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Abstract

We introduce MPTinR, a software package developed for the analysis of multinomial processing tree
(MPT) models. MPT models represent a prominent class of cognitive measurement models for categorical
data with applications in a wide variety of fields. MPTinR is the first software for the analysis of MPT
models in the statistical programming language R, providing a modeling framework that is more flexible
than standalone software packages. MPTinR also introduces important features such as a) the ability
to calculate the Fisher information approximation measure of model complexity for MPT models, b) the
ability to fit models for categorical data outside the MPT model class, like signal-detection models, c) a
function for model selection across a set of nested and non-nested candidate models (using several model
selection indices), and d) multi-core fitting. MPTinR is available from the Comprehensive R Archive
Network at http://cran.r-project.org/web/packages/MPTinR/
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1 Introduction

Multinomial processing tree (MPT) models represent a prominent class of cognitive measurement models for
categorical data (Hu and Batchelder, 1994; Purdy and Batchelder, 2009; Riefer and Batchelder, 1988). They
describe the observed response frequencies from a finite set of response categories (i.e., responses following
a multinomial distribution) with a finite number of latent states. Each latent state is reached by particular
combinations of cognitive processes; processes that are assumed to take place in an all-or-nothing fashion (e.g.,
either a previously seen item is remembered as having been seen or not). The probability of a latent state
being reached depends on the probabilities that the different cognitive processes associated to it successfuly
take place. The latent states usually follow each other in a serial order that can be displayed in a tree-like
structure (see Figure 1, this model is described in more detail below).

MPT models exist in a wide range of fields, such as memory, reasoning, perception, categorization, and
attitude measurement (for reviews see Erdfelder et al., 2009; Batchelder and Riefer, 1999) where they provide
a superior data analysis strategy compared to the usually employed ad-hoc models (e.g., ANOVA). MPT
models allow the decomposition of observed responses into latent cognitive processes with a psychological
interpretation, whereas ad-hoc models only permit the testing of hypotheses concerning the observed data,
and the model parameters do not have a psychological interpretation nor does the model provide any insight
into the underlying cognitive processes. In this paper we present a package for the analysis of MPT models
for the statistical programming language R (R Development Core Team, 2012a) called MPTinR that offers
several advantages over comparable software (see Moshagen, 2010, for a comparison of software for the
analysis of MPTs).

The remainder of this paper is organized as follows. In the next section we will introduce a particular MPT
model as an example. In the section thereafter we will provide a general overview of model representation,

∗This is an extended and updated version of our manuscript on MPTinR. The code given in this document can be executed
as is and the output given here is produced from a real R session (using knitr and sweave). The original paper was published as:
Singmann, H., & Kellen, D. (2013). MPTinR: Analysis of multinomial processing tree models in R. Behavior Research Methods,
45(2), 560-575. http://doi.org/10.3758/s13428-012-0259-0
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parameter estimation, and statistical inference in the MPT model class. This overview is by no means
exhaustive, but it gives several references that provide in-depth analysis. In the section thereafter, we
introduce MPTinR and its functionalities and provide an example session introducing the most important
functions for model fitting, model selection and simulation. Furthermore, an overview of all functions in
MPTinR is given. Finally, the Appendix contains a description of the algorithms used by MPTinR.

2 An example MPT: The Two-High-Threshold Model of Recog-

nition Memory

Consider the model depicted in Figure 1, which describes the responses produced in a simple recognition
memory experiment consisting of two phases: A learning-phase in which participants study a list of items
(e.g., words), and subsequently a test-phase in which a second list is presented and participants have to
indicate which items were previously studied (old items) and which were not (new items) by responding
“Old” or “New”, respectively.

This particular MPT model for the recognition task — the Two-High Threshold Model (2HTM; Snodgrass
and Corwin, 1988) — has been chosen because of its simplicity. It consists of two trees, with the item-type
associated with each tree (old and new items) specified at the tree’s root. Response categories are specified
at the leaves of the trees. Cognitive processes are specified in a sequential manner by the tree nodes and
their outcomes (successful occurrence or not) are represented by the branches that emerge from these nodes.
The probability of each cognitive process successfully occurring is defined by a parameter.

Let us first consider the old-item tree. When presented with an old item at test, a state of successful
remembering is reached with probability Do (= detect old), and the “Old” response is then invariably given.
If the item is not remembered (with probability (1−Do)), the item is guessed to be “Old” with probability g

(= guessing), or to be “New” with probability (1−g). Regarding the new-item tree, items can be detected as
non-studied with probability Dn (= detect new), leading to the items’ rejection (response “New”). If the new
item is not detected (with probability (1−Dn)), then it is guessed to be “Old” or “New” with probabilities
g and (1 − g), respectively. The predicted response probabilities for each observable response category can
be represented by a set of equations:

Old Items 

"Old" 

"Old" 

"New" 

Do 

1 - Do 

1 – g 

g 

New Items 

"New" 

"Old" 

"New" 

Dn 

1 - Dn 

1 – g 

g 

Figure 1: A MPT model (2HTM) for recognition memory. On the left side are the two different item types,
old and new items, respectively, each represented by one tree. On the right side are the observed responses
“Old” and “New”. In between are the assumed latent states with the probabilities leading to these states.
Each tree is traversed from left to right. Do = Detect an old item as old, Dn = detect a new item as new, g
= guess an item as old.
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P (”Old”|old item) = Do + (1−Do)× g (1)

P (”New”|old item) = (1−Do)× (1− g) (2)

P (”Old”|new item) = (1−Dn)× g (3)

P (”New”|new item) = Dn + (1−Dn)× (1− g) (4)

These equations are constructed by concatenating all branches leading to the same observable response
category (e.g., “Old”) within one tree. For example, the first line concatenates all branches leading to
response “Old” in the old-item tree. As stated above, for old items the response “Old” is given either when
an item is successfully remembered as being old (Do) or, if it is nor remembered as being old, by guessing
(+(1 − Do) × g). Note that the responses associated to the equations above only provide two degrees of
freedom, while the model equations assume three free parameters (Do, Dn, and g), which means that the
model is in the present form non-identifiable (see Bamber and van Santen, 1985). This issue will be discussed
in greater detail below.

The model presented above describes observed responses in terms of a set of unobservable latent cognitive
processes, namely a mixture of 1) memory retrieval (Do), 2) distractor detection (Dn), and 3) guessing (g).
Whereas the memory parameters are specific for the item types (i.e., Do is only part of the old item tree
and Dn is only part of the new item tree), the same guessing parameter is present in both trees. This
means that it is assumed that guessing (or response bias) is identical whether or not an item is old or
new reflecting that the status of each item (old or new) is completely unknown to the participants when
guessing. Note that this psychological interpretation of the parameters requires validation studies. In these
studies it needs to be shown that certain experimental manipulations expected to selectively affect certain
psychological processes are reflected in the resulting model parameters, with changes only being reliably
found in the parameters representing those same processes (see Snodgrass and Corwin, 1988, for validation
studies of 2HTM parameters).

The contribution of each of the assumed cognitive processes can be assessed by finding the parameter
values (numerically or analytically) that produce the minimal discrepancies between predicted and observed
responses. The discrepancies between predicted and observed responses can be quantified by a divergence
statistic (Read and Cressie, 1988). As we discuss in more detail below, discrepancies between models and
data can be used to evaluate the overall adequacy of the model and to test focused hypotheses on parameters
(e.g., parameters have the same values across conditions).

3 Representation, Estimation and Inference in MPT Models: A

Brief Overview

3.1 Model Specification and Parameter Estimation

Following the usual formalization (Hu and Batchelder, 1994) of MPT models, let Θ = {θ1, ..., θS}, with
0 ≤ θs ≤ 1, θs, s = 1, ..., S denote the vector of S model parameters representing the different cognitive
processes. For tree k, the probability of a branch i leading to response category j given Θ corresponds to:

pi,j,k(Θ) = ci,j,k

S
∏

s=1

θ
as,i,j,k
s (1− θ)

bs,i,j,k
s , (5)

where as,i,j,k and bs,i,j,k represent the number of times each parameter θs and its complement (1 − θs) are
respectively represented at each branch i leading to category j of tree k, and ci,j,k represents the product of
constants on the tree links, if the latter are present. The probability of category j, k given Θ corresponds

to pj,k(Θ) =
∑Ij,k

i=1
pi,j,k(Θ) (i.e., the sum of all branches ending in one response category per tree), with

∑Jk

j=1
pj,k(Θ) = 1 (i.e., the sum of all probabilities per tree is 1).

Let n be a vector of observed category frequencies, with nj,k denoting the frequency of response category

j in tree k, with Nk =
∑Jk

j=1
nj,k and N =

∑K

k=1
Nk. The likelihood function of n given model parameter
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vector Θ is:

L(n | Θ) =

K
∏

k=1





(

Nk

n1,k, ..., nJk,k

) Jk
∏

j=1

[pj,k(Θ)nj,k ]



 (6)

The parameter values that best describe the observed responses correspond to the ones that maximize
the likelihood function in Equation 6. These maximum-likelihood parameter estimates (denoted by Θ̂)
can sometimes be obtained analytically (e.g., Stahl and Klauer, 2008), but in the vast majority of cases
they can only be found by means of iterative methods such as the EM algorithm (see Hu and Batchelder,
1994). Regarding the variability of the maximum-likelihood parameter estimates, confidence intervals can be
obtained by means of the Fisher Information Matrix (the matrix of second order partial derivatives of the
likelihood function with respect to Θ; Riefer and Batchelder, 1988) or via bootstrap simulation (Efron and
Tibshirani, 1994).

The search for the parameters that best describe the data (maximize the likelihood function) requires
that the model is identifiable. Model identifiability concerns the property that a set of predicted response
probabilities can only be obtained by a single set of parameter values. Let Θ and Θ′ be model parameter
vectors, with p(Θ) and p(Θ′) as their respective predicted response probabilities. A model is globally iden-
tifiable if Θ 6= Θ′ implies p(Θ) 6= p(Θ′) across the entire parameter space, and locally identifiable if it holds
in the region of parameter space where Θ̂ lies (Schmittmann et al., 2010). An important aspect is that the
degrees-of-freedom provided by a dataset provide the upper bound for the number of potentially identifiable
free parameters in an model, that is S ≤

∑K

k=1
(Jk − 1). Local identifiability is sufficient for most purposes,

and it can be shown to hold by checking that the Fisher Information Matrix for Θ̂ has rank equal to the
number of free parameters (the rank of the Fisher Information Matrix is part of the standard output produced
by MPTinR). For a detailed discussion on model identifiability in the MPT model class, see Schmittmann
et al. (2010).

3.2 Null-Hypothesis Testing

The discrepancies between predicted and observed response frequencies when taking the maximum-likelihood
parameter estimates (Θ̂) are usually summarized by the G2 statistic:

G2 = 2

K
∑

k=1

Jk
∑

j=1

nj,k [ln(nj,k)− ln(Nkpj,k)] (7)

The smaller G2, the smaller the discrepancies.1 An important aspect of the G2 statistic is that it follows
a chi-square distribution with degrees-of-freedom equal to the number of independent response categories

minus the number of free parameters
([

∑K

k=1
(Jk − 1)

]

− S
)

. This means that the quality of the account

provided by the model can be assessed through null-hypothesis testing. Parameter-equality restrictions (e.g.,
θ1 = θ2 or θ1 = 0.5) can also be tested by means of null-hypothesis testing. The difference in G2 between
the unrestricted and restricted models also follows a chi-square distribution with degrees-of-freedom equal to
the difference in free parameters between the two models (Riefer and Batchelder, 1988). It should be noted

1Parameter estimation in MPTinR can only be made using the maximum-likelihood method (Equation 6), which can be
obtained by minimizing the discrepancies between observed and expected response frequencies as measured by the G2 statistic
(Equation 7; Bishop et al., 1975). Instead of minimizing the G2 statistic, other discrepancy statistics can be used, in particular
one of the many possible statistics coming from the power-divergence family (Read and Cressie, 1988), from which the G2 is
a special case. Studies (e.g., Garćıa-Pérez, 1994; Riefer and Batchelder, 1991) have shown that some of these statistics can
be advantageous when dealing with sparse data and attempting to minimize a model’s sensitivity to outliers. Still, the use of
alternatives to the G2 statistic coming from the power-divergence family has several shortcomings: First, it is not clear which
particular statistic would be more advantageous for a specific type of MPT model and data, a situation that would require an
extensive evaluation of different alternative statistics. Second, the use of an alternative to the G2 statistic represents a dismissal
of the maximum-likelihood method, which in turn compromises the use of popular model selection measures such as the Akaike
Information Criterion, the Bayesian Information Criterion, or the Fisher Information Approximation (which will be discussed
in detail later), all of which assume the use of the maximum-likelihood method. Given these disadvantages, and the almost-
ubiquitous use of maximum-likelihood estimation in MPT modeling (for reviews, see Batchelder and Riefer, 1999; Erdfelder
et al., 2009) the current version of MPTinR only implements the maximum-likelihood method for parameter estimation and the
G2 statistic for quantification of model misfit.
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that parameter-inequality restrictions (e.g., θ1 ≤ θ2; see Knapp & Batchelder, 2004) can also be tested,
but the difference in G2 no longer follows a chi-square distribution but a particular mixture of chi-square
distributions that in many cases needs to be determined via simulation (Silvapulle and Sen, 2005, for an
example see Kellen and Klauer, 2011).

3.3 Model Selection

It is important to note that G2 is a measure that only summarizes the models’ goodness-of-fit, and which can
only be used to test between nested models (when the restricted model is a special case of the unrestricted
model). Furthermore, it ignores possible flexibility differences between the models, that is differences in their
inherent ability to fit data in general. The more flexible a model is, the better it will fit any data pattern,
regardless of the appropriateness of the model. The best model is not necessarily the one that better fits the
data, as it is also important that a model’s range of predictions closely follows the observations made and
that it can produce accurate predictions regarding future observations (Roberts and Pashler, 2000). Model
selection analyses attempt to find the model that strikes the best balance between goodness-of-fit and model
flexibility (for discussions on different model selection approaches, see Myung et al., 2000; Wagenmakers and
Waldorp, 2006), which makes G2 an unsuitable measure for the comparison of non-nested models. In order
to compare both nested and non-nested models in a single framework, as well as to account for potential
differences in model flexibility, measures such as the Akaike Information Criterion (AIC; Akaike, 1974) and
the Bayesian Information Criterion (BIC; Schwarz, 1978) are used:2

AIC = G2 + 2S (8)

BIC = G2 + ln(N)S (9)

AIC and BIC correct models’ fit-results by introducing a punishment factor (the second term in the formulas)
that penalizes them for their flexibility (S is the number of parameters). The lower the AIC/BIC the better
the account. For the case of AIC and BIC, the number of free parameters is used as a proxy for model
flexibility, a solution that is convenient to use but that ignores differences in the model’s functional form
and is rendered useless when used to compare models that have the same number of parameters (Klauer and
Kellen, 2011). For example, consider the structurally identical models A and B with two parameters θ1 and
θ2, with the sole difference between both models that for model B the restriction θ1 ≤ θ2 holds. According
to AIC and BIC the models are equally flexible despite the fact that the inequality restriction halves model
B’s parameter space and therefore its flexibility.

A measure that provides a more precise quantification of model flexibility is the Fisher Information
Approximation (FIA), a measure that stems from the Minimum Description Length framework (for an in-
troduction, see Grünwald, 2007):

FIA =
1

2
G2 +

S

2
ln

N

2π
+ ln

∫

√

det I(Θ) dΘ (10)

where I(Θ) is the Fisher Information Matrix for sample size 1 (for details, see Su et al., 2005). The third
additive term of Equation 10 is the penalty factor that accounts for the functional form of the model, providing
a more accurate depiction of a model’s flexibility. Unlike AIC and BIC, FIA can account for flexibility
differences in models that have the same number of parameters. Despite its advantages, FIA is a measure
whose computation is far from trivial given the integration of the determinant of the Fisher Information
Matrix across a multidimensional parameter space. Due to the recent efforts of Wu et al. (2010a,b) the
computation of FIA for the MPT model class has become more accessible.

2In the AIC and BIC formulas, the first term corresponds to the model’s goodness of fit, and the second additive term to the
model’s penalty factor. As noted by one of the reviewers, we use the G2 as the first term, contrary to other implementations
that use the models’ log-likelihood (LLM ) instead. G2 corresponds to 2 × (LLS − LLM ), with LLS being the log-likelihood
of a saturated model that perfectly describes the data. In this sense, the definitions of AIC and BIC given in the main body
of text can be viewed as differences in AIC and BIC between these two models, making the notation ∆AIC and ∆BIC more
appropriate. We nevertheless use the notation AIC and BIC given that we use the notation ∆AIC and ∆BIC when referring to
differences between different candidate models other than the saturated model that perfectly describes the data.
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3.4 Context-Free Language for MPTs

Also of interest is the context-free language for the MPT model class developed by Purdy and Batchelder
(2009), called LBMPT. In LBMPT, each MPT model is represented by a string, called a word, consisting
only of symbols representing parameters (θ) or categories (C). The word in LBMPT representing each tree is
created by recursively performing the following operations:

1. visit the root

2. traverse the upper subtree

3. traverse the lower subtree

During these operations the word is built in the following manner: Whenever a parameter (and not
its converse) is encountered, add the parameter to the string. Whenever a response category (i.e., leaf) is
reached, add the category to the string. The word is complete when reaching the last response category. The
structure for the trees in Figure 1 in LBMPT is thus:

θCθCC (11)

By assigning indices one obtains a word in LBMPT for each tree in Figure 1:

θDo
COldθgCOldCNew

θDn
CNewθgCOldCNew

(12)

In order to create a single MPT model of the two trees in Figure 1 one needs to assume a joining parameter
θjoin whose branches connect the two trees into a single one. In this case, the values of θjoin and (1-θjoin)
would be fixed a priori as they represent the proportion of times that old and new items occur during test.
The resulting full model for the recognition memory experiment in LBMPT is:

θjoinθDo
COldθgCOldCNewθDn

CNewθgCOldCNew (13)

The context-free language of Purdy and Batchelder (2009) is extremely useful as it allows the state-
ment and proof of propositions regarding the MPT model class. One application of this language is in the
computation of FIA (Wu et al., 2010a, 2010b).

4 General Overview of MPTinR

MPTinR offers five main advantages over comparable software (cf. Moshagen, 2010). First, MPTinR is fully
integrated into the R language, an open-source implementation of the S statistical programming language
(Becker et al., 1988), that is becoming the lingua franca of statistics (Muenchen, 2012; Vance, 2009). Besides
being free (as it is part of the GNU project, see http://www.gnu.org) and platform independent, R’s major
strength is the combination of being extremely powerful (it is a programming language) with the availability
of a wide variety of statistical and graphical techniques. Couching MPTinR within this environment lets
it benefit from these strengths. For example, data usually needs to be preprocessed before fitting an MPT
model. In addition to fitting an MPT model, one may want to visualize the parameter estimates, run
hypothesis-tests on particular parameter restrictions or perform simulations validating certain aspects of
the model such as the parameter estimates or the identifiability of the model. When using MPTinR all of
those processes that can be done within one single environment without the need to ever move data between
programs.

Second, MPTinR was developed with the purpose of being easy to use, improving some of the more
cumbersome features of previous programs, such as the ones concerning model representation. MPT models
are represented in most programs such as GPT (Hu and Phillips, 1999), HMMTree (Stahl and Klauer, 2007),
or multiTree (Moshagen, 2010) by means of .EQN model files. Model specification in .EQN files need to
follow a certain structure that could lead to errors, and diverge from the model equations (e.g., Equations
1-4) that are normally used to represent these models in scientific manuscripts. These requirements can
become especially cumbersome when handling MPT models comprised of trees with numerous branches
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(e.g., Oberauer, 2006). Furthermore, most programs require parameter restrictions to be specified “by hand”
every time the program is used (for an exception, see Moshagen, 2010), or different model files implementing
the parameter restrictions have to be created. MPTinR overcomes these inconvenient features: Models are
specified in a way that is virtually equivalent to the equations used to represent models (i.e., Equations
1-4), and model restrictions are intuitively specified. Furthermore, model and restrictions can be specified in
external files or directly within an R script. In addition, MPTinR automatically detects whether single or
multiple datasets are fitted and adjusts the output accordingly. For multiple datasets, the summed results
(e.g. summed G2 values) as well as the results for the aggregate data (i.e., summed response frequencies
across datasets) are per default provided in the output.

Third, MPTinR provides different model selection measures, namely AIC, BIC, and FIA. As previously
referred, the computation of FIA is not trivial, and only very recently has it become available for the MPT
model class (Wu et al., 2010a,b).

Fourth, MPTinR is able to translate an MPT model into a string representation according to the context-
free language developed by Purdy and Batchelder (2009) as well as construct model equations from the string
representation. Given that the manual translation of MPTs can be rather difficult and tedious, the possibility
of an automatic translation will likely encourage the use of this context-free language, which has shown great
potential in the assessment of model flexibility (see Purdy, 2011).

Fifth, although being specifically designed for MPTs, MPTinR can also be used to fit a wide range of
other cognitive models for categorical data, for example models based on signal detection theory (SDT; Green
and Swets, 1966; Macmillan and Creelman, 2005). This essentially makes MPTinR a framework for fitting
many types of cognitive models for categorical data and to facilitate their comparison. As this last point is
outside the scope of this article we refer interested readers to the documentation for the functions fit.model
and fit.mptinr which contain detailed examples of how to fit different SDT models.

4.1 Getting Started

MPTinR is a package for the R programming language and therefore needs to be used within the R environ-
ment by using the functions described below. For users familiar with commercial statistic packages such as
SPSS, the handling of R may be uncommon as it does not come with a graphical user interface (but see Valero-
Mora and Ledesma (2012), for an overview, and Rödiger et al. (2012), for a powerful graphical user interface
for R). Instead, all commands have to be entered at the prompt. MPTinR comes with a manual describ-
ing all functions in detail (available also via http://cran.r-project.org/web/packages/MPTinR/MPTinR.pdf)
and has a website with more information on important features such as model files and restrictions (see
http://www.psychologie.uni-freiburg.de/Members/singmann/R/mptinr/modelfile). To obtain the documen-
tation for any function of MPTinR simply enter the function name at the prompt preceded by a ? (e.g.,
?fit.mpt to obtain the detailed documentation containing examples for the main function fit.mpt). The
documentation for each function contains a detailed description of its use and the arguments that need to be
passed to it. Here we only present the most relevant arguments of each function.

MPTinR is available via the Comprehensive R Archive Network (CRAN; http://cran.r-project.org/) and
can therefore be installed from within any R session with the following command (given an active Internet
connection):

install.packages("MPTinR")

Note that you might need an up-to-date version of R to install MPTinR. After successful installation
(which only needs to be done once), MPTinR needs to be loaded into the current R session with the following
command (this needs to be done each time you start a new R session):

library("MPTinR")

4.2 Format of Models, Restrictions, and Data

The basis of all analyses of MPT models in MPTinR is the representation of the model via a model file.
Whereas MPTinR can read the well-known .EQN model files (e.g., Hu and Phillips, 1999) it offers an alter-
native, the easy format. To specify a model in the easy format the model file needs to contain the right
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hand sides of the equations defining an MPT model (e.g., Equations 1-4) with the equations for each tree
separated by at least a single empty line. In other words, for each tree all branches ending in the same
response category need to be written in a single line concatenated by +. Note that only trees with binary
branching can be specified in MPTinR (for an exception, see Hu and Phillips (1999)). The model file for the
2HTM model from Figure 1 in the easy format could be:

# Tree for old items: First 'yes', then 'no'

Do + (1 - Do) * g

(1-Do)*(1-g)

#Tree for new items: First 'yes', then 'no'

(1-Dn) * g

Dn + (1-Dn) * (1 - g)

As can be seen, MPTinR allows for comments in the model file. Everything to the right of the number
sign # will be ignored and lines containing only a comment count as empty.3 Also, additional whitespace
within the equations is ignored. Note that the parameter names used in the model files need to be valid R
variable names (for details, type ?make.names and ?reserved at the command prompt).

The format of restrictions files is similar to the format of model files. Each restriction needs to be specified
on one line. Furthermore, the following rules apply: Inequality restrictions needs to be placed before equality
restrictions and can only be specified using the smaller than operator < (note that inequality restrictions
containing < actually represent the weak inequality ≤). If a variable appears not as the rightmost element in
a restriction it can only appear as the rightmost element in any other restriction (in other words in a set of
restrictions a variable can appear multiple times, but only once not as the rightmost element). In addition
to simple equality and inequality restrictions MPTinR can also deal with order restrictions involving more
than two parameters. For example, Y 1 = Y 2 = 0.5 will set both parameters Y 1 and Y 2 to 0.5. Similarly,
W1 < W2 < W3 will be correctly interpreted as W1 < W2 and W2 < W3. A valid restrictions file (for
a fictitious MPT model) could be (note that we have added quotes at the beginnign and end for display
purposes, those need to be removed in an actual file):

" # quotes need to be removed

W1 < W2 < W3

X4 = X3

Y1 = Y3 = 0.5

Z = 0 #Restrictions may also contain comments.

"

Note that it is also possible to specify model and restriction within an R script (as compared to in an
external file), using for example the textConnection function included in the base R package. Restrictions
can also be specified within a script as a list of strings. We will use this functionality in the following.

MPTinR contains the function check.mpt that may help in writing model and restrictions files. It has
the format check.mpt(model.filename, restrictions.filename = NULL) and will return a list with the
following information: a logical value indicating whether or not the probabilities on each tree sum to one, the
number of trees and the number of response categories the model has, the number of independent response
categories the model provides, and the name and number of the parameters in the tree. model.filename

is the only mandatory argument and needs to be a character string specifying the location and name of
the model file4. restrictions.filename is an optional argument specifying the location and name of the
restrictions file.

3Note that the way MPTinR deals with comments has changed. As is common in R (and other programming languages)
everything to the right of the comment symbol # is ignored. In previous versions or MPTinR (prior to version 0.9.2) a line
containing a # at any position was ignored completely.

4R looks for files in the current working directory. To find out what is the current working directory type getwd() at the
R prompt. You can change the working directory using either the R menu or using function setwd. Additionally, models and
restrictions can also be specified within an R script (i.e., not in a file) using a textConnection, see the examples in ?fit.mpt

and ?fit.model.
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For example, calling check.mpt on the 2HTM model above will return an output indicating that the
probabilities in each tree sum to one (if not, the function will pinpoint the misspecified trees), that the
number of trees in the model is two, the number of response categories is four, the number of independent
response categories is two, and the three parameters are Dn, Do, and g:

mod_2htm_1 <- "

# Tree for old items: First 'yes', then 'no'

Do + (1 - Do) * g

(1-Do)*(1-g)

#Tree for new items: First 'yes', then 'no'

(1-Dn) * g

Dn + (1-Dn) * (1 - g)

"

check.mpt(textConnection(mod_2htm_1))

## $probabilities.eq.1

## [1] TRUE

##

## $n.trees

## [1] 2

##

## $n.model.categories

## [1] 4

##

## $n.independent.categories

## [1] 2

##

## $n.params

## [1] 3

##

## $parameters

## [1] "Dn" "Do" "g"

The data on which an MPT model will be fitted needs to be passed as a numeric data object, either as
a vector, matrix, or data.frame. The mapping of data to response category is done via position. The
ordinal position (rank) of each equation in the model file needs to correspond to the response category that
is represented at that position/rank in the data vector or to the column with that number if the data
object is a matrix or data.frame. If a matrix or data.frame contains more than one row, each row is
considered as one dataset and the MPT model is fitted separately for each dataset and the data summed
across rows is considered as another dataset (called aggregated dataset) which is also fitted. The data can
be entered directly into R or by loading it using one of the data import functions (e.g., read.table, see also
R Development Core Team, 2012b). The aggregated data of the dataset described below could be entered
as vector d.broeder.agg as:

d.broeder.agg <- c(145, 95, 170, 1990, 402, 198, 211, 1589, 868, 332,

275, 925, 1490, 310, 194, 406, 1861, 299, 94, 146)

4.3 An Example Session

Before estimating model parameters, it is important to see whether a model is identifiable. As previously
pointed out the 2HTM as presented in Figure 1 has three parameters, while the “Old”/”New” responses for
both old and new items only provide two independent categories (i.e., independent data points to be fitted) as
given in the output of check.mpt. This means that the 2HTM with three paramaters is not identifiable in the
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current form. There are two ways of achieving identifiability for this model: 1) by imposing the restriction
Dn = Do (Snodgrass and Corwin, 1988), and/or 2) by including additional sets of observed categorical
responses and subsequently extend the model in order to account for them.

The extension proposed by the second option can be implemented by fitting the model to responses
obtained across different bias conditions, where individuals assumed distinct tendencies to respond “Old”
or “New”. These different response biases or tendencies can be induced by changing the proportion of old
items in the test phase (e.g., 10% vs. 90%), for example. According to the theoretical principles underlying
underlying the 2HTM, the guessing parameter g would be selectively affected by a response-bias manipulation,
with Do and Dn remaining unchanged. For example, Bröder and Schütz (2009) used the second solution
sketched above by implementing five separate test phases, each with different proportions of old items (10%,
25%, 50%, 75%, and 90%). Consider the resulting model mod 2htm 2 and the corresponding output from
check.mpt showing that there are more degrees-of-freedom than free parameters:

mod_2htm_2 <- "

# Tree for old items (10%): First 'yes', then 'no'

Do + (1 - Do) * g1

(1-Do)*(1-g1)

#Tree for new items (90%): First 'yes', then 'no'

(1-Dn) * g1

Dn + (1-Dn) * (1 - g1)

# Tree for old items (25%): First 'yes', then 'no'

Do + (1 - Do) * g2

(1-Do)*(1-g2)

#Tree for new items (75%): First 'yes', then 'no'

(1-Dn) * g2

Dn + (1-Dn) * (1 - g2)

# Tree for old items (50%): First 'yes', then 'no'

Do + (1 - Do) * g3

(1-Do)*(1-g3)

#Tree for new items (50%): First 'yes', then 'no'

(1-Dn) * g3

Dn + (1-Dn) * (1 - g3)

# Tree for old items (75%): First 'yes', then 'no'

Do + (1 - Do) * g4

(1-Do)*(1-g4)

#Tree for new items (25%): First 'yes', then 'no'

(1-Dn) * g4

Dn + (1-Dn) * (1 - g4)

# Tree for old items (90%): First 'yes', then 'no'

Do + (1 - Do) * g5

(1-Do)*(1-g5)

#Tree for new items (10%): First 'yes', then 'no'

(1-Dn) * g5

Dn + (1-Dn) * (1 - g5)

"
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check.mpt(textConnection(mod_2htm_2))

## $probabilities.eq.1

## [1] TRUE

##

## $n.trees

## [1] 10

##

## $n.model.categories

## [1] 20

##

## $n.independent.categories

## [1] 10

##

## $n.params

## [1] 7

##

## $parameters

## [1] "Dn" "Do" "g1" "g2" "g3" "g4" "g5"

Now, consider a 40 × 20 matrix named d.broeder containing the individual data of the 40 participants
from Bröder and Schütz (2009) Experiment 3.5 Each participant was tested across five different base-rate
conditions (10%, 25%, 50%, 75%, and 90% old items). In this data matrix, each row corresponds to one
participant, and the columns correspond to the different response categories in the same order as in the model
file. We just show the first 6 lines (i.e., participants) here:

data("d.broeder")

head(d.broeder)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## [1,] 1 5 1 53 10 5 2 43 22 8 10 20 39

## [2,] 6 0 6 48 11 4 1 44 25 5 2 28 39

## [3,] 3 3 3 51 10 5 1 44 15 15 7 23 40

## [4,] 3 3 2 52 10 5 3 42 22 8 3 27 32

## [5,] 5 1 2 52 12 3 12 33 23 7 10 20 40

## [6,] 6 0 0 54 13 2 0 45 28 2 0 30 44

## [,14] [,15] [,16] [,17] [,18] [,19] [,20]

## [1,] 6 5 10 49 5 4 2

## [2,] 6 2 13 48 6 1 5

## [3,] 5 3 12 42 12 2 4

## [4,] 13 1 14 39 15 3 3

## [5,] 5 9 6 51 3 6 0

## [6,] 1 0 15 49 5 0 6

MPTinR provides two main functions for model fitting and selection, fit.mpt and select.mpt:
fit.mpt is the major function for fitting MPT models to data, returning results such as the obtained

log-likelihood and G2 value, the information criteria AIC, BIC, and FIA (if requested), parameter estimates
and respective confidence intervals, and predicted response frequencies. Optionally one can specify model
restrictions or request the estimation of the FIA. It has the basic format fit.mpt(data, model.filename,

restrictions.filename = NULL, n.optim = 5, fia = NULL). Two arguments in the fit.mpt function
are of note: First, fit.mpt by default returns the best of of five fitting runs for each dataset, a number that
can be changed with the n.optim argument. Second, FIA is calculated using Monte Carlo methods (see Wu

5We thank Arndt Bröder for providing this dataset which also comes with MPTinR. The other files necessary to fit this data
(i.e., the model and restriction files) also come with MPTinR, see ?fit.mpt.
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et al., 2010a, 2010b), with the number of samples to be used being specified by the fia argument. Following
the recommendations of Wu et al., the number of samples should not be below 200,000 for real applications
(we use smaller numbers in this vignette for demonstration purposes only).

select.mpt is a function that should aid in model selection (e.g., Zucchini, 2000) and takes multiple
results from fit.mpt as the argument and produces a table comparing the models based on the information
criteria AIC, BIC, and FIA. It has the basic format select.mpt(mpt.results, output = c("standard",

"full")), where mpt.results is a list of results returned by fit.mpt.
In order to exemplify the use of the fit.mpt and select.mpt functions, two MPT models are fitted to

the data from Bröder and Schütz (2009) Experiment 3, the 2HTM model described above, and a restricted
version of the 2HTM in which the g1 < g2 < g3 < g4 < g5 constraint was imposed6. As noted before, in
real applications one should use more than 25,000 FIA samples (usually values such as 200,000).

br.2htm <- fit.mpt(d.broeder, textConnection(mod_2htm_2), fia = 25000)

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:42:43"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:42:54"

## Time difference of 10.82522 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:42:54"

## Optimization routine for dataset(s) 2 6

## did not converge succesfully. Tried again with use.gradient == FALSE.

## Optimization for dataset(s) 2 6

## using numerically estimated gradients produced better results. Using those results.

## Old results saved in output == ’full’ [[’optim.runs’]].

## [1] "Model fitting stopped at 2015-07-27 11:43:00"

## Time difference of 5.670162 secs

br.2htm.ineq <- fit.mpt(d.broeder, textConnection(mod_2htm_2),

list("g1 < g2 < g3 < g4 < g5"), fia = 25000)

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:43:00"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:43:39"

## Time difference of 39.38023 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:43:39"

## Optimization routine for dataset(s) 6 7

## did not converge succesfully. Tried again with use.gradient == FALSE.

## Optimization for dataset(s) 6 7

## using numerically estimated gradients produced better results. Using those results.

## Old results saved in output == ’full’ [[’optim.runs’]].

## [1] "Model fitting stopped at 2015-07-27 11:44:01"

## Time difference of 21.63067 secs

As can be seen from the output, fitting a model produces various status messages and occasional warn-
ings. The warnings stem from the numerical optimization algorithm employed (a quasi-Newton method, see
Appendix for more details). Per default MPTinR uses the analytic gradient in the optimization process. If

6To fit only the aggregated data entered before as d.broeder.agg simply replace d.broeder with d.broeder.agg as in
br.2htm.2 <- fit.mpt(d.broeder.agg, "2htm.model").
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the optimization algorithm indicates it did not converge successful, fitting is restartet but this time using
the numerical gradient. The warning details which method produced a better result (i.e., larger maximum
likelihood) and is consequently used. This warning usually indicates that data is some cells are missing (as
is the case here) and some parameters might not be identified for those participants.

d.broeder[c(2, 6, 7),]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

## [1,] 6 0 6 48 11 4 1 44 25 5 2 28 39

## [2,] 6 0 0 54 13 2 0 45 28 2 0 30 44

## [3,] 6 0 0 54 13 2 3 42 28 2 1 29 44

## [,14] [,15] [,16] [,17] [,18] [,19] [,20]

## [1,] 6 2 13 48 6 1 5

## [2,] 1 0 15 49 5 0 6

## [3,] 1 1 14 51 3 1 5

fit.mpt returns a list with the following elements (for a detailed description see ?fit.mpt):

str(br.2htm, 1)

## List of 6

## $ goodness.of.fit :List of 3

## $ information.criteria:List of 3

## $ model.info :List of 2

## $ parameters :List of 3

## $ data :List of 2

## $ fitting.runs :List of 2

Element model.info can be used for further model diagnostic. As described before, a necessary condition
that all parameters are identified is that the rank of the Fisher Matrix is equal to the number of free
parameters. As expected from the warning during fitting, this is not the case for participants 2 and 7, while
participant 6 showed no problems here.

br.2htm$model.info

## $individual

## rank.fisher n.parameters n.independent.categories

## 1 7 7 10

## 2 6 7 10

## 3 7 7 10

## 4 7 7 10

## 5 7 7 10

## 6 7 7 10

## 7 6 7 10

## 8 7 7 10

## 9 7 7 10

## 10 7 7 10

## 11 7 7 10

## 12 7 7 10

## 13 7 7 10

## 14 7 7 10

## 15 7 7 10

## 16 7 7 10

## 17 7 7 10

## 18 7 7 10
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## 19 7 7 10

## 20 7 7 10

## 21 7 7 10

## 22 7 7 10

## 23 7 7 10

## 24 7 7 10

## 25 7 7 10

## 26 7 7 10

## 27 7 7 10

## 28 7 7 10

## 29 7 7 10

## 30 7 7 10

## 31 7 7 10

## 32 7 7 10

## 33 7 7 10

## 34 7 7 10

## 35 7 7 10

## 36 7 7 10

## 37 7 7 10

## 38 7 7 10

## 39 7 7 10

## 40 7 7 10

##

## $aggregated

## rank.fisher n.parameters n.independent.categories

## 1 7 7 10

Let us now look at the 2HTM results for aggregated data (which replicate the results from Bröder and
Schütz, 2009, Table 4):

br.2htm[["goodness.of.fit"]][["aggregated"]]

## Log.Likelihood G.Squared df p.value

## 1 -5376.127 2.835736 3 0.4176509

br.2htm[["parameters"]][["aggregated"]]

## estimates lower.conf upper.conf

## Dn 0.4450308 0.3716383 0.5184232

## Do 0.5561326 0.5102111 0.6020540

## g1 0.1411012 0.1129961 0.1692063

## g2 0.2152983 0.1736149 0.2569817

## g3 0.3998479 0.3388262 0.4608696

## g4 0.6045703 0.5446874 0.6644531

## g5 0.6895514 0.6424590 0.7366437

Next we may want to compare the parameter estimates for the aggregated data between the original and
inequality restricted model:

br.2htm[["parameters"]][["aggregated"]][,"estimates"]

## [1] 0.4450308 0.5561326 0.1411012 0.2152983 0.3998479 0.6045703 0.6895514

br.2htm.ineq[["parameters"]][["aggregated"]][,"estimates"]

## [1] 0.4450308 0.5561326 0.1411012 0.2152983 0.3998479 0.6045703 0.6895514

14



As these results show, the order restriction on the guessing parameters held for the aggregated datasets (as
the parameter values are identical between the two models) and the parameters values are within reasonable
ranges. Note that order of the parameters is alphabetical (i.e., Dn, Do, g1, g2, g3, g4, g5). This ordering
is based on the current locale (a fact that can lead to unexpected beahviors when e.g., moving between
operating systems employing different locales such as Linux and Windows)! Before comparing the models
to decide which to select based on the performance on this dataset we might want to check if all models
provided a reasonable account of the data by inspecting the goodness of fit statistics. To this end we not
only inspect the aggregated data but also the summed individual fits.

br.2htm[["goodness.of.fit"]][2:3]

## $sum

## Log.Likelihood G.Squared df p.value

## 1 -4924.109 102.3226 120 0.8767447

##

## $aggregated

## Log.Likelihood G.Squared df p.value

## 1 -5376.127 2.835736 3 0.4176509

br.2htm.ineq[["goodness.of.fit"]][2:3]

## $sum

## Log.Likelihood G.Squared df p.value

## 1 -4942.507 139.1176 120 0.1118981

##

## $aggregated

## Log.Likelihood G.Squared df p.value

## 1 -5376.127 2.835736 3 0.4176509

The results show that the 2HTM is not grossly misfitting the data as none of the likelihood ratio tests is
rejected (i.e., ps > .05). Furthermore, as implied from the previous results, there are no differences for the
aggregated data between the 2HTM with or without the order restriction applied to the guessing parameters.
This, however, is not the case for the summed individual data. The log-likelihood and G2 values for the
2HTM with the order restriction is slightly worse than these values for the original 2HTM indicating that at
least for some datasets the order restriction does not completely hold.

From these findings the question arises of whether or not the restrictions on the guessing parameters are
justified when taking both model fit and model flexibility into account. To this end we now also consider
the information criteria and again only look at the summed individual results as well as the results of the
aggregated data.7

br.2htm$information.criteria[2:3]

## $sum

## FIA AIC BIC FIA.penalty

## 1 528.6463 662.3226 2732.268 477.485

##

## $aggregated

## FIA AIC BIC FIA.penalty

## 1 26.26607 16.83574 68.58437 24.8482

7In previous versions of MPTinR the summed BIC values were reported incorrectly. Due to the non-linear nature of the
ln(N) terms in the BIC formula (Equation 9), the individual values cannot simply be summed (which is what previous versions
reported). Instead, the G2 values, the Ns, and the parameters, need to be summed first and BIC calculated from these summed
values. From MPTinR version 1.9.2 onwards both fit.mpt et al. and select.mpt report correctly summed BIC values. Although
FIA also contains a ln(N) term, the FIA values can simply be summed (this can be easily checked by comparing the FIA of
multiple individuals with a super-model in which all individuals are fit jointly with separate parameters for each individual).
MPTinR version 1.9.2 incorrectly did not do so, but summed parts of the penalty term separately (see Equation 10) producing
incorrect results. From version 1.10.2 FIA values are again correctly summed across multiple data sets.
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br.2htm.ineq$information.criteria[2:3]

## $sum

## FIA AIC BIC FIA.penalty

## 1 358.9665 699.1176 2769.063 289.4077

##

## $aggregated

## FIA AIC BIC FIA.penalty

## 1 21.56414 16.83574 68.58437 20.14627

An alternative way of comparing models using information criteria is via function select.mpt (note
that we call select.mpt with output = "full" to obtain the model selection table for both individual and
aggregated data, the default output = "standard" only returns a table comparing the individual results).

select.mpt(list(br.2htm, br.2htm.ineq), output = "full")

## model n.parameters G.Squared.sum df.sum p.sum p.smaller.05

## 1 br.2htm 7 102.3226 120 0.876745 0

## 2 br.2htm.ineq 7 139.1176 120 0.111898 1

## G.Squared.aggregated df.aggregated p.aggregated FIA.penalty.sum

## 1 2.835736 3 0.417651 477.4850

## 2 2.835736 3 0.417651 289.4077

## delta.FIA.sum FIA.best FIA.sum FIA.penalty.aggregated

## 1 169.6798 0 528.6463 24.84820

## 2 0.0000 40 358.9665 20.14627

## delta.FIA.aggregated FIA.aggregated delta.AIC.sum wAIC.sum AIC.best

## 1 4.701932 26.26607 0.00000 1 40

## 2 0.000000 21.56414 36.79493 0 14

## AIC.sum delta.AIC.aggregated wAIC.aggregated AIC.aggregated

## 1 662.3226 0 0.5 16.83574

## 2 699.1176 0 0.5 16.83574

## delta.BIC.sum wBIC.sum BIC.best BIC.sum delta.BIC.aggregated

## 1 0.00000 1 40 2732.268 0

## 2 36.79493 0 14 2769.063 0

## wBIC.aggregated BIC.aggregated

## 1 0.5 68.58437

## 2 0.5 68.58437

The returned table compares one model per row (here split across multiple rows) using the information
criteria FIA, AIC, and BIC. For each criterion, delta values (i.e., in reference to the smallest value) and
absolute values are presented. The columns labeled .best indicate how often each model provided the best
account when comparing the individual datasets. As can be seen, for FIA the model with the order restriction
always provided the best account for the individual datasets (40 out of 40 individuals). In contrast, for AIC
and BIC the unrestricted 2HTM only provided the best account for 26 individuals. For 14 individuals AIC and
BIC were identical for both models. As the number of parameters is identical for both models and the penalty
factor of AIC and BIC only includes the number of parameters as a proxy of model complexity, the difference
in AIC and BIC between those two models merely reflects their differences in model fit. Furthermore, the
table presents AIC and BIC weights (wAIC and wBIC; Wagenmakers and Farrell, 2004).

Overall the results indicate the utility of FIA as a measure for model selection. As expected, when the
order restriction holds (as is the case for the aggregated data) FIA prefers the less complex model (i.e., the
one in which the possible parameter space is reduced due to inequality restrictions). This preference for the
less complex models is even evident for the cases where the order restriction might not completely hold as
FIA prefers the order-restricted model for all individuals even though the order-restricted model provides a
worse fit for 26 individuals. For the datasets obtained by Bröder and Schütz (2009) the more complex (i.e.,
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unrestricted) 2HTM model, albeit providing the better fit, seems unjustifiably flexible when using FIA as
the model selection criterion.

Note that the calculation of FIA is computationally demanding, especially when inequality restrictions
are applied (see the Appendix on how the model is reparametrized for inequality restrictions). Therefore,
MPTinR now uses the RcppEigen package (Bates and Eddelbuettel, 2013) for performing this step. This
dramatically reduced the calculation time compared to previous versions of MPTinR using pure R. Further-
more, the calculation can also be split across different cores for further speed improvements. But this should
only be necessary for comparatively large models.

4.4 Extending the Session

4.4.1 Model Selection on Specific Datasets

Given that for two participants (2 & 7) parameters are not uniquely identified we might want to repeat the
model selection excluding those participants. To this end, select.mpt contains the argument dataset which
lets us specify for which dataset we want to perform the model selection (this can be a scalar value or vector).
Here we decide to perform it on all participants minus the two problematic ones:

select.mpt(list(br.2htm, br.2htm.ineq), output = "full", dataset = (1:40)[-c(2, 7)])

## model n.parameters G.Squared.sum df.sum p.sum p.smaller.05

## 1 br.2htm 7 98.03135 114 0.856945 0

## 2 br.2htm.ineq 7 129.08307 114 0.158253 1

## FIA.penalty.sum delta.FIA.sum FIA.best FIA.sum delta.AIC.sum wAIC.sum

## 1 453.6108 163.1476 0 502.6264 0.00000 1

## 2 274.9373 0.0000 38 339.4789 31.05172 0

## AIC.best AIC.sum delta.BIC.sum wBIC.sum BIC.best BIC.sum

## 1 38 630.0314 0.00000 1 38 2582.835

## 2 14 661.0831 31.05172 0 14 2613.887

As can be seen, this does not change the conclusions (i.e., the restricted model performs better). Fur-
thermore, reporting of the aggregated data is suppressed now. Given that the aggregated data included all
data sets (i.e., also the two now excluded ones), this makes a lot of sense as it avoids reporting of misleading
results.

4.4.2 Considering Additional Models

As mentioned in the beginning, a popular version of the 2HTM restricts the memory parameters to be equal
across item types (i.e., Do = Dn). We also might be interested in whether or not this restriction is justified
for our data.

br.2htmr <- fit.mpt(d.broeder, textConnection(mod_2htm_2), list("Do = Dn"), fia = 25000)

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:44:03"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:44:12"

## Time difference of 9.418931 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:44:12"

## Optimization routine for dataset(s) 6 7

## did not converge succesfully. Tried again with use.gradient == FALSE.

## Optimization for dataset(s) 6 7

## using numerically estimated gradients produced better results. Using those results.

## Old results saved in output == ’full’ [[’optim.runs’]].

## [1] "Model fitting stopped at 2015-07-27 11:44:17"

## Time difference of 4.479022 secs
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br.2htmr.ineq <- fit.mpt(d.broeder, textConnection(mod_2htm_2),

list("g1 < g2 < g3 < g4 < g5", "Do = Dn"), fia = 25000)

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:44:17"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:44:54"

## Time difference of 36.21806 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:44:54"

## Optimization routine for dataset(s) 6 7

## did not converge succesfully. Tried again with use.gradient == FALSE.

## Optimization for dataset(s) 6 7

## using numerically estimated gradients produced better results. Using those results.

## Old results saved in output == ’full’ [[’optim.runs’]].

## [1] "Model fitting stopped at 2015-07-27 11:45:12"

## Time difference of 17.9141 secs

Given we now have four models, we again use select.mpt for a model selection table.

select.mpt(list(br.2htm, br.2htm.ineq, br.2htmr, br.2htmr.ineq), output = "full")

## model n.parameters G.Squared.sum df.sum p.sum p.smaller.05

## 1 br.2htm 7 102.3226 120 0.876745 0

## 2 br.2htm.ineq 7 139.1176 120 0.111898 1

## 3 br.2htmr 6 155.2634 160 0.590982 1

## 4 br.2htmr.ineq 6 182.5636 160 0.106868 2

## G.Squared.aggregated df.aggregated p.aggregated FIA.penalty.sum

## 1 2.835736 3 0.417651 477.4850

## 2 2.835736 3 0.417651 289.4077

## 3 6.834057 4 0.144922 456.9965

## 4 6.834057 4 0.144922 275.4434

## delta.FIA.sum FIA.best FIA.sum FIA.penalty.aggregated

## 1 169.679829 0 528.6463 24.84820

## 2 0.000000 16 358.9665 20.14627

## 3 175.661717 0 534.6282 22.49155

## 4 7.758673 24 366.7252 17.95272

## delta.FIA.aggregated FIA.aggregated delta.AIC.sum wAIC.sum AIC.best

## 1 4.896320 26.26607 27.05926 0.000001 11

## 2 0.194387 21.56414 63.85419 0.000000 1

## 3 4.538829 25.90858 0.00000 0.999997 29

## 4 0.000000 21.36975 27.30021 0.000001 14

## AIC.sum delta.AIC.aggregated wAIC.aggregated AIC.aggregated

## 1 662.3226 0.000000 0.365447 16.83574

## 2 699.1176 0.000000 0.365447 16.83574

## 3 635.2634 1.998322 0.134553 18.83406

## 4 662.5636 1.998322 0.134553 18.83406

## delta.BIC.sum wBIC.sum BIC.best BIC.sum delta.BIC.aggregated

## 1 322.76574 0.000000 1 2732.268 5.39434

## 2 359.56067 0.000000 1 2769.063 5.39434

## 3 0.00000 0.999999 39 2409.502 0.00000

## 4 27.30021 0.000001 14 2436.802 0.00000

## wBIC.aggregated BIC.aggregated

## 1 0.03157 68.58437
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## 2 0.03157 68.58437

## 3 0.46843 63.19003

## 4 0.46843 63.19003

Overall the FIA results are not completely conclusive. The clear pattern is that the two models including
the inequality restrictions on g are preferred compared to the ones without the inequality restriction. At
the level of the individual data, the restricted 2HTM provides the best account for more participants (23/22
versus 17/18 for the unrestricted 2HTM) but its summed FIA value is somewhat smaller by around 8. On the
level of the aggregated data the pattern is inverted although the difference between restricted and unrestricted
2HTM is minimal (0.17).

As a final results let us now consider the individual parameter estimates of the two best models. The
parameter values of the individual data are contained in a three-dimensional array in which the first dimen-
sion corresponds to the parameter, with the second dimension we can either obatin the parameter estimates
("estimates"), the confidence intervals, or an indicator variable whether or not a given parameters is re-
stricted or free to vary, and the third dimension corresponds to the data set.

str(br.2htmr$parameters$individual)

## num [1:7, 1:4, 1:40] 0.4422 0.4422 0.0294 0.1011 0.5571 ...

## - attr(*, "dimnames")=List of 3

## ..$ : chr [1:7] "Dn" "Do" "g1" "g2" ...

## ..$ : chr [1:4] "estimates" "lower.conf" "upper.conf" "restricted.parameter"

## ..$ : chr [1:40] "dataset: 1" "dataset: 2" "dataset: 3" "dataset: 4" ...

We can use this array to obtain mean or median estimates from the two models (i.e., selecting all param-
eters and all individuals, but only the parameter estimate):

apply(br.2htm$parameters$individual[,1,], 1, mean)

## Dn Do g1 g2 g3 g4 g5

## 0.4426148 0.4745969 0.2239059 0.2846895 0.4596746 0.6390676 0.6989910

apply(br.2htm$parameters$individual[,1,], 1, median)

## Dn Do g1 g2 g3 g4 g5

## 0.4639994 0.4970285 0.1337719 0.2239789 0.4870578 0.6527825 0.7618422

apply(br.2htmr$parameters$individual[,1,], 1, mean)

## Dn Do g1 g2 g3 g4 g5

## 0.5085945 0.5085945 0.1592395 0.2456915 0.4226900 0.6331431 0.6919976

apply(br.2htmr$parameters$individual[,1,], 1, median)

## Dn Do g1 g2 g3 g4 g5

## 0.5225297 0.5225297 0.1268384 0.2348676 0.4567806 0.6305706 0.6969520

These results show that Do and Dn are quite near to each other in the unrestricted model, which suggests
that the restricted model indeed provides a slightly better account. Furthermore, when restricting Do and
Dn to be equal, the other parameters do not dramatically change suggesting that this is not achieved by
some sort of parameter trade-off.

Note that the mean parameter estimates are also part of the returned list:

br.2htm$parameters$mean

## estimates lower.conf upper.conf
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## Dn 0.4426148 NA NA

## Do 0.4745969 NA NA

## g1 0.2239059 NA NA

## g2 0.2846895 NA NA

## g3 0.4596746 NA NA

## g4 0.6390676 NA NA

## g5 0.6989910 NA NA

4.4.3 Potential Problems with FIA

FIA provides an asymptotic measure of model complexity approximating normalized maximum likelihood
only in the limit when the number of data points (i.e., trials for a given participant) goes to infinity. A
consequence of this is that for finite sample sizes FIA may provide inacurate or even inconsistent penalties
(Navarro, 2004; Heck et al., 2014). This problem is specifically prevalent when only having small numbers of
trials for a given data set and cannot be overcome by collecting more participants, but only by more trials
per participant. For example, imagine that in addition to the models dicussed above we would also want to
include the 1HT model into our set of candidate models for the data of Bröder and Schütz (2009) for which
Dn = 0.

br.1htm <- fit.mpt(d.broeder, textConnection(mod_2htm_2), list("Dn = 0"), fia = 25000)

## Restriction starting with Dn: Constant is either equal to 0 or 1 or outside the interval

from 0 to 1. This may lead to problems.

## Restriction starting with Dn: Constant is either equal to 0 or 1 or outside the interval

from 0 to 1. This may lead to problems.

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:45:13"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:45:22"

## Time difference of 9.128982 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:45:22"

## [1] "Model fitting stopped at 2015-07-27 11:45:26"

## Time difference of 3.307747 secs

br.1htm.ineq <- fit.mpt(d.broeder, textConnection(mod_2htm_2),

list("g1 < g2 < g3 < g4 < g5", "Dn = 0"), fia = 25000)

## Restriction starting with Dn: Constant is either equal to 0 or 1 or outside the interval

from 0 to 1. This may lead to problems.

## Restriction starting with Dn: Constant is either equal to 0 or 1 or outside the interval

from 0 to 1. This may lead to problems.

## [1] "Computing FIA: Iteration begins at 2015-07-27 11:45:26"

## [1] "Computing FIA: Iteration stopped at 2015-07-27 11:46:00"

## Time difference of 33.93932 secs

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:46:00"

## Optimization routine for dataset(s) 6 7

## did not converge succesfully. Tried again with use.gradient == FALSE.

## Optimization for dataset(s) 6 7

## using numerically estimated gradients produced better results. Using those results.

## Old results saved in output == ’full’ [[’optim.runs’]].

20



## [1] "Model fitting stopped at 2015-07-27 11:46:16"

## Time difference of 15.91526 secs

select.mpt(list(br.2htm, br.2htm.ineq, br.2htmr, br.2htmr.ineq, br.1htm, br.1htm.ineq),

output = "full")[,1:16]

## model n.parameters G.Squared.sum df.sum p.sum p.smaller.05

## 1 br.2htm 7 102.3226 120 0.876745 0

## 2 br.2htm.ineq 7 139.1176 120 0.111898 1

## 3 br.2htmr 6 155.2634 160 0.590982 1

## 4 br.2htmr.ineq 6 182.5636 160 0.106868 2

## 5 br.1htm 6 199.1704 160 0.019253 6

## 6 br.1htm.ineq 6 225.5127 160 0.000497 7

## G.Squared.aggregated df.aggregated p.aggregated FIA.penalty.sum

## 1 2.835736 3 0.417651 477.4850

## 2 2.835736 3 0.417651 289.4077

## 3 6.834057 4 0.144922 456.9965

## 4 6.834057 4 0.144922 275.4434

## 5 57.389632 4 0.000000 480.5231

## 6 57.389632 4 0.000000 289.7082

## delta.FIA.sum FIA.best FIA.sum FIA.penalty.aggregated

## 1 169.679829 0 528.6463 24.84820

## 2 0.000000 16 358.9665 20.14627

## 3 175.661717 0 534.6282 22.49155

## 4 7.758673 24 366.7252 17.95272

## 5 221.141801 0 580.1083 23.07972

## 6 43.498045 0 402.4645 18.30934

## delta.FIA.aggregated FIA.aggregated

## 1 4.896320 26.26607

## 2 0.194387 21.56414

## 3 4.538829 25.90858

## 4 0.000000 21.36975

## 5 30.404780 51.77453

## 6 25.634408 47.00416

The results reveal an interesting picture. Although the 1HTM is nested in the (unrestricted) 2HTM the
FIA penalty of the summed data for the former is slightly larger than for the latter. In other words, FIA
is inconsistent for those two models as the 1HTM must be less complex then the 2HTM. Given the number
of trials per individual in the data (300 trials per individual) we cannot use FIA to compare the 2HTM and
the 1HTM on the individual level. For the aggregated data this is different as we here observe the expected
ordering for FIA penalties: 1HTM < 2HTM. In line with Klauer and Kellen (2011) the restricted 2HTM is
somewhat less complex than the 1HTM.

To sum this up, when using FIA it is important to check if the FIA penalties are logically consistent;
nested models must have lower penalties than the superordinate models. If this is not the case it may be
preferrable to use the aggregated data instead of the individual level data (despite the problem associated
with this), as long as the parameters estimates of the aggregated data are not grossly diverging from the
individual level ones. When doing so for the current data it is clear that the different 2HTM versions are
clearly preferred to the 1HTM with a slight preference for the restricted 2HTM (while in all cases models
with inequaltiy restrictions on g are preferred).

4.5 Bootstrapping

Besides model fitting and model selection, the next major functionality of MPTinR concerns bootstrap sim-
ulation (Efron and Tibshirani, 1994). In the previous example using the individual data sets obtained by
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Bröder and Schütz (2009), the response frequencies were low due to the small number of trials. In such cases,
asymptotic statistics such as the sampling distribution of the G2 statistic or the asymptotic confidence inter-
vals for the parameter estimates can be severely compromised (e.g., Davis-Stober, 2009). Another situation
that compromises the assumptions underlying those asymptotic statistics is when parameter estimates are
close to the boundaries of the parameter space (i.e., near to 0 or 1; Silvapulle and Sen, 2005). In such cases,
the use of bootstrap simulations may overcome these problems.

According to the bootstrap principle (Efron and Tibshirani, 1994), if one assumes that an observed data
sample F̂ , randomly drawn from a probability distribution F , provides a good characterization of the latter,
then one can evaluate F by generating many random samples (with replacement) from F̂ and treating them
as “replications” of F̂ . These bootstrap samples can then be used to draw inferences regarding the model used
to fit the data, such as obtaining standard errors for the model’s parameter estimates (Θ̂). When the data
samples are generated on the basis of the observed data, and no assumption is made regarding the adequacy
of the model to be fitted, the bootstrap is referred to as nonparametric. Alternatively, bootstrap samples
can be based on the model’s parameters estimates that were obtained with the original data. In this case,
the model is assumed to correspond to the true data-generating process and the bootstrap is designated as
parametric. The parametric bootstraps can be used to evaluate the sampling distribution of several statistics
such as the G2 and the p-values under distinct hypotheses or models (Efron and Tibshirani, 1994) (see also
van de Schoot et al. (2010)). The use of the parametric and nonparametric bootstraps not only provides
a way to overcome the limitations of asymptotic statistics, but also to evaluate parameter estimates and
statistics under distinct assumptions.

MPTinR contains two higher level functions, gen.data and sample.data, that can be used for bootstrap
simulations. The function gen.data produces bootstrap samples based on a given model and a set of
parameter values. The function sample.data produces bootstrap samples based on a given dataset. These
functions can be used separately or jointly in order to obtain parametric and nonparametric bootstrap
samples. These are general-purpose functions that can be used for a wide variety of goals, such as a)
obtaining confidence intervals for the estimated parameters, b) sampling distributions of the G2-statistic and
p-values under several types of null-hypotheses (van de Schoot et al., 2010), and c) model-mimicry analysis
(Wagenmakers et al., 2004). Also, bootstrap simulations assuming individual differences, as implemented by
Hu and Phillips (1999) and Moshagen (2010), can also be obtained using these functions. Both functions are
calling R’s rmultinom function to obtain multinomially distributed random data.

Given the variety of bootstrap methods and their goals (Efron and Tibshirani, 1994), we only provide a
simple example in which 200 parametric bootstrap samples are used to estimate the 95% confidence intervals
for the parameter estimates obtained with the aggregated data from Br”oder and Sch”utz (2009) (note we
now only use the aggregated data but the same model again). Note, 200 is also just used for illustration
purposes, in real applications values such as 1,000 or 10,000 are more appropriate.

br.2htm.2 <- fit.mpt(colSums(d.broeder), textConnection(mod_2htm_2))

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:46:17"

## [1] "Model fitting stopped at 2015-07-27 11:46:17"

## Time difference of 0.1104329 secs

t(br.2htm.2[["parameters"]])

## Dn Do g1 g2 g3 g4

## estimates 0.4450308 0.5561326 0.1411012 0.2152983 0.3998479 0.6045703

## lower.conf 0.3716383 0.5102111 0.1129961 0.1736149 0.3388262 0.5446874

## upper.conf 0.5184232 0.6020540 0.1692063 0.2569817 0.4608696 0.6644531

## g5

## estimates 0.6895514

## lower.conf 0.6424590

## upper.conf 0.7366437
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bs.data <- gen.data(br.2htm.2[["parameters"]][,1], 200,

textConnection(mod_2htm_2), data = colSums(d.broeder))

br.2htm.bs <- fit.mpt(bs.data, textConnection(mod_2htm_2), fit.aggregated = FALSE)

## Presenting the best result out of 5 minimization runs.

## [1] "Model fitting begins at 2015-07-27 11:46:17"

## [1] "Model fitting stopped at 2015-07-27 11:46:38"

## Time difference of 20.55143 secs

apply(br.2htm.bs[["parameters"]][["individual"]][,1,],

1, quantile, probs = c(0.025, 0.975))

## Dn Do g1 g2 g3 g4

## 2.5% 0.3648513 0.5116663 0.1149389 0.1787954 0.3358516 0.5418700

## 97.5% 0.5075170 0.6021477 0.1707460 0.2623970 0.4676441 0.6618069

## g5

## 2.5% 0.6445303

## 97.5% 0.7317606

In this example, we first fit the original data to the (unrestricted) 2HTM to obtain parameter estimates.
These estimates are displayed (along with the asymptotic confidence intervals based on the Hessian matrix)
and then used as an argument to the gen.data function, requesting the bootstrap samples. In the next step
the bootstrap samples are fitted using fit.mpt setting the fit.aggregated argument to FALSE to prevent
MPTinR from trying to fit the (meaningless) aggregated dataset. Finally, the 95% confidence intervals are
calculated by obtaining the 2.5% and 97.5% quantile from the resulting distribution of estimates for each
parameter (conveniently done using R’s apply function). As can be seen, the Hessian based confidence
intervals and bootstrapped confidence intervals strongly agree indicating that the variance-covariance matrix
obtained via the Hessian matrix is a good approximation of the true variance-covariance matrix (see Hu and
Phillips (1999)).

Fitting the bootstrap samples takes only a few seconds. If one requests more samples or the model becomes
more complicated, the multi-core functionality of MPTinR (which is more thoroughly described below and
in the documentation of fit.mpt) can be used to reduce the fitting time by distributing the fitting across
cores. For obtaining nonparametric confidence intervals the call to gen.data should be replaced with a call
to sample.data. For example: bs.data <- sample.data(d.broeder.agg, 10000, "2htm.model")

4.6 Additional Functionality

This section gives an overview over the additional functions in MPTinR besides the main functions described
above (see also Table 1). As already sketched above, MPTinR can fit many types of cognitive models.
fit.model is a copy of fit.mpt (i.e., a model needs to be defined as strings either in a model file or via
textConnection) with the additional possibility to specify upper and lower bounds for the parameters (as
for example needed to fit SDT models). Its documentation contains examples of fitting SDT models, for
example to the data of Bröder and Schütz (2009). fit.mptinr is a function that allows for even more
flexibility in representing a model. Instead of a model as string, a model needs to be specified as a R function
returning the log-likelihood of the model (known as an objective function) which will be minimized. This
allows one to fit models to categorical data that can not be specified in model files, for example models
containing integrals. The documentation of fit.mptinr contains an example of how to fit a SDT model to
a recognition memory experiment in which the memory performance is measured via a ranking task (Kellen
et al., 2012). Actually, fit.mptinr is called by fit.mpt and fit.model with objective functions created
for the models in the model file. fit.mpt.old is the old version of MPTinR’s main function containing
a different fitting algorithm (see it’s documentation for more information). Note that select.mpt accepts
results from any of the fitting functions in MPTinR (as all output is produced by fit.mptinr). To reduce
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Table 1: Overview of functions in MPTinR

Function name Description

fit.mpt fit MPT models from model files (allows computation of FIA)
fit.model fit models from model files (specify parameter bounds)
fit.mptinr fit models from objective function (called by fit.mpt)
fit.mpt.old fit MPT models from model files using old fitting algorithm
prediction.plot plot observed versus predicted values for fitted model
select.mpt make model selection table from fitted results
gen.data generate data from model and parameter values (i.e., parametric bootstrap)
sample.data generate data from a given dataset (i.e., nonparametric bootstrap)
gen.predictions generate response proportions from given model and parameter values
make.mpt.cf returns word in LBMPT for MPT model from model file
lbmpt.to.mpt takes word in LBMPT and returns MPT model file
get.mpt.fia conveniently obtain FIA for an MPT model file
bmpt.fia R port of BMPTFIA (Wu et al., 2010a)
prepare.mpt.fia make string to obtain FIA in MATLAB using BMPTFIA

make.eqn make eqn model file from model in easy format
make.mdt make mdt data file from data vector, matrix, or data.frame

Note. Documentation containing all the arguments for each function can be obtained by typing the
function name at the R prompt preceded by a ?, e.g., ?fit.mpt

computational time for large datasets or models, MPTinR contains the possibility to use multiple processors
or a computer cluster by parallelizing the fitting algorithm using the snowfall package (Knaus et al., 2009).
Furthermore, fitting of the aggregated dataset can be disabled by setting fit.aggregated = FALSE.

To visualize the model fit, the results from any of the fitting functions can be passed to prediction.plot

to visualize the model misfit. As an example we again use the fit to the aggregated data.

br.2htm.2 <- fit.mpt(colSums(d.broeder), textConnection(mod_2htm_2), show.messages = FALSE)

axis.labels <- c("10%-O", "90%-N", "25%-O", "75%-N", "50%-O", "50%-N",

"75%-O", "25%-N", "90%-O", "10%-N")

prediction.plot(br.2htm.2, textConnection(mod_2htm_2), axis.labels = axis.labels,

args.plot = list(main = "Absolute deviations (frequency scale)"))
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This plot shows several things. First, as the trees have only two leafs (in other words, the data is
binomially distributed) the misfits in one tree always cancel each other out perfectly. Second, overall, there
seems to be more misfit for the old then for the new items. Third, the misfit is particularly strong for the
middle category. These observations could provide inside into how to extend the model. It shows us where
the model fails.

In addition to the data generating functions gen.data and sample.data described in the previous section,
the function gen.predictions returns predicted response proportions or predicted data from a vector of
parameter values for a given model. This function can be used to check if a model recovers certain parameter
values (i.e., by fitting the predicted responses) and simulated identifiability (i.e., repeating this steps multiple
times with random parameter values; Rouder and Batchelder, 1998). The function gen.data internally calls
gen.predictions. Note that the data generating functions that take a model as an argument also work with
any model that can be specified in a model file, such as signal-detection models.

bmpt.fia is our R port of the original BMPTFIA function from Wu et al. (2010a). As bmpt.fia requires
a model to be entered as a word in LBMPT we provide the convenience function get.mpt.fia which takes
similar arguments as fit.mpt and will call bmpt.fia with the correct arguments. In some cases researchers
might prefer to obtain the FIA from MATLAB. To this end, MPTinR contains the convenience function
prepare.mpt.fia. It takes the same arguments as get.mpt.fia but will return a string that is the call to
the original BMPTFIA function in MATLAB (i.e., the string just needs to be copied and pasted into MATLAB).
Note however, that since using RcppEigen for calculating FIA the MPTinR implementation is faster than
the corresponding Matlab code. As noted above, FIA can be directly computed in a call to fit.mpt (if one
wants to use select.mpt it is necessary to use fit.mpt and not the other just described functions).

Finally, MPTinR contains several helper functions. make.mpt.cf will take a model file as an argument
and will produce a word in LBMPT using the algorithm described above. The converse can be achieved by
function lbmpt.to.mpt8 which takes a word in LBMPT and produces a model file. make.eqn will take a model
file in easy format and will produce a file in the EQN format. Similarly, make.mdt will take data (either a
single vector or a matrix or data.frame) and will produce a single file in the MDT format containing all
the datasets. EQN and MDT files are used by other programs for fitting MPT models such as MultiTree
(Moshagen, 2010) or HMMTree (Stahl and Klauer, 2007).

8This function was contributed by Quentin Gronau and Franz Dietrich.
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5 Appendix: MPTinR Algorithms

The purpose of this section is to give an overview of the algorithms used by MPTinR as they diverge from
the usual employed fitting algorithm for MPT models (the EM algorithm, Hu & Batchelder, 1994). Readers
mainly interested in using MPTinR for fitting MPT models may skip this section. The main task of MPTinR
is model fitting, that is iteratively finding the maximum likelihood parameter estimates Θ̂. Instead of the EM
algorithm, MPTinR uses the general purpose optimization algorithm implemented in R’s nlminb function.
This algorithm is a variation of Newton’s method that can use the analytical or approximated (i.e., quasi-
Newton) gradient or Hessian to obtain the optimal parameters within parameter bounds and is part of
the PORT library (Kaufman and Gay, 2003). Previous versions of MPTinR used a different optimization
algorithm (L-BFGS-B; Byrd et al., 1995), which is still available in the function fit.mpt.old. However, as
L-BFGS-B cannot use an analytical gradient we changed the algorithm to nlminb.

The advantages of using a general purpose optimization routine instead of a specialized one are twofold.
First, the PORT routines are implemented reasonably fast in the FORTRAN programming language (com-
pared to optimization algorithms implemented in pure R code). Second, MPTinR does not require a model to
strictly follow an MPT form as described in (Riefer and Batchelder, 1988) or (Purdy and Batchelder, 2009).
Instead, MPTinR literally uses the right hand sides of the model equations (e.g., Equations 1-4) and evaluates
them using the current parameter values at each iteration of the optimization process. In other words, the
model is not transformed into any matrix notation (see Riefer and Batchelder, 1988). Consequently, MPTinR
can fit any model that can be described in a model file using (inbuilt or self-written) R functions.

When calling fit.mpt or fit.model the following steps are performed for obtaining Θ̂: The equations
in the model file are parsed line by line into R expressions (i.e., code that can be executed). These
expressions are concatenated to obtain the likelihood function for a given model (Equation 6). To avoid
numerical underflows, the negative log of the likelihood function gives the objective function (i.e., the function
that will be minimized). From this function the functions to calculate the gradient and the Hessian matrix
of the model are derived using symbolical derivation implemented in the D function. The objective, gradient
and Hessian function are then passed as arguments to fit.mptinr, the workhorse of MPTinR. fit.mptinr
can also be called directly with an objective function if it cannot be specified in a model file.

Both the objective and the gradient function are per default passed to nlminb for obtaining Θ̂. In cases
where nlminb does not converge successfully, fitting is restarted using a numerically approximated gradient
(with warning). Furthermore, fit.model and fit.mptinr allows one to specify whether or not the gradient
function or even the Hessian function should be passed to nlminb (using the Hessian function for fitting
did neither improve the speed nor the quality of the fitting of MPT models and is therefore deactivated
per default). To allow an assessment of the quality of the fitting algorithm, MPTinR reports the summary

statistic of a vector containing the values of the objective function at the obtained minima for each fitting
run (if n.optim > 1) in output element fitting.runs. Our experience is that the dispersion of the minima
is usually 0, unless the data contains many zero cells or the model is not identified for that dataset.

When model restrictions are specified they will be applied before creating the objective function in that
the expressions representing the model will be altered. In case of equality restrictions (i.e., either setting two
parameters equal, e.g., x = y, or fixing a parameter to a value e.g., x = 0) the model equations are altered
so that the to be restricted parameter is replaced with the restriction. To apply inequality restrictions the
model is altered using a variant of method A described by (Knapp and Batchelder, 2004). More specifically,
each instance of the to be restricted parameter is replaced by the product of a dummy parameter and the
restriction (e.g., for the restriction x1 < x2, each instance of x1 would be replaced with x2 ∗ hank.y1). Note
that all dummy parameters in MPTinR start with hank. and it should therefore be avoided to use parameter
names starting with these characters. Whereas this reparametrization is equivalent to method A of Knapp
and Batchelder, it does not preserve the LBMPT structure of the model. In general it holds that for order
restrictions only the rightmost element remains and all other parameters will replaced. Note that confidence
intervals around inequality restricted parameters are based on variance bounds of the parameter estimates
(i.e., they represent a ”worst case scenario”; Baldi and Batchelder, 2003, Equation 19).

For obtaining the FIA, MPTinR first transforms a model into a word in LBMPT (if a model consists
of multiple trees these are concatenated by joining parameters) which is then passed to our R port of the
algorithm by Wu et al. (2010a). If a model is not a member of LBMPT calculation of the FIA will fail.
MPTinR tries to minimize computational time for the FIA by only calculating the penalty factor of the FIA
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(i.e., the integral in Equation 10) as many time as needed (i.e., as many times as the ratio of the N between
tree differs not as many times as N differs).

As our method of reparametrizing inequality restrictions does not preserve the MPT structure of a given
model (i.e., even if it is a member of LBMPT before applying the restrictions it is not thereafter), MPTinR
obtains the FIA for inequality restricted models by passing the unrestricted model to the Wu et al. (2010a)
algorithm but specifying the restrictions in the corresponding arguments. Whether or not one wants to
enforce the restrictions when fitting the model is controlled by the reparam.ineq argument to fit.mpt. The
default behavior is to enforce the inequality restriction by reparametrizing the model (i.e., reparam.ineq =

TRUE is the default). This contrasts with the example given by Wu et al. in which “parameter estimates do
not violate” (p. 282) the inequality restrictions and therefore the inequality restrictions are not enforced when
fitting the model but the restrictions are nevertheless passed to BMPTFIA. This behavior can be emulated by
setting reparam.ineq = FALSE in which case the inequality restrictions are not enforced when fitting the
model, but will be taken into account when obtaining the FIA.
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