
Discussion of Upcoming and Desired
Design and Coding Decisions
in PortfolioAnalytics (2012)

Brian G. Peterson
brian@braverock.com

April 18, 2015

Abstract

PortfolioAnalytics has grown significantly since it was initially written, and will con-
tinue to grow and change, especially with the increased involvement of additional portfolio
managers and with work on the next version of Doug Martin et. al.’s Modern Portfolio
Optimization(Scherer and Martin, 2005)

This document lays out Some current state information, some design musings, and some
things that we desire to address.

It is my hope that interested readers and users will give us feedback, and possibly even
code contributions, to make some of this functionality a reality.
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1 Introduction

Difference between constraints and objectives

Renaming constraints object, separating constraints and objectives, collections of objectives multi-

objective optimization

Specifying constraints

Relaxing constraints penalized versus direct

2 Current State

Our overall goal with Portfolioanalytics is to allow the use of many different portfolio solvers to

solve the same portfolio problem specification.

2.1 Constraints Current State

On the constraints front, this includes support for box constraints, inequality constraints, turnover,

and full investment.

Box Constraints box constraints (min/max) are supported for all optimization engines, this

is a basic feature of any optimization solver in R. It is worth noting that most optimization

solvers in R support only box constraints.

Box constraints are of course necessary, but not sufficient, and a portfolio that satisfies the

box constraints may very well not satisfy any number of other constraints on the combina-

tions of weights.

Full Investment Constraint a full investment constraint or min sum, max sum constraint

is supported for all solvers inside the constrained objective function using either a normal-

ization method or a penalty method The normalization method simply scales the supplied

parameters to either the minimum or the maximum if the sum is outside the allowed bounds.

This has the advantage of being fast, but the disadvantages of decreasing the number of

portfolios that will be tested that have assets that use your max/min box constraints, be-

cause of the scaling effects. You’ll get close, but very few tested portfolios, perhaps none,

will have assets that exactly hit the max or min box constrained weights.
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The penalty method simply uses the absolute value of the difference for the sum of the weight

vector from your min sum or max sum (depending on which was violated) as part of the

penalized objective output that the solver is working on. This has the advantage that you

are not doing transformations on the supplied weight vector inside the constrained objective

function, but the disadvantage that it may take the solver a long time to find a population

that meets the objectives.

For the ROI solvers, min sum and max sum are supported as linear constraints on the sum

of the weights vector.

Linear Inequality Constraints individual linear inequality constraints are currently supported

only for the ROI solvers, because ROI supports these types of constraints for at least Rglpk

and quadprog solvers, and apparently also several other solvers that directly support these

types of constraints, such as ipop. These constraints can indicate that specific assets must

be larger or smaller than other assets in the portfolio.

Group Inequality Constraints linear group inequality constraints are currently supported

only for the ROI solvers. These constraints can separate the portfolio assets into groups,

and apply basic inequalities ”>”,”<”,”>=”, ”<=”, etc to them so that the sum of the weights

in the group must satisfy the constraint versus another group or groups.

Turnover turnover is currently supported as an objective that can be added to your overall

portfolio objectives, and is handled inside constrained objective. I think that it could also

be handled as a true constraint, which I’ll discuss in a bit.

3 Improving the Current State

3.1 Modularize Constraints

Today, the box constraints are included in the constraints constructor. It would be better

to have a portfolio specification object that included multiple sections: constraints, objectives,

assets. (this is how the object is organized, but that’s not obvious to the user). I think that we

should have an add.constraint function like add.objective that would add specific types of

constraints:

1. box constraints
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2. asset inequality constraints

3. group inequality constraints

4. turnover constraint

5. full investment or leverage constratint

3.2 Creating a mapping function

DEoptim contains the ability to use a mapping function to manage constraints, but there are no

generalized mapping functions available. The mapping function takes in a vector of optimization

parameters(weights), tests it for feasibility, and either transforms the vector to a vector of feasible

weights or provides a penalty term to add to the objective value. For PortfolioAnalytics, I think

that we can write a constraint mapping function that could do the trick, even with general opti-

mization solvers that use only box constraints. The mapping function should have the following

features:

methods: the methods should be able to be turned on and off, and applied in different orders. For

some constraint mapping, it will be important to do things in a particular order. Also, for

solvers that support certain types of constraints directly, it will be important to use the

solver’s features, and not use the corresponding mapping functionality.

layering: ROI constains function rbind.L_constraint, which combines the various linear inequality

constraints into a single model. We should examine this and see if we can make use of it,

or something like it, to create a consolidated inequality constraint mapping capability

relocatable: for some solvers such as DEoptim, the solver can use the mapping function to only evaluate

the objective for portfolios that meet the constraints. For other solvers, where only box

constraints are supported, we will need to either penalize or transform (see discussion above

in 2) weights vector later in the process, inside the constrained_objective function.

relax constraints: we need the ability to relax infeasible constraints, either via the penalty method (just find

the closest) or when transforming the weights vector to a feasible set. see also 3.3 for a

discussion of adaptive penalties.

The mapping function could easily be incorporated directly into random portfolios, and some

code might even move from random portfolios into the mapping function. DEoptim can call the
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mapping function directly when generating a population. For other solvers, we’ll need to read

the constraint specification, determine what types of constraints need to be applied, and utilize

any solver-specific functionality to support as many of them as possible. For any remaining

constraints that the solver cannot apply directly, we can call the mapping function to either

penalize or transfrom the weights on the remaining methods inside constrained_objective.

3.3 Penalty Functions

The current state uses a user-defined fixed penalty function for each objective, multiplying the

exceedence or difference of the objective from a target against a fixed penalty. This requires

the user to understand how penalty terms influence optimization, and to modify their terms as

required.

The multiple papers since 2003 or so suggest that an adaptive penalty that changes with the

number of iterations and the variability of the answers for the objective can significantly improve

convergence. [add references]. As we re-do the constraints, we should consider applying the

penalty there for small feasible constraint areas (e.g. after trying several hundred times to get a

random draw that fits, use adaptively penalized contraints to get as close as possible), but even

more importantly perhaps we should support an adaptive constraint in the objectives.

Several different methods have been proposed. In the case of constraints, penalties should prob-

ably be relaxed as more infeasible solutions are found, as the feasible space is likely to be small.

In the sase of objectives, arguably the opposte is true, where penalties should increase as the

number of iterations increases, to speed convergence to a single solution, hopefully at or near the

global minima.
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