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Random numbers following a Standard Normal distribution are of great
importance when using simulations as a means for investigation. The
Ziggurat method (Marsaglia and Tsang, 2000; Leong et al., 2005) is one
of the fastest methods to generate normally distributed random numbers
while also providing excellent statistical properties. This note provides an
updated implementations of the Ziggurat generator suitable for 32- and 64-
bit operating system. It compares the original implementations to several
popular Open Source implementations. A new implementation embeds
the generator into an appropriate C++ class structure. The performance
of the different generator is investigated both via extended timing and
through a series of statistical tests, including a suggested new test for
testing Normal deviates directly. Integration into other systems such as R
is discussed as well.

Introduction

Generating random number for use in simulation is a classic topic
in scientific computing and about as old as the field itself. Most
algorithms concentrate on the uniform distribution. Its values
can be used to generate randomly distributed values from other
distributions simply by using the relevant inverse function.

Regarding terminology, all computational algorithms for gener-
ation of random numbers are by definition deterministic. Here, we
follow standard convention and refer to such numbers as pseudo-
random as they can always be recreated given the seed value for
a given sequence. We are not concerned in this note with quasi-
random numbers (also called low-discrepnancy sequences). We
consider this topic to be subset of pseudo-random numbers subject
to distributional constraints. Without lack of generality, we will
henceforth drop the qualifier pseudo when refering to random
numbers.

Due to its importance for many modeling tasks, the Normal dis-
tribution has also been studied extensively in order to find suitable
direct algorithms which generate stream of normally distributed
(pseudo) random numbers. A well-known examples for such algo-
rithms includes the method by Box and Muller (Box and Muller,
1958). A useful recent survey of the field is provided by Thomas
et al. (2007).

In an important paper, Marsaglia and Tsang (2000) introduced
the Ziggurat method. Since its initial publication, this algorithm
has become reasonably popular1 as it provides a very useful combi-
nation of both excellent statistical properties and execution speed.
Thomas et al. (2007) conclude their survey by saying that

the Ziggurat method, the second in speed, is about 33%
slower than the [fastest]method but does not suffer from
correlation problems. Thus, when maintaining extremely
high statistical quality is the first priority, and subject
to that constraint, speed is also desired, the Ziggurat
method will often be the most appropriate choice.

1Usage of a code search engine such as code.ohloh.net or codesearch.debian.net provides a good approx-
imation to the popularity of the Ziggurat algorithm as its name is also a reasonably unique search term
within the field of computing.

This paper reexamines the Ziggurat method, provides a new
and portable C++ implementation, and compares it to several
other Open Source implementations of the underlying algorithm
by applying three different statistical tests.

Ziggurat

This sections briefly discusses the key papers related to Ziggurat.

Marsaglia and Tsang. Marsaglia and Tsang (2000) introduced the
Ziggurat method. It provides a fast algorithm for generating both
normally and exponentially distributed random numbers. The
original paper also contains a corresponding implementation in
the C language.

The listing in Figure 1 shows this initial implementation. We
have removed the code for generating exponentially distributed
random numbers as well a comment header from the listing to
keep the display more compact. The full listing is also included in
the RcppZiggurat package for reference.

As can be seen from Figure 1, the Ziggurat algorithm is imple-
mented in bare-bones C code using a number of macros, and two
helper functions. The helper functions allow setting a seed, ane d
deal with parameter updates needed in about 2.5% of cases. The
actual core component—the function to draw a random number
distributed according to thstandard normal distribution—is pro-
vided by the macro RNOR. Needless to say, using C macros is no
longer cosidered de rigeur. Possible side effects include inadvertent
changes in globally visible variables, as well as possible bugs from
the macro evaluation.

A more important concern is that this implementation uses
unsigned long types, and explicit bit mapping operations. The
code was originally developed for 32-bit operating systems where
int and long are typically four bytes (or 32 bits) wide. Hence the
code does not produce correct results on a 64-bit operating system
as (signed and unsigned) long types are typically eight bytes (or
64 bits) wide (whereas int is still 32 bits).

Our modified version introduced below overcomes both issues.

Leong, Zhang et al. Leong et al. (2005) show in a comment that
the Ziggurat method as introduced by Marsaglia and Tsang (2000)
suffers from another weakness due to the SHR3 generator (by
Marsaglia). The authors show via a χ2-test that the generator
has a short period of about 232 − 1, or the four byte limit. Replac-
ing it with the KISS generator (also by Marsaglia) improves the
performance beyond this limit.

#define MWC ((znew<<16)+wnew )
#define SHR3 (jz=jsr, jsr^=(jsr<<13), \

jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr)
#define CONG (jcong=69069*jcong+1234567)
#define KISS ((MWC^CONG)+SHR3)

#define RNOR (hz=KISS, iz=hz&127, \
(fabs(hz)<kn[iz]) ? hz*wn[iz] : nfix())
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#include <math.h>
static unsigned long jz,jsr=123456789;

#define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr)
#define UNI (.5 + (signed) SHR3*.2328306e-9)
#define IUNI SHR3

static long hz;
static unsigned long iz, kn[128], ke[256];
static float wn[128],fn[128], we[256],fe[256];

#define RNOR (hz=SHR3, iz=hz&127, (fabs(hz)<kn[iz])? hz*wn[iz] : nfix())

/* nfix() generates variates from the residue when rejection in RNOR occurs. */
float nfix(void)
{
const float r = 3.442620f; /* The start of the right tail */
static float x, y;
for(;;)
{ x=hz*wn[iz]; /* iz==0, handles the base strip */

if(iz==0)
{ do{ x=-log(UNI)*0.2904764; y=-log(UNI);} /* .2904764 is 1/r */
while(y+y<x*x);
return (hz>0)? r+x : -r-x;

}
/* iz>0, handle the wedges of other strips */

if( fn[iz]+UNI*(fn[iz-1]-fn[iz]) < exp(-.5*x*x) ) return x;

/* initiate, try to exit for(;;) for loop*/
hz=SHR3;
iz=hz&127;
if(fabs(hz)<kn[iz]) return (hz*wn[iz]);

}
}

/*--------This procedure sets the seed and creates the tables------*/
void zigset(unsigned long jsrseed)
{ const double m1 = 2147483648.0, m2 = 4294967296.;

double dn=3.442619855899,tn=dn,vn=9.91256303526217e-3, q;
double de=7.697117470131487, te=de, ve=3.949659822581572e-3;
int i;
jsr^=jsrseed;

/* Set up tables for RNOR */
q=vn/exp(-.5*dn*dn);
kn[0]=(dn/q)*m1;
kn[1]=0;

wn[0]=q/m1;
wn[127]=dn/m1;

fn[0]=1.;
fn[127]=exp(-.5*dn*dn);

for(i=126;i>=1;i--)
{dn=sqrt(-2.*log(vn/dn+exp(-.5*dn*dn)));
kn[i+1]=(dn/tn)*m1;
tn=dn;
fn[i]=exp(-.5*dn*dn);
wn[i]=dn/m1;

}
}

Fig. 1. Ziggurat code by Marsaglia and Tsang (2000).
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Following Leong et al. (2005), Ziggurat code should use an
improved uniform generator. Choices are either KISS as suggested
initially, or another trusted (and fast) uniform generator such as
the Mersenne Twister (Matsumoto and Nishimura, 1998). Other
Open Source implementations (such as the ones discussed below)
frequently use the Mersenne Twister as the souce of uniformly
distributed random numbers.

Voss’s implementation in GNU GSL. Voss (2011) provided another
Ziggurat implementation for use in the GNU Scientific Library or
GSL (Galassi et al., 2013). It uses the Mersenne Twister genera-
tor by Matsumoto and Nishimura (1998) which also avoids the
issue identified by Leong et al. (2005) in which the originally-used
uniform generator had too short a cycle.

Voss (2011) notes two differences between his implementation
and the original work by Marsaglia and Tsang (2000). First, he
uses only 128 instead of 256 steps which reduces the memory
requirements and computational cost at a possible (though pre-
sumably minor) loss of precision. Second, he uses an exponential
distribution with tail rejection for the base strip, which is motivated
by a simpler implementations. Both of these aspects could have
implications for the statistical properties of the generator. Voss
also appears to be unaware of the work by Leong et al. (2005),
yet sidesteps the issue raised by these author by relying on the
Mersenne Twister generator.

Here, the implementation from the current GSL sources and file
randist/gausszig.c is used, and adapted to the class strucuture
detailed in section .

Gretl. The Gretl (Cottrell and Lucchetti, 2015) econometrics pro-
gram contains another Open Source implementation of the Zig-
gurat algorithm. The code credits the implementation by Voss
(2011) described above. Yalta and Schreiber (2012) review the
Gretl implementation and performance of Ziggurat and find it to
be satisfactory.

We use the implementation from the file src/lib/random.c
from the current Gretl sources and adapt to the class strucuture
detailed in section .

QuantLib. The QuantLib library for quantitative finance
(Ametrano et al., 2015) contains another open source
implementation of Ziggurat. It is provided in the
files ql/experimental/math/zigguratrng.hpp and
ql/experimental/math/zigguratrng.cpp. As part of the
experimental section, it is made available for further study and
use, but not yet part of the default build. As before, we integrate
this source into the class structure used here.

Speed

R Generators. Before comparing the speed of the different Ziggurat
implementations, it is also illustrative to compare the different R
generators. Figure 2 provides a comparison.

We see that the Box-Muller generator is the slowest by some
margin. However, both Kinderman-Ramage and Ahrens-Dieter are
faster than the Inversion method chosen as the default in R. So
even before considering Ziggurat generators, R users could reap a
speed benefit simply by calling RNGkind(,"Ahrens-Dieter") or
RNGkind(,"Kinderman-Ramage").

Ziggurat Generators. All Ziggurat generators are significantly
faster the the default generator in R which uses a inversion method.

Among the Ziggurat generators, we notice that approaches using
an external uniform number generator (GNU GSL, GNU Gretl,
QuantLib) are all slower than our compact and self-contained
implementation which is seen as the fastest method.

Accuracy

Standard Test for Uniform RNG draws. Test for random number
generators are often focussed on the case of uniform generators
which are the most common type of generators. As detailed for
example in Brown et al. (2013), a test proceeds as follow:

1. Take n draws from a U(0, 1) distribution (as any given U(a, b)
can always be scaled to U(0, 1)), and then compute the sum
of the n values.

2. Repeat this m times to create a set of m sums of uniform RNG
draws.

3. With n large enough, the collection of m results will converge
towards normally distributed random variable with a mean of
n/2 and a standard deviation of

p

n/12 (which is the Irwin-
Hall distribution of the sum of uniformly distributed values).

4. Given this asymptotic result, one can construct a probabil-
ity value pi for each of the m values using the inverse of
the Normal distribution using the known mean and standard
deviation from the Irwin-Hall distribution.

5. We now have m uniformly distributed values. A standard test
such as Kolmogorov-Smirnow or Wilcoxon can be used to test
against departures from the uniform distribution.

Here, we can apply this test for first converting the N(0,1)
distributed values produced by the given Ziggurat implementation
to U(0,1) distributed values by using the inverse of the normal
distribution. We are then ready to simulate and test. Figure 4
below displays Q-Q plots for the empirical distribution against the
uniform, and displays the p-values of a Kolmogorov-Smirnow as
well as a Wilcoxon test.

We see that five of the six generators pass the test. In the case of
the original Marsaglia and Tsang (2000) generator, we can see the
departure from the expected diagonal clearly once we draw more
than 4.2× 109 numbers (which is the limit of the representation
of an unsigned four-byte nunber). However, only the Kolmogorov-
Smirnow test can formally reject; the Wilcoxon test appear to lack
sufficient power in this setting. The QuantLib generator is seen as
suspicious which p-value just below a conventional rejection level.

Normal Test for Normal RNG draws. We can propose a simpler
variant of the test outlined in the previous section. As the random
numbers we are drawing are following a N(0, 1) distribution, the
sum of their values follows a N(0,

p

(N) distribution. This allows
us to skip one inversion step:

1. Take n draws from a N(0,1) distribution and then compute
the sum of the n values.

2. Repeats this m times to create a set of m sums of (standard)
normals RNG draws.

3. The collection of the m sums of n normals converges towards
a mean of 0 and a standard deviation of

p
n.
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Fig. 2. R Normal RNG Generator Performance
Note: Figure shows timings from the microbenchmark package using 100
replications of 1,000,000 draws per generator. Code for the figure is included
in the RcppZiggurat package, and the source code for this document.
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Fig. 3. Ziggurant and R Normal RNG Generator Performance
Note: Figure shows timings from the microbenchmark package using 100
replications of 1,000,000 draws per generator. Code for the figure is included
in the RcppZiggurat package, and the source code for this document.
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Fig. 4. Standard Test applied to Ziggurat generators
Note: Code for the figure is included in the RcppZiggurat package, and the
source code for this document.
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Fig. 5. Normal Test applied to Ziggurat generators
Note: Code for the figure is included in the RcppZiggurat package, and the
source code for this document.
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Fig. 6. χ2 Test applied to Ziggurat generators

Note: Code for the figure is included in the RcppZiggurat package, and the source
code for this document.

4. Given this known result, one can construct a probability value
pi for each of the m values using the inverse of the Normal
distribution using the known mean and standard deviation.

5. We again have m uniformly distributed values. A standard
test such as Kolmogorov-Smirnow or Wilcoxon can be used to
test against departures from the uniform distribution.

Results, shown in Figure 5, are qualitatively similar to the result
discussed above. Kolmogorov-Smirnow rejects for the Marsaglia
and Tsang (2000) generator. However, we note that the Wilcoxon
test now has a lower p-value—we would now reject at conventional
test levels. The QuantLib implementation is now rejected by the
Wilcoxon test but not the Kolmogorov-Smirnow.

χ2 test. Another test variant is the χ2 test which was also used by
Leong et al. (2005). The basic idea is as follow:

1. The real line is divided into B bins, equally spaced between
(symmetric) values distant enough from zero so that no N(0, 1)
draw should exceed them.

2. Here, we follow Leong et al. (2005) and use a range from -7
to 7 with a total of 200 bins.

3. A large number of N(0, 1) random variates is drawn, and for
each of these numbers a counter in the bin corresponding to
the draw is increased.

4. After the N draws, the empirical distribution is compared to
the theoretical (provided by the corresponding value of the
Normal density function) using a standard chi2 test.

As can be seen in Figure 6, the original proposal by Marsaglia
and Tsang (2000) fails as was shown by Leong et al. (2005). All
other tests pass again.

C++ Implementation. Preceding work by Marsaglia and Tsang
(2000) and Leong et al. (2005) also contained implementations in
the C language. These versions were implemented in just a few
lines, and used idioms common to C programmers such as macros
and global variables.

C++ programming style permits encapsulation in order to avoid
possible collisions and side-effects. Moreover, by using a modest
amount of object-oriented programming we can use a class struc-
ture with a common base class to express commonalities between
the implementations. The following code segment shows the vir-
tual base class used here.

#ifndef RcppZiggurat__Zigg_h
#define RcppZiggurat__Zigg_h

#include <cmath>
#include <stdint.h> // or cstdint (C++11)

namespace Ziggurat {

class Zigg {
public:

virtual ~Zigg() {};
virtual void setSeed(const uint32_t s) = 0;
// no getSeed() as GSL has none
virtual double norm() = 0;

};
}

#endif

As shown in the preceding code segment, we provide two user-
accessible functions to obtain a normal random deviate, and to set
the seed, respectively. The actual implementation uses portable
types such as uint32_t, an unsigned 32-bit integer provided by
the C header file stdint.h, which provides correct and identical
results on both 32-bit and 64-bit operating systems.

Each actual implementation can then encapsulate its state vari-
able as a private variable inaccessible to other functions. Such a
small core to each class also makes it feasible to provide a Ziggurat
generator in each thread in a parallel execution framework.

Our Ziggurat implementation has no external dependencies and
can therefore be used in other projects. The testing framework
used for this note has a single dependency on the GNU GSL as the
generator by Voss (2011) is used via its GSL implementations. The
generator and testing framework in the corresponding R package
have a build-dependency on R, and are of course accessed by R.
But the generator discussed here could equally well be used in
standalone programs or with other scripting languages.

R Integration

In the RcppZiggurat package, the Rcpp Attributes (Allaire et al.,
2015) feature of the Rcpp C++/R integration package (Eddelbuet-
tel and François, 2015; Eddelbuettel, 2013) are used to access
instances of the corresponding generator class.

#include <Rcpp.h>

#include <Ziggurat.h>
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static Ziggurat::Ziggurat::Ziggurat zigg;

// [[Rcpp::export]]
Rcpp::NumericVector zrnorm(int n) {

Rcpp::NumericVector x(n);
for (int i=0; i<n; i++) {

x[i] = zigg.norm();
}
return x;

}

// [[Rcpp::export]]
void zsetseed(unsigned long int s) {

zigg.setSeed(s);
return;

}

In this particular reference implementation, we have chosen
a namespace Ziggurat for the entire project. Within this names-
pace, we opted to provided an extra namespace layer for each
generator as some of these generators still use global variables—
which are therefore shielded in their own namespace. For ex-
ample, for the Marsaglia and Tsang (2000) generator, we use
Ziggurat::ZigurratMT. Next is the name of the actual class—
which in the case of the reference implementation shown above
is once again Ziggurat leading to the triple use of the term. Ac-
tual deployment of the Ziggurat generator (without comparison
to other implementations and concerns about interaction between
variables, particularly for the older implementations having global
variables) can of course be used with a single namespace.

The remainder of code segment shows how two func-
tions znorm() and zsetseed() are provided via the attribute
[[Rcpp::Export]] as described in the Rcpp Attributes vignette
(Allaire et al., 2015) of the Rcpp package (Eddelbuettel and
François, 2015; Eddelbuettel, 2013).

Conclusion

This note describes the RcppZiggurat package and its new im-
plementation of the Ziggurat generator for normally distributed
random numbers. The package is implemented in a way which is
portable so that it can be used on 32-bit and 64-bit operating sys-
tems, filling a gap left by the original implementations (Marsaglia
and Tsang, 2000; Leong et al., 2005).

By embedding the code in a simple C++ class structure, we can
ease testing and comparison of several variants of the algorithm.
Our note reconfirmed the findings by Leong et al. (2005) of a short
cycle due to to the use of an inferior uniform generator. Replacing
the generator leads to better performance.

We suggest a new test for random number generators producing
deviates distributed according to the standard normal distribution
by adapting and simplifying an existing test framework for uniform
deviates. Both tests confirm the (previously documented) failure
of the original Ziggurat proposal but do not find a problem with
any of the new implementations (apart from the still-experimental
QuantLib generator).

A key motivation for this work has been a desire to improve the
speed of creating standard-normally distributed random numbers in
R. We find Ziggurat to be faster than the existing implementations,
and hope that this generator will be of use to those generating
large numbers of draws.
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were very helpful at the beginning of this project. Our suggestions
of using portable types from the stdint.h header file for 32-
and 64-bit use, as well as the need to reflect the insight of
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