
The HiveR Package
Bryan A. Hanson

July 27, 2017

This document describes some features of the HiveR package.1 The 1 HiveR version 0.3.42

current release contains a core set of functions for creating and draw-
ing hive plots.2 There may well be bugs and features that can be 2 http://github.com/

bryanhanson/HiveR or CRAN.R-
project.org/package=HiveR

improved – your comments are always welcome.3 In fact, user input

3 Contact info and issue tracking can be
found at the web sites above.

has regularly improved and extended HiveR.
As with any R package, details on functions discussed below can

be found by typing ?function_name in the R console after installing
HiveR. A complete list of functions available can be seen by typing
?HiveR and then at the bottom of the page that opens, click on the
index link. Many of the help pages contain extensive examples of
common tasks.

Background, Inspiration and Motivation

HiveR was inspired by the concept of hive plots as developed by Mar-
tin Krzywinski at the Genome Sciences Center (www.hiveplot.com).
Hive plots are a reaction to "hairball" style networks in which the
layout of the network is arbitrary and hypersensitive to even small
changes in the underlying network. Hive plots are particularly well-
suited for comparing networks, as well as for the discovery of emer-
gent properties of networks.

The key innovation in a hive plot, compared to other means of
graphically displaying network structure, is how node information is
handled. In a hive plot, there is a node coordinate system consisting
of two parts. First, nodes are assigned to axes based upon qualitative
or quantitative characteristics of the the node, for instance member-
ship in a certain category. As will be discussed later, this assignment
process is key to constructing a hive plot. Second, the position of
the node along the axis, the radius, is based upon some quantitative
characteristic of the node. Edges are handled in a fairly standard
way, but may be colored or have a width or weight which encodes an
interesting value.

In creating a hive plot, one maps network parameters to the plot,
and thus the process can be readily tuned to meet one’s needs. The
mappable parameters are listed in Table 1, and the mapping is lim-
ited only by one’s creativity and the particular knowledge domain.
Thus ecologists have their own measures of food webs, social net-
work analysts have various measures describing interconnectedness
etc. An essential point is that mapping network parameters in this

http://github.com/bryanhanson/HiveR
http://github.com/bryanhanson/HiveR
http://CRAN.R-project.org/package=HiveR
http://CRAN.R-project.org/package=HiveR
http://www.hiveplot.com/

the hiver package 2

way results in a reproducible plot.
Krzywinski has an excellent paper detailing the features and

virtues of hive plots and is a must-read.4 He notes the following 4 Martin Krzywinski, Inanc Birol,
Steven JM Jones, and Marco A Marra.
Hive plots – rational approach to visu-
alizing networks. Briefings in Bioinfor-
matics, 2011. doi: 10.1093/bib/bbr069

virtues of hive plots:

• Hive plots are rational in that only the structural properties of the
network determine the layout.

• Hive plots are flexible and can be tuned to show interesting fea-
tures.

• Hive plots are predictable since they arise from rules that map
network features to plot features.

• Hive plots are robust to changes in the underlying network.

• Hive plots of different networks can be compared.

• Hive plots are transparent and practical.

• Plots of networks are generally complex and require some in-
vestment to understand. Complexity plots well in a hive plot and
details can be inspected.

mappable hive plot parameters

Axis to which a node is assigned
Radius of a node
Color of a node
Size of a node
Color of an edge
Width or weight of an edge

Table 1: Hive plot features that can be
mapped to network parameters

Inspired by the examples given by Kryzwinski in his materials
on the web, I created the R package FuncMap in December 2010.5 5 Hanson, 2011

This single function package maps the function calls made by an R
package into 3 types: sources, which are functions that make only
outgoing calls, sinks, which take only incoming calls, and managers,
which do both.

HiveR takes things quite a bit further. HiveR is a fresh implementa-
tion of hive plots in R, not a port of the original Perl version. As such,
it does some things differently, and not all features are implemented
(and they may or may not be in the future). HiveR will draw 2D hive
plots with 2-6 axes in a style close to the original. However, HiveR
adds value by making 3D, interactive plots possible when there are 4-
6 axes. These 3D plots were inspired by the ideas of VSEPR theory in

the hiver package 3

chemistry: the axes of these 3D plots are arranged with tetrahedral,
trigonal bipyramidal or octahedral geometries for 4-6 axes respec-
tively (see Figure 1 and wikipedia/VSEPR). The specifics of 3D hive
plots will be discussed in a later section.

octahedral
geometrytrigonal bipyramidal

geometry
tetrahedral
geometry

Bold lines come toward you, dotted lines move away. Numbers give the order the axes are drawn in HiveR.
For tetrahedral and octahedral geometries, all axes are equivalent. For the trigonal bipyramidal geometry,

axes 1-3 are called equatorial, and axes 4 & 5 are called apical.

1

2

4

3

5

1

2

3 4

5

6

Figure 1: Idealized geometries accord-
ing to VSEPR theory

HiveR Features

Internal Representation of Hive Data

HiveR stores the information needed to create a hive plot in a HivePlotData

object which is an S3 class. As an S3 class, this structure can be easily
extended by the user to store additional information (though using
that information as part of a hive plot would require more work).
Utilities are provided to summarize, troubleshoot and check the in-
tegrity of these objects (functions sumHPD and chkHPD respectively).
The structure and content of a HivePlotData object is shown in Ta-
ble 2.

Generation of Random Network Data Sets

HiveR has the ability to generate random network data sets using
function ranHiveData. These are primarily useful for testing and
demonstrations. A data set has a type, either 2D or 3D. Type 2D may
have 2-6 axes and is plotted in a 2D window using grid graphics
which are extremely fast. Type 3D applies to 4-6 axes only and these
hive plots are drawn in 3D using rgl and are interactive. When using
ranHiveData you can specify which type you desire.

Built-in Data Sets

HiveR contains two related 2D type data sets, Safari and Arroyo.
These are plant-pollinator data sets which give the number of visits
for each plant-pollinator pair. Data for the E. coli gene regulatory
network is also included; it is derived from the RegulonDB.6 Each of 6 Gama-Castro et al., 2011

https://secure.wikimedia.org/wikipedia/en/wiki/Vsepr

the hiver package 4

$nodes
$id int identifier
$lab chr label
$axis int axis
$radius num radius
$size num size
$color chr color

$edges
$id1 int 1st node id
$id2 int 2nd node id
$weight num width
$color chr color

$type chr 2D or 3D plot
$desc chr description
$axis.cols chr axis colors
- attr chr "HivePlotData"

Table 2: The structure of a HivePlotData
object

these data sets are used in the examples below. Finally, there is a data
set called HEC which is derived from the hair and eye color data set.

Importing Real Data Sets

There are three functions for importing data into HiveR: dot2HPD,
adj2HPD and edge2HPD.

The function dot2HPD will import files in .dot format and convert
them to HivePlotData objects (see wikipedia/DOT_language). This
is done with the aid of two external files. One contains information
about how to map node labels to HivePlotData properties. The other
contains information about mapping edge properties. This approach
gives one a lot of flexibility to process the same graph into various
hive plots. This process is demonstrated later for the E. coli data set.
Currently, only a very small set of the .dot standard is implemented
and one should not expect any particular .dot file to process correctly.

The function adj2HPD will import an adjacency matrix, and edge2HPD

will import an edge list. For these functions the initially created
HivePlotData object will almost certainly need a fair amount of ma-
nipulation before it can be plotted.

Modifying HivePlotData Sets

Function mineHPD has several options for extracting information from
within an existing HivePlotData object and converting it to a mod-
ifed HivePlotData object. Additional options are readily incorpo-

https://secure.wikimedia.org/wikipedia/en/wiki/DOT_language

the hiver package 5

rated. For the current selection, check the help page (?mineHPD). This
function will be used extensively in the examples that follow. In addi-
tion, function manipAxis can also be used to modify a HivePlotData

object by scaling or inverting axes. This can be done on the fly (as
the plot is created) or the HivePlotData object can be permanently
modified.

Making Hive Plots

In a hive plot, because the position of the node along an axis (the ra-
dius) is quantitative, the nodes can be plotted at their absolute value
(native units), normalized to run between 0. . . 1, plotted by rank or
by a combination of ranking and norming. Some aspects of the plot
that depend upon these options are shown in Table 3. These differ-
ent ways of plotting the same data often look dramatically different,
and for a particular data set, some methods of plotting may provide
more insight. Functions plotHive and plot3dHive have an argument
method which controls node plotting on the fly; function manipAxis

is used in the background and can also be called independently if
desired.

method axis length center hole (2D) node behavior

native f (units) asymmetric nodes may overlap
ranked ∝ rank(nodes) circular nodes evenly

spaced & don’t
overlap

normed all equal circular nodes may overlap
ranked &
normed

all equal circular nodes evenly
spaced & don’t
overlap

Table 3: Comparison of methods for
adjusting the radii of nodes during
plotting.

A Simple Example Using a Plant-Pollinator Network

HiveR contains the built-in data sets, Safari and Arroyo which pro-
vide a useful demonstration of HiveR.7 These are plant-pollinator 7 Be warned: I am not an ecologist and

these data sets and plots are merely a
demonstration of HiveR.

data sets which were derived from Vasquez and Simberloff.8 These
8 Vazquez and Simberloff, 2003

describe two-trophic level systems that consist of almost exactly the
same suite of plants and pollinators. Safari is based upon observa-
tions of an undisturbed area, while Arroyo is from a nearby location
grazed by cattle. The original data is composed of plant-pollinator
pairs and a count of visits during a fixed observation period for each
pair.

the hiver package 6

Figures 2 and 3 show two means of plotting Safari using package
bipartite.9 Figure 2 is a simple diagram giving plant-pollinator 9 Truthfully we are using the data set

Safariland from package bipartite;
Safari was derived from Safariland.

visits as a gray-plot heat map (plants are on the vertical axis). There
are two parameters encoded here: the pairings and the number of
visits (arguably, the dimensions of the matrix give the number of
species involved as well). Figure 3 displays plants across the bottom
and pollinators across the top. The width of the connecting bands in
the middle encodes the number of visits for a given plant-pollinator
pair. The width of the top or bottom panel for a species is the total
number of visits in which that species participates. Thus there are
three parameters shown in this figure: the pairings, the total visits
for a single species, and visits between a given pair. This second plot
makes it pretty clear that four plant-pollinator pairs have by far the
largest number of visits (these are the large gray-filled bands in the
middle of the diagram).

P
ol

ic
an

a
al

bo
pi

lo
sa

B
om

bu
s

da
hl

bo
m

ii

R
ui

za
nt

he
da

 m
ut

ab
ili

s

Ic
hn

eu
m

on
id

ae
4

S
yr

ph
us

 o
ct

om
ac

ul
at

us

P
ht

hi
ria

To
ry

m
id

ae
2

F
or

m
ic

id
ae

3

M
an

ue
lia

 g
ay

i

A
llo

gr
ap

ta
.T

ox
om

er
us

S
ta

ph
ili

ni
da

e

S
va

st
rid

es
 m

el
an

ur
a

P
la

ty
ch

ei
ru

s1

V
es

pu
la

 g
er

m
an

ic
a

C
or

yn
ur

a
pr

ot
hy

st
er

es

Ic
hn

eu
m

on
id

ae
2

R
ui

za
nt

he
da

 p
ro

xi
m

a

Tr
ic

ho
ph

th
al

m
a

ja
ffu

el
i

C
ha

le
po

ge
nu

s
ca

er
ul

eu
s

Tr
ic

ho
ph

th
al

m
a

am
oe

na

B
ra

co
ni

da
e3

S
ap

ro
m

yz
a.

M
in

et
tia

N
iti

du
lid

ae

P
ht

hi
ria

1

S
ph

ec
id

ae

T
ho

m
is

id
ae

B
ra

co
ni

da
e2

Mutisia decurrens

Calceolaria crenatiflora

Ribes magellanicum

Rosa eglanteria

Schinus patagonicus

Cynanchum diemii

Berberis darwinii

Alstroemeria aurea

Aristotelia chilensis Figure 2: Safariland data set plotted
with function bipartite::visweb.

Another approach to presenting this network graphically would
be to use function gplot in the social network analysis package sna.
gplot is flexible and has many options. Figure 4 shows one possible
display of Safari, plotted with mode = circle. In this plot, plant
nodes are colored green and insect nodes red. The width of the edges
is proportional to the number of visits between a pair of species.
Figure 5 shows the same data using the Fruchterman-Reingold algo-
rithm, one which shows that there are actually two networks present
(and which is not apparent from the the other plots). Edge width
here is the same as before, but because the high traffic node pairs are
close to each other, the connecting, wide edge looks a bit odd and is
easy to miss (clearly, one could experiment to improve this detail).

the hiver package 7

Bombus dahlbomii
Phthiria

Sapromyza.Minettia
Vespula germanica

Phthiria1
Sphecidae
Thomisidae

Ichneumonidae2
Ruizantheda proxima

Manuelia gayi
Trichophthalma jaffueli

Svastrides melanura
Syrphus octomaculatus

Staphilinidae
Corynura prothysteres
Chalepogenus caeruleus

Trichophthalma amoena
Allograpta.Toxomerus

Platycheirus1
Ruizantheda mutabilis

Braconidae2 Policana albopilosa Ichneumonidae4
Formicidae3

Nitidulidae
Braconidae3

Torymidae2

Mutisia decurrens
Berberis darwinii

Alstroemeria aurea
Calceolaria crenatiflora

Ribes magellanicum
Rosa eglanteria Aristotelia chilensis Schinus patagonicus

Cynanchum diemii

Figure 3: Safariland data set plotted
with function bipartite::plotweb.

Figure 4: Safariland data set plotted
with function sna::gplot (mode =
circle).

the hiver package 8

Figure 5: Safariland data set plotted
with function sna::gplot (mode =
Fruchterman-Reingold).

the hiver package 9

For a network of this size and complexity, any or some combi-
nation of these plots would probably be sufficient to answer many
questions. However, we proceed to plot the data as a hive plot to
demonstration some of the features of hive plots. Figure 6 shows
Safari and Arroyo displayed together in a hive panel, which facil-
itates direct comparison of the two networks. In these plots, plants
are on one axis, and pollinators are on the other. Each organism was
assigned a radius on its axis based by calculating | d′ | using function
dfun in package bipartite. | d′ | is an index of specialization; higher
values mean the plant or pollinator is more specialized. Edge weights
were assigned proportional to the square root of the normalized
number of visits of a pollinator to a plant. Thus the width of the edge
drawn is an indication of the visitation rate. The transformed num-
ber of visits was divided manually into 4 groups and used to assign
edge colors ranging from white to red. The redder colors represent
greater numbers of visits, and the color-coding is comparable for
each figure. Thus both the edge color and the edge weight encode the
same information. It would of course be possible to encode an addi-
tional variables by changing either edge color or weight, or node size.
These plots show a rich amount of information not available from the
more standard plots and show that the networks are fundamentally
different:

• The degree of specialization with each network is different. This
can be seen in the different radii for the nodes in each plot, as
well as in the Arroyo panel where the plant axis begins at a lower
value.

• A greater number of visits (wider, redder edges) occur between
more specialized species (nodes at larger radii) in Safari than
Arroyo.

• The huge number of visits encoded in red in Safari (the ungrazed
site) is missing in Arroyo.

Some Things to Keep in Mind

Now that we have seen a simple hive plot, it’s a good time to review
some aspects to keep in mind as you wrap your head around the
concept and we move to more complicated plots.

Hive plots are radially-arranged parallel coordinate plots, and as
with any parallel coordinate plot, the order of the axes is critical.10 In 10 Wegman, 1990

creating a hive plot, assigning the nodes to axes is the hardest task, as
no jumping or crossing of axes is allowed (due to bad aesthetics). As
a result, you can’t make this assignment without thinking about the

the hiver package 10

●● ●●● ●●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ●

plants

po
lli

na
to

rs

Safari (undisturbed)

● ●● ●● ● ●● ● ●●● ●●● ● ●●● ● ●●● ●●● ●● ● ●●● ●● ●●●● ●

plants

po
lli

na
to

rs

Arroyo (disturbed)

Figure 6: Hive Panel comparing Safari
with Arroyo.

edges at the same time. This initial mapping process often forces one
to reconceputalize one’s data, which in turns leads to new insights.
By the way, there is no guarantee that any data set can be made into
a hive plot, but there are certainly a number of data sets that will give
a very useful hive plot after some thought.

For 2D hive plots with 2 or 3 axes, there is no possibility of edges
crossing an axis. However, for 4-6 axes, you must guard against this:
Edges should go 1 → 2, 2 → 3, . . . 5 → 6, but not 1 → 5 for example.
For 3D hive plots, no edges can start and end on the same axis (there
is no way to place these edges properly in 3D space). For 4 axes, all
axes are adjacent and hence jumping is not an issue. But for 5 or 6

axes, you must guard against this manually. Note that the different
axis systems in 3D have different numbers of adjacent axes:

• Tetrahedron: 6 adjacent axis pairs, edge crossings are impossible

• Trigonal bipyramid: 9 adjacent axis pairs11 11 And the pairs are not equivalent: see
Figure 1.

• Octahedron: 12 adjacent axis pairs

The mapping of nodes to axes is limited only by your creativity
and the knowledge domain you work in. For some ideas about how
to assign the radius, see table 1 in Krzywinski.12 12 Krzywinski et al., 2011

the hiver package 11

Hive plots are almost agnostic with respect to directed graphs.
Most functions don’t use any information related to the direction
of an edge. However, some of the options in mineHPD can take into
account directionality by using the first node id as a starting point
and the second node id as an ending point (HPD$edges$id1, id2).

With 2D hive plots, which are drawn using grid graphics, the
nodes "on top" are the last drawn nodes. You may wish to sort the
nodes before drawing to get a certain effect – the same is true for
edges.13 13 While the last thing drawn is on top,

they are not strictly drawn in the order
given. See the code for plotHive for
details. This is an open issue related to
how grid.curve handles its curvature

argument.

The E. coli Gene Regulatory Network

The E. coli gene regulatory network, based upon the RegulonDB,14 is
14 Gama-Castro et al., 2011

an excellent example for showing how one can import and process
a .dot file to create a hive plot. In this case we will read in a .dot file
describing nodes and edges. A portion of this file is shown in Table 4.
The .dot file will be processed using an external file to map the edge
annotations to hive plot features. Node annotations in the .dot file
can be similarly processed, but this particular example contains no
node annotations so there’s nothing to process. Table 5 shows the
contents of the edge instruction file.

ada;
relA;
betT;
rrsG;
arcA – hybG [interaction=repressor]
fur – exbD [interaction=repressor]
arcA – rutE [interaction=activator]
fnr – cysG [interaction=activator]
fnr – tpx [interaction=repressor]
rcsA – wcaB [interaction=activator]
narL – nrfG [interaction=dual]

Table 4: Partial contents of .dot file

dot.tag dot.val hive.tag hive.val
interaction repressor color red
interaction activator color green
interaction dual color orange

Table 5: Contents of EdgeInst.csv

Here we go. First, read in the node and edge information and
process it using the edge instruction file (this assumes your working
directory is set to the folder with the relevant files).

the hiver package 12

EC1 <- dot2HPD(file = "network_tf_gene.parsed.dot",

node.inst = NULL,

edge.inst = "EdgeInst.csv",

desc = "E coli gene regulatory network (RegulonDB)",

axis.cols = rep("grey", 3))

No node instructions provided, proceeding without them

Before going on, we’ll summarize what we’ve created. Next, we’ll
assign the node radius based upon the edge degree, then assign
the nodes to axes based upon their role as source, manager or sink.
Finally, there are some edges which start and end at the same radius
on the same axis. These have zero length and cannot be drawn so
they must be removed (these are transcription factors that regulate
themselves in most cases).

sumHPD(EC1)

E coli gene regulatory network (RegulonDB)

This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.

It is a 2D data set.

##

Axis 1 has 1597 nodes spanning radii from 1 to 1

##

Axes 1 and 1 share 3893 edges

EC2 <- mineHPD(EC1, option = "rad <- tot.edge.count")

sumHPD(EC2)

E coli gene regulatory network (RegulonDB)

This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.

It is a 2D data set.

##

Axis 1 has 1597 nodes spanning radii from 1 to 434

##

Axes 1 and 1 share 3893 edges

EC3 <- mineHPD(EC2, option = "axis <- source.man.sink")

sumHPD(EC3)

E coli gene regulatory network (RegulonDB)

This hive plot data set contains 1597 nodes on 3 axes and 3893 edges.

It is a 2D data set.

##

Axis 1 has 45 nodes spanning radii from 1 to 83

Axis 2 has 1416 nodes spanning radii from 1 to 11

Axis 3 has 136 nodes spanning radii from 2 to 434

##

Axes 1 and 2 share 400 edges

Axes 1 and 3 share 21 edges

Axes 3 and 2 share 3158 edges

Axes 3 and 3 share 314 edges

the hiver package 13

EC4 <- mineHPD(EC3, option = "remove zero edge")

##

113 edge(s) that start and end on the same node were removed

##

22 virtual self-edge(s) were removed

sumHPD(EC4)

E coli gene regulatory network (RegulonDB)

This hive plot data set contains 1597 nodes on 3 axes and 3768 edges.

It is a 2D data set.

##

Axis 1 has 45 nodes spanning radii from 1 to 83

Axis 2 has 1416 nodes spanning radii from 1 to 11

Axis 3 has 136 nodes spanning radii from 2 to 434

##

Axes 1 and 2 share 400 edges

Axes 1 and 3 share 21 edges

Axes 3 and 2 share 3158 edges

Axes 3 and 3 share 189 edges

Notice how the number of axes, radii and edges change through
this process.

Finally, we’ll need to organize the edge list so that the edges
which are repressors are drawn last (you could do this other ways,
of course, but we need to know this in order to be able to interpret
the plots).

edges <- EC4$edges

edgesR <- subset(edges, color == 'red')

edgesG <- subset(edges, color == 'green')

edgesO <- subset(edges, color == 'orange')

edges <- rbind(edgesO, edgesG, edgesR)

EC4$edges <- edges

EC4$edges$weight = 0.5

Now we’re ready to plot! Figure 7 is a hive panel showing this
network with different scales for the nodes. Each plot takes about 10

seconds to draw.

3D Hive Plots

HiveR extends the original hive plot concept to 3 dimensions using
the interactive graphics package rgl. One advantage to this is that
3D hive plots have more pairs of adjacent axes compared to the cor-
responding 2D hive plot, which cuts down on the possibility of edges
crossing axes and makes assigning nodes to axes easier. The interac-
tivity doesn’t hurt either!

the hiver package 14

source

sink

manager

degree

native units

ranked units

source

sink manager

normed units

Figure 7: Hive panel of E. coli gene
regulatory network.

the hiver package 15

We will demonstrate the process using a recent example of protein-
protein interactions.15 This data set contains interaction data for 15 Jaeger et al., 2012

HIV-human proteins, as well as some related human-human protein
interactions. The strength of these interactions are quantified in terms
of a MiST score which is derived from mass spectral data after some
processing. Data for the interaction of two human cell lines with HIV
are available (we’ll just use one, but you could make the same plot
with the interactions for the other cell line to compare the two).16 16 The plots here were created using

data provided as supplementary ma-
terial. A full script of the processing is
available from the author.

Figure 8 is Figure 3 from the paper. We’re going to focus on the
portion of this network shown in Figure 9 to demonstrate the con-
ceptual process of mapping data to a hive plot.17 Figure 10 shows 17 Remember, this is just one way you

might map the raw data.a small, idealized portion of this network for discussion. In this fig-
ure, a black dot represents a human protein that interacts with an
HIV protein. Human protein D, for example, interacts with two dif-
ferent HIV proteins, PR and IN. However, human protein E interacts
with only one HIV protein (PR), but interacts with another human
protein F, which in turn interacts with HIV protein Pol. The blue
edge between E and F indicates indirect communication between HIV
proteins PR and Pol via the two human proteins.

Figure 11 shows the process of mapping the connections and
quantitative information into the hive plot. Each HIV protein node in
the original diagram will become an axis in the hive plot.18 Because 18 The replacement of nodes with axes is

one way hive plots help us think about
the data differently.

there are four of these, we will be making a tetrahedral hive plot with
four axes. The human proteins which interact with two HIV proteins
will become red edges in the hive plot (and they are red in these fig-
ures). Protein D for example will be plotted on the PR axis at a radius
of 9 because that is the MiST score for this human protein interacting
with this HIV protein. Protein D will also appear on axis IN, but at a
radius of 6, because it interacts a bit more weakly with this HIV pro-
tein. This process is repeated for all the interactions. Human protein
E, on the other hand, only interacts with one HIV protein. As a result,
it appears only on the PR axis at a radius of 6. Don’t forget that E in-
teracts with F: F is plotted on axis Pol at a radius of 7 and then E and
F are connected by a blue edge signalling the indirect interaction be-
tween HIV proteins PR and Pol. Other human proteins which interact
with only one HIV protein are plotted on the appropriate axis with a
radius corresponding to their MiST score. Finally, any human protein
with 2 or more edges is plotted as a larger yellow node, while those
with only one edge are plotted in green.

Figure 12 shows the resulting hive plot, using the original data for
HIV interacting with HEK cells, drawn using native units. Red edges
represent a human protein.19 Red edges with more or less constant 19 Unlike the more standard network

graphs where a protein would be a
node rather than an edge.

radius are human proteins that interact fairly equally with the HIV
proteins on each axis. There is one red edge which shows a strong

the hiver package 16

Figure 8: Protein-protein interactions
from Jäger et. al.

the hiver package 17

Figure 9: Subnet used to demonstrate
the hive plot creation process

the hiver package 18

Pol

PR

RT

IN

HIV protein

human
proteinD

A

C

B

E

F

Figure 10: A portion of the network

Pol

PR

RT

IN

HIV protein

human
protein

MiST Score
(affinity)

D

A

C

B

58

3

9

4

9

9

6

PR

RT

IN

Pol

D

6

9

B C

A

E

F

6

7

F

E

Figure 11: How the network is mapped
onto a tetrahedral hive plot

the hiver package 19

interaction with one HIV protein (PR) and a weak interaction with
the other (Pol) and hence does not have a near-constant radius. The
complete lack of human proteins between axes IN and RT, IN and
PR and PR and RT (i.e., no red edges) tells us that these three HIV
proteins are relatively isolated. HIV protein Pol on the other hand is
very central to this system as it participates in virtually all the edges,
which is to say that it interacts with many human proteins.

Figure 12: HIV-human protein-protein
interaction

Acknowledgements

Naturally, I thank Martin Krzywinski for numerous helpful com-
munications. I also appreciate helpful discussions on gene ontology
concepts with my colleague Professor Chet Fornari.

Appendices

Performance

HiveR draws hive plots very quickly when using either plotHive
or plot3dHive. Figure 13 shows the performance of plotHive and
Figure 14 shows the performance for plot3dHive. Performance was
tested on a MacBook Pro running OSX 10.12.6 with 16 Mb RAM
and an Intel Core i5 chip running at 2.9 GHz. The current devel-
opment version of R (r72928, which is an early version 3.5) was
used. The package microbenchmark was used for the plotHive

tests, and the function system.time was used for plot3dHive tests,
as microbenchmark doesn’t play well with the rgl calls.

the hiver package 20

●

●

●

●

●

0

3

6

9

0 1000 2000 3000 4000 5000

no. edges drawn

tim
e

(s
ec

)
plotHive Performance, mean of 20 replicates Figure 13: Performance of plotHive

●

●

●

●

●

●

0

20

40

60

0 1000 2000 3000

no. edges drawn

tim
e

(s
ec

)

plot3dHive Performance, mean of 20 replicates Figure 14: Performance of plot3dHive

the hiver package 21

Drawing 3D Spline Curves

One of the challenges in developing HiveR was that there were no
algorithms for drawing 3D spline curves available. Consequently, I
wrote a set of functions that take 2 end points in 3D space, rotates
them into a 2D space, computes a spline curve, and then rotates the
curve back into the original 3D space. The process is thoroughly
vetted and robust. A 3D spline is shown in Figure 15. The main
workhorse is the function rcsr.

Figure 15: A 3D spline

HiveR vs. Perl Prototype

The original hive plot drawing program written by Krzywinski
was written in Perl. There are now versions in Java and D3; see
www.hiveplot.com Listed below are some differences between HiveR

and the Perl prototype.

• In the prototype one can clone an axis to show connections that
would start and end on the same axis. In HiveR, one can simply
add a new axis based upon some property of the system. Alterna-
tively, for 2D hive plots, HiveR is able to show edges that start &
end on the same axis.

• No segmentation of an axis is currently possible with HiveR

the hiver package 22

• The prototype uses bezier curves to create the edges; HiveR uses
splines with a single slightly off-center control point.

Features Under Consideration

1. Add the ability to subtract 2 hive plots and display the result.

2. Set up a mechanism to automatically permute the axes in 3D
mode when the number of axes = 5 or 6 so that the best option
can be selected. Might also be worth doing in 2D mode for 4-6
axes, except in this case it’s not a question of how you display but
how you import the data. Wegman20 has a formula describing all 20 Wegman, 1990

possible combinations that would be needed.

3. More ways to import various formats are needed.

References

Socorro Gama-Castro, Heladia Salgado, Martin Peralta-Gil, Alberto
Santos-Zavaleta, Luis Muniz-Rascado, Hilda Solano-Lira, Veron-
ica Jimenez-Jacinto, Verena Weiss, Jair S. Garcia-Sotelo, Alejandra
Lopez-Fuentes, Liliana Porron-Sotelo, Shirley Alquicira-Hernandez,
Alejandra Medina-Rivera, Irma Martinez-Flores, Kevin Alquicira-
Hernandez, Ruth Martinez-Adame, Cesar Bonavides-Martinez,
Juan Miranda-Rios, Araceli M. Huerta, Alfredo Mendoza-Vargas,
Leonardo Collado-Torres, Blanca Taboada, Leticia Vega-Alvarado,
Maricela Olvera, Leticia Olvera, Ricardo Grande, Enrique Morett,
and Julio Collado-Vides. RegulonDB version 7.0: transcrip-
tional regulation of Escherichia coli K-12 integrated within ge-
netic sensory response units (Gensor Units). Nucleic Acid Re-
search, 39(1):D98–D105, January 2011. ISSN 0305-1048. doi:
10.1093/nar/gkq1110.

Bryan A. Hanson. FuncMap: Hive plots of R package function calls, 2011.
R package version 1.0-1.

Stefanie Jaeger, Peter Cimermancic, Natali Gulbahce, Jeffrey R. John-
son, Kathryn E. McGovern, Starlynn C. Clarke, Michael Shales,
Gaelle Mercenne, Lars Pache, Kathy Li, Hilda Hernandez, Gwen-
dolyn M. Jang, Shoshannah L. Roth, Eyal Akiva, John Marlett,
Melanie Stephens, Ivan D’Orso, Jason Fernandes, Marie Fahey,
Cathal Mahon, Anthony J. O’Donoghue, Aleksandar Todorovic,
John H. Morris, David A. Maltby, Tom Alber, Gerard Cagney,
Frederic D. Bushman, John A. Young, Sumit K. Chanda, Wesley I.
Sundquist, Tanja Kortemme, Ryan D. Hernandez, Charles S. Craik,

the hiver package 23

Alma Burlingame, Andrej Sali, Alan D. Frankel, and Nevan J. Kro-
gan. Global landscape of HIV-human protein complexes. Nature,
481(7381):365–370, JAN 19 2012. ISSN 0028-0836. doi: 10.1038/na-
ture10719.

Martin Krzywinski, Inanc Birol, Steven JM Jones, and Marco A
Marra. Hive plots – rational approach to visualizing networks.
Briefings in Bioinformatics, 2011. doi: 10.1093/bib/bbr069.

D. P. Vazquez and D. Simberloff. Changes in interaction biodiversity
induced by an introduced ungulate. Ecology Letters, 6:1077–1083,
2003.

Edward J. Wegman. Hyperdimensional data-analysis using parallel
coordinates. Journal of the American Statistical Association, 85(411):
664–675, Sep 1990. doi: 10.2307/2290001.

	Background, Inspiration and Motivation
	HiveR Features
	A Simple Example Using a Plant-Pollinator Network
	Some Things to Keep in Mind
	The E. coli Gene Regulatory Network
	3D Hive Plots
	Acknowledgements
	Appendices

