL = TRUE, prMut = 1e-05)
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> cb <- c(cb, SampleHaplotypes(orig = hList1, gg = 1:length(hList1),
+ nMeioses = 1, QTL = TRUE, prMut = 1e-05))
> icb <- numeric(length(cb))
> icb[seq(1, length(cb), by = 2)] <- sample(1:(length(cb)/2))
> icb[seq(2, length(cb), by = 2)] <- sample((length(cb)/2) +
+ 1:(length(cb)/2))
> cb <- cb[icb]

We might want to count the number of different haplotypes in and between populations. In a higher
number of shared haplotypes between populations and this gives an idea about the genetic relation be-
tween populations. The package mfwSchatting provides functions for analysing haplotype data and
we use function countHaplotypes from this package.

> hCount <- countHaplotypes(hList = c(hList0, hList1,
+ cb), gg = c(rep("pb0", length(hList0)), rep("pb1",
+ length(hList1)), rep("cb", length(cb))))
> hCount[upper.tri(hCount)] <- NA

Table 1: Haplotype count within (diagonal elements) and between populations (off-diagonal elements).

cb pb0 pb1
cb 200
pb0 13 200
pb1 14 0 199

Table 2 summarizes characteristics of the three populations. The number of marker loci in the cross-
bred population obviously is larger than in the two purebred populations, and the same is true for the
number of QTL loci.

Table 2: Summary of simulated crossbreeding scheme. Purebred parental lines are pb0 and pb1. Cross-
bred offspring population is cb.

pb0 pb1 cb
nloc 1013 974 1812
nqtl 53 46 99
vg 59.411 39.840 38.669

Example 3: Simulating through a pedigree

In this example, we apply function SamplePedigree to simulate haplotypes through a pedigree,
obtained from pig breeding company IPG (Beuningen, Netherlands). The pedigree consists of 566 indi-
viduals over 8 generations.

We apply function SamplePedigree to simulate haplotypes through the pedigree. Haplotypes
for individuals with unknown parents are sampled from list of base haplotypes hList0, which was
simulated in Example 2. Because QTL were already assigned to marker loci of these haplotypes in
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the previous example, we set argument QTL = TRUE to to continue simulating these QTL through the
pedigree.

> phList <- SamplePedigree(orig = hList, ped = ped,
+ prMut = 1e-05, QTL = TRUE)
> ped <- phList$ped
> hList <- phList$hList

Function SamplePedigree returns a list. The first element of the list is the pedigree with two
additional columns which identify the two haplotypes belonging to each individual. The second element
is an object of class haploList, which contains the haplotypes.

Genotype value of an individual is the sum of the additive effects at its two haplotypes. In the
following code, we calculate genotype values for the individuals and assign them to an additional column
in the pedigree. We simulate phenotype by adding random normal deviate to the the genotype with mean
0 and variance equal to the genotype variance.

> hVal <- apply(getAll(hList, what = "q"), 1, sum)
> names(hVal) <- names(hList)
> mm0 <- match(ped$hID0, names(hVal))
> mm1 <- match(ped$hID1, names(hVal))
> ped$G <- hVal[mm0] + hVal[mm1]
> ped$P <- ped$G + rnorm(n = nrow(ped), sd = sd(ped$G))

Now we can use the simulated pedigree to perform analyses. In this example, we perform a Whole
Genome Analysis to identify marker loci which are in strong Linkage Disequilibrium with QTL. We
use a simple analysis to identify significant marker loci and assing the names of these loci to object
signLoci.

> alleles <- getAll(hList)
> genotypes <- alleles[mm0, ] + alleles[mm1]
> signpVals <- apply(genotypes, 2, function(x) {
+ model <- lm(ped$P ~ x)
+ summary(model)$coefficients[, 4][2] < 0.05
+ })
> signLoci <- names(signpVals)[which(signpVals)]

The number of significant marker loci was 174 from the initial set of 1211 marker loci. In this
analysis, we ignored problems due multiple testing and population structure.

FINAL REMARKS

With package HaploSim, we developped a flexible package for simulation of population genetic data.
The most important advantage of HaploSim in comparison to other available simulation packages is
its integration into R. This enables users to easily program their own simulation schemes and enables
analysis of the results using available statistical and graphical functions in R.

R is a high level programming language which comes at the cost of computing speed. The design
of HaploSim, however, uses the sparse nature of genotype data. In addition, computing time does not
scale with the number of markers but with chromosome size because ffunction SampleHaplotype
uses vectorized computing to simulate recombinations.

HaploSim available from the repository of R packages CRAN, http://cran.r-project.org/.
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