
Instructions for installing and using TestScorer 1.7.2
Manel Salamero

manelsalamero@gmail.com

Revision date: 2016.02.18

1. Introduction

The TestScorer package allows users to score different kind of tests, questionnaires or
clinical scales. The user has to previously define the scoring instruction. This task is
also facilitated by the package. All the functions are launched from a user-friendly
graphical user interface (GUI). TestScorer is offered as free and open source software
(licensed under GNU General Public License GPL-2). This document provides an
overview of the usage of the TestScorer package.

To install R on your computer (free under GNU General Public License), go to the
home website of R: http://www.r-project.org. And do the following:
- Click “download packages CRAN” in the left bar
- Choose the download site nearest to you
- Choose the version for your operating system
- Click “base”
- Install the program when downloaded.

Open R clicking on the icon which was created on your screen. From the menu bar
choose the option “Packages” and then “Install package(s)”. Finally, locate
“TestScorer” in the list and select it1. These operations need only be done for the first
time.

To load the package, enter at the R prompt:

> library(TestScorer)

And then:

> TestScorerGUI()

The program will ask for a directory where to score questionnaires. When it is created
for the first time, the necessary files are copied to this directory.

1

This instruction can fail if the computer is connected through a proxy. In this case
contact with the webmaster or follow this alternative procedure: From http://cran.r-
project.org, click “Packages” at the left column. Choose “Table of available packages,
sorted by name” and look for the package: “TestScorer”. Download the appropriate
binary version for your operating system. Now from R menu bar choose “Packages” and
“Install package(s) from local zip files...”. Install “TestScorer”.

1

http://cran.r-project.org/
http://cran.r-project.org/
http://www.r-project.org/
mailto:manelsalamero@gmail.com

1.1. Content of the directory for scoring tests
The directory for scoring tests includes the following files: A “Profile”, three example
tests, a help document, and, only for Windows system, a launcher of the program.

A local profile with name “.Profile” is created which automates the launch of the GUI
when R is opened in this folder. The profile includes these instructions:

Profile to launch TestScorer
suppressPackageStartupMessages(require(TestScorer))
TestScorerGUI()

Three example tests, a help file and this document are copied to the folder
(“TST_DASS.r”, “TST_MHLC.r”, “TST_RAAS.r”, “Help.txt” and “TestScorerHelp.
pdf”). When the user defines new tests (see section 3), they will be also recorded in this
folder.

For Windows system only, a batch file with name “TestScorer.cmd” is also written in
this directory. In subsequent uses, clicking over this file will open R and launch
TestScorer. You can create a direct link pointing to “TestScorer.cmd”, and drag it to the
desktop or other more convenient location. “TestScorer.cmd” contains only a Windows
batch command line:

start "" Drive:/path/R/R-3.2.0/bin/x64/Rgui.exe --no-
restore –-quiet

The drive and path to R are constructed according to the user installation and should be
changed whenever a new version of R replaces the previous one. R is called with the
options “no-restore” and “quiet” to begin a fresh session without printing the R’s
welcome messages.

1.2. Main functions of the GUI
The GUI has two main functions: entering items and scoring an existing test (see section
2) or managing the catalog of tests, which includes deleting or defining new ones (see
section 3). A button allows quitting from TestScorer and returning to the console, from
which you can exit R from the menu bar or typing “quit()”. When logging out a window
will emerge, asking if you want “Save the workspace image”. Answer “No”.

2. Entering items and scoring a test

2.1 Choosing a test
Note that all gray windows are non editable, they show useful information (figure 1).
The first step is choosing the test whose items you want to introduce and score. In the
upper left corner you will find a window labeled “Which test would you like to score?”.
Find the test name using the scrolling bar if necessary, and click on it. The test’s name
will be highlighted. Now you can see the characteristics of this test on the window
labeled “Test details”. Beyond the name of the test, its authors and some comment, you
will find the number of items, the valid answers, the codes for missing answers and
optionally if multiple age-norms are available.

2

2.2 Entering identification data of the subject
In the middle part of the window you can enter some data on the subject. These are
optional fields which admit any characters, except for sex which is recorded through
radio buttons.

2.3 Entering the items
On the upper right corner of the main window you will find the area for entering the
items which is labeled “Entry items window”. The first line shows the number of the
item to be entered. You have to put the cursor in the white rectangle located on the left.
Do not move the cursor from this position while entering items, all the necessary actions
are done through the keyboard. The numerical keypad is the most convenient way to
introduce the answers, but the numerical keys and the spacebar of the main keyboard
can also be used.

Enter the answer of the items using the keyboard. Only the valid and missing characters
shown in the “Test details” window are allowed. If you enter an invalid character a pop-
up window appears highlighting the error and the program is blocked until the error
window is closed.

Every time you enter a valid answer the counter of items will increase in one unit until
all the items are entered. The progression is reflected in two ways. First, the “Item to
enter” is updated. Second, in the lower part of the window will appear the answers just
introduced and an asterisk (*) showing the position of the next answer to be entered (see
figure 1). As any gray window of the GUI, this one is non editable. Every line shows
ten items, corresponding to the numbers shown in the right margin, and the upper
margin indicates the position in the group of ten.

The window allows the representation of 100 items, but the ones which exceed the
length of the test are crossed out with an equal symbol (=). Had the test more than one
hundred items, the window would be refreshed showing the next hundred automatically.

In case of error, you can move through the answers using the arrow keys and introduce
the correction for the appropriate items. Right and left arrow move to the previous or
posterior answer respectively. The up and down arrows jump to the tenth previous or
following answer respectively. The use of the arrows updates the number of the new
answer to be introduced and the position of the asterisk indicator automatically. If you
try to go to an answer beyond the limits of the test a pop-up window will alert you of
the invalid choice.

2.4 Scoring the test
When you have entered all the answers press the “Show (& write) results” button to
show the results on the R console (and optionally write them to a file, see 2.5). From the
R menu bar you can print or save these results. “Only write” scores the test without
showing it on the console, but recording the results on a file as explained in the next
paragraph.

2.5 Recording scores and answers to a file
It is possible to record the scores and items of the tests in a file for further statistical
analysis. To do so, click on the button labeled “Change option”. This opens a system
window for choosing or creating a file for recording. If the file already exists the new

3

information will be appended. The chosen file will be showed in the window labeled
“Where would you like to save the scores?”. Some tests are carried out to ensure that
the old file structure is compatible with the new data, but the user must be careful and
take the necessary precautions themselves. The radio buttons beneath the “Would you
like to save the items” label allow recording the answers (as introduced through the
keyboard without further processing) in addition to the scores.

The data are written to an ASCII text file with semicolons between fields as delimiters.
These kinds of file are easily imported by almost any program and also by R.

2.6 Other buttons
At the bottom of the screen you will find different buttons. Show (& write) results” and
“Only write” are for scoring as explained previously. “Exit TestScorer” exits and closes
the TestScorer. “Clean Items”, cleans the items but maintains the identification
information of the subject. So you can introduce and score another test of the same
subject without reintroducing his or her data. “Clean all”, cleans both the items and the
identification data. “Test manager” is for creating new test score instruction or deleting
the existent. Its functions will be explained in section 3. “Help” shows a brief summary
of the information contained in this document.

3. Test manager

3.1 Deleting a test
Clicking the “Test Manager” button gives you access to two functions: deleting an
existing test and creating a new one. If you choose to delete a test, the test is not actually
deleted but the file extension is changed from “.r” to “.bak”, giving you the possibility
to recover it later.

3.2 Creating a new test
This option opens a menu for defining the general characteristics of the test (figure 2).
In this window you should introduce the information of the test. Any entry, unless
otherwise specified, should be filled in. When the “Ok” button is pressed the program
checks the validity of the information and a pop-up window is opened in case of errors.
When closing this window you can correct the invalid entries.

Next a window for each scale opens (figures 3 and 4). The required information should
be entered and is checked for errors when pressing the “Ok” button. This process is
repeated for each scale of the test.

Using this information the program generates a script which is written in a file in the
working directory. The catalog test is automatically updated and you can begin to score
the new test.

4. Editing the script manually to enhance the scoring capacities

4.1 The general structure of TestScorer
The scoring of tests usually consists of computing the scores of each scale by summing
or computing the mean of their items. Sometimes the raw scores are transformed to T-

4

scores according to the normative mean and standard deviation for each sex. Other
times, the transformation is done through a table of equivalences. The instructions for
these computations are automatically generated when a new test is defined through the
GUI. Nevertheless, sometimes the test requires other data manipulations not performed
by the basic script and in these cases it is necessary to edit the instruction manually.

Only a basic knowledge of R language is needed to adapt the script to the scoring
peculiarities demanded by a test. To do this, it is worth to knowing the internal scoring
process. When the GUI is launched, the working directory is scanned to detect any
script for scoring tests. These scripts are identified when their name begins with the
prefix “TST_”. The characteristics of the tests are read from these scripts, especially the
number of items and the valid answers.

The GUI is governed by a main function which takes care of the introduction of items
and the identifying information of the subject. During the introduction of the answers,
the function checks the validity of the pressed keys. When the Show (& write) results”
or “Only record” buttons are clicked, the main function reads the script for scoring this
test and launches the scoring function. It sends (as parameters) a character vector with
the answers and the data of the subject. These last parameters are used to control the
transformation of the raw scores if required (e.g.: transformation is different for each
sex).

When the scoring process is finished, the scoring function returns a list to the main
function with three (optional) elements: “results.lst”, “results.df”, and “results.scores”.
The “results.lst” is a list with character strings. The “results.df” is a data frame with the
scores of the test’s scales. It can comprise the acronym and name of the scale, the raw
score and a graphic representation of the score (this two last elements are optional).
Finally, “results.scores” is a data frame with only one row with the obtained scores. The
main function prints the “results.lst” and the “results.df” to the R console and, if
required, writes the “results.scores” to an external ascii data file.

4.2 Editing the script
Creating a new test means creating an R script with the necessary commands defining
the entering template of answers and the scoring procedure. The automatically
generated script (section 3) is saved in the chosen directory, appending the test acronym
to the prefix “TST_” with the usual R extension type “.r”. It can be edited using any text
editor. The whole process is illustrated bellow through three examples with increasing
complexity.

Since comments are included in the script, it is easy to follow the syntax and, if
necessary, include modifications to accommodate the atypical demands of some tests.
The scripts for scoring four public domain tests, which are copied to the installation
directory of TestScorer, will be briefly commented in the following paragraphs.

The “Multidimensional Health Locus of Control” (MHLC, http://www.nursing.
vanderbilt.edu/faculty/kwallston/mhlcscales.htm) is an example of a very simple scoring
procedure. The script (TST_MHLC.r) shows a plain computing of raw scores. In this
case, the score is the sum of the answers corresponding to each of the three scales. No
additional code was added to the script created by the program.

5

http://www.nursing.vanderbilt.edu/faculty/kwallston/mhlcscales.htm
http://www.nursing.vanderbilt.edu/faculty/kwallston/mhlcscales.htm

A score conversion is shown for the questionnaire “Depression, Anxiety and Stress
Scales” (DASS, http://www2.psy.unsw.edu.au/dass/), which includes a percentil
transformation which is the same for both sexes (TST_DASS.r). In this case, some
score conversions are plain percentiles while others are ranges. Any character, not only
numbers, is allowed in the conversion table, which gives great flexibility to the
procedure. However, if characters are included, it prevents using this transformation for
generating a graphical representation, since the program has no way for computing the
position of the score in a continuum. Only lines 93 to 95 were inserted manually to add
textual information when displaying the results.

The “International Personality Item Pool 50-Items” (IPIP-50) www.ipip.ori.org/New
IPIP-50-item-scale.htm scoring script has been edited to include norms for different age
groups and sex. In lines 16 to 21, age is checked for a valid number. Otherwise a
warning message is popped. For each scale (see for instance lines 67-76), if statements
were added to obtain the desired age and sex transformation. Information is added to the
results in lines 202 to 204.

The “Revised Adult Attachment Scale” (RAAS, www.openpsychassessment.org/wp-
content/uploads/2011/06/AdultAttachmentScale.pdf) shows a T-scores conversion using
the mean and standard deviation which are different for males and females
(TST_RAAS.r). Also a schematically pseudo-graphical representation of the profile is
included. The basic instructions were created through the menu and the resulting script
was further edited to enhance the results.

In the following paragraphs the structure of this last script is commented to facilitate the
interested users the task of manually modifying the instructions (see appendix). The
automatic generated script is comprised of two main parts: a list with information about
the test (lines 5 to 11) and a main function (lines 13 to 162).

The list “testChar” includes the characteristics of the test. As mentioned before, when
the GUI is launched, it looks in the directory for all the files whose name begins with
“TST_”. The program reads the “testChar” list to form the catalog which is displayed in
the main window. In this way the program knows which tests can be scored, and for
each test the number of items, the valid answers, and the characters defined as missing,
some comment and optionaly if multiple age-norms are available. This information is
used to construct the entry items window and scans the validity of the answers while
they are introduced by the user.

When the Show (& write) results” or “Only record” buttons are pressed the program
loads the script corresponding to the test being considered and reads and executes the
main function “scoring.fun”. The main program sends to it a character string with the
answers and the identification characteristics of the subject. This last information is
useful in transforming scores (e.g.; differences between sexes). Lines 16 to 22 convert
the characters answers to numbers and, if appropriate, invert the answers scoring of
selected items. Line 23 initializes a data frame for storing the results.

As requested, a function for converting raw scores (in this case into T-scores, lines 25 to
28) and another for producing a simple pseudo-graphic display of the T-scores (lines 30
to 46) were added.

6

http://www.openpsychassessment.org/wp-content/uploads/2011/06/AdultAttachmentScale.pdf
http://www.openpsychassessment.org/wp-content/uploads/2011/06/AdultAttachmentScale.pdf
http://www.ipip.ori.org/New%20IPIP-50-item-scale.htm
http://www.ipip.ori.org/New%20IPIP-50-item-scale.htm
http://www2.psy.unsw.edu.au/dass/

Next you will find the scoring commands for each scale (lines 48 to 100). In each block
the number of missing and the raw score of the scale is calculated. TestScorer allows to
compute the raw scores as a sum of items with or without prorating missing items and,
also, as a mean of items. If required, raw scores are transformed. In this case, the option
is transforming to T-scores using the mean and standard deviation. Other option is
transforming through a table. All this information is added to the results data frame
(lines 55 to 64, for scale C).

In lines 102 to 106 a one row data frame with the scores is created. This data frame is
used to append to a text file intended for further statistical analysis. The data frame will
be passed to the main program which manages this task.

In lines 139 to 157 a list is constructed which initially only contains the number of
missing answers. This list, as described below, can be extended to add any information
which can not be transferred through the data frame.

Finally, lines 158 to 160 bring the results back to the main program which will print
them to the R console or write it to a file as required.

All the previous instructions were written by the GUI and were later edited to include
some peculiarities specific to the RAAS test. Lines 112 to 137 compute new indexes
(“CD” and “style”) combining the scores of two of the original scales. It is worth noting
that one of these indexes is incorporated to the results data frame (“CD” in lines 114 to
115), while the other is transmitted via the results list (variable “style” in line 150). The
graphical capabilities of R also allow creating a plot (lines 126 to 136). Finally, lines
146 to 153 modify the results list including textual information and the variable “style”
computed before.

7

Figure 1. TestScorer main window

In this example 17 items were already introduced from DASS questionnaire corres-
ponding to subject “Subject F01”. In the “Entry items windows” you can see that the
next item to enter is number 18. Bellow, the gray window shows the items already
introduced and an asterisk in the position on which the next answer will be placed. This
test has 42 items, so items greater than 42 are cross out in the gray window.

8

Figure 2. Window for entering the characteristics of the test

A test has been defined with 48 items. The possible values of the items are 1, 2, 3 or 4,
while 0 indicates a missing. Three scales would be scored and the raw scores will be
transformed to T-scores using the mean and standard deviations (different) for each sex.
Only one age-group norm would be defined, which is actually the only option. A
pseudo-graphical display of the transformed scores is requested.

9

Figure 3. Window for defining a scale with T-scores transformation

A scale named “A” is defined. The items building up the scale are mandatory to
compute de scale’s raw score. The mean and standard deviation for each sex will be
used to transform the raw scores into T-scores, as requested in the previous window.

10

Figure 4. Window for defining a scale with percentiles transformation

In this example, a scale named “B” is defined. Typing the items building up the scale
are mandatory before opening the transformation window. The table allows the
introduction of the corresponding percentiles for each raw score.

11

Appendix

001 # RAAS scale scoring script
002 # Creation date: 2014-01-07
003 # --------------
004
005 testChar <- list(acronym = "RAAS",
006 name = "Revised Adult Attachment Scale",
007 ref = "Collins N, 1996",
008 n.items = 18,
009 valid = c(1, 2, 3, 4, 5),
010 miss = c(0),
011 comm = "Public domain: www.openpsychassessment.org/wp-content/uploads/2011/06/AdultAttachmentScale.pdf")
012
013 scoring.fun <- function(answers, sex, age, id, date.test, comm) {
014 # "answer" is a *character* vector as introduced through the keyboard.
015 # "sex", "age", "id", "date.test" & "comm" used if appropiate.
016 answers <- as.numeric(answers) # transform to numeric for easier scoring
017 answers[answers %in% c(0)] <- NA # missing characters to NA
018 blanks <- sum(is.na(answers)) # compute number of missing items
019 pcnt.blanks <- round((blanks / 18) * 100) # compute % of missing items
020 # Items which should be reversed
021 reversed.items=c(2, 7, 8, 13, 16, 17, 18)
022 answers[reversed.items] <- (5 + 1) - answers[reversed.items]
023 results <- data.frame(NULL) # Initialize null data frame for results
024
025 toT <- function(raw.score, mean, sd) { # compute T score
026 T.score <- round(((raw.score - mean) / sd) * 10 + 50)
027 T.score
028 } # end toT
029
030 makeGraph <- function(T.score) { # make a graph
030 template <- "| : : | : | : | : : |"
032 options(warn=-1)
033 T.score <- as.integer(T.score) # in case of numerical string
034 options(warn=0)
035 if (!is.na(T.score)) {
036 if (T.score < 0) T.score <- 0
037 else if (T.score > 100) T.score <- 100
038 position <- round((T.score / 2) + 1)
039 graph <- paste(substr(template, 1, position-1),
040 substr(template, position + 1, nchar(template)),
041 sep="o") # "o" marks the position
042 } else {
043 graph <- "Not graphicable"
044 }
045 graph
046 } # end makeGraph
047
048 # C scale scoring commands
049 # --------------
050 results[1, "Acronym"] <- "C" # acronym
051 results[1, "Scale"] <- "Close" # name of the scale
052 # Items making up the scale
053 items <- c(1, 6, 8, 12, 13, 17)
054 results[1, "Miss"] <- sum(is.na(answers[items])) # number of missing items
055 if (results[1, "Miss"] == length(items)) { # all answers are missing items
056 results[1, "Raw"] <- NA
057 results[1, "T"] <- NA
058 results[1, "Graph"] <- "All missings"
059 } else {
050 results[1, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # mean answered items
061 if (sex=="Male") results[1, "T"] <- toT(results[1, "Raw"], 3.59, 0.87) # compute T score
062 else results[1, "T"] <- toT(results[1, "Raw"], 3.65, 0.87)
063 results[1, "Graph"] <- makeGraph(results[1, "T"]) # make the graph
064 }
065
066 # D scale scoring commands
067 # --------------
068 results[2, "Acronym"] <- "D" # acronym
069 results[2, "Scale"] <- "Dependent" # name of the scale
060 # Items making up the scale
071 items <- c(2, 5, 7, 14, 16, 18)
072 results[2, "Miss"] <- sum(is.na(answers[items])) # number of missing items
073 if (results[2, "Miss"] == length(items)) { # all answers are missing items
074 results[2, "Raw"] <- NA
075 results[2, "T"] <- NA
076 results[2, "Graph"] <- "All missings"
077 } else {
078 results[2, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # mean answered items
079 if (sex=="Male") results[2, "T"] <- toT(results[2, "Raw"], 3.43, 0.83) # compute T score
080 else results[2, "T"] <- toT(results[2, "Raw"], 3.25, 0.86)
081 results[2, "Graph"] <- makeGraph(results[2, "T"]) # make the graph
082 }
083
084 # A scale scoring commands
085 # --------------
086 results[3, "Acronym"] <- "A" # acronym
087 results[3, "Scale"] <- "Anxiety" # name of the scale
088 # Items making up the scale
089 items <- c(3, 4, 9, 10, 11, 15)
090 results[3, "Miss"] <- sum(is.na(answers[items])) # number of missing items
091 if (results[3, "Miss"] == length(items)) { # all answers are missing items
092 results[3, "Raw"] <- NA
093 results[3, "T"] <- NA
094 results[3, "Graph"] <- "All missings"
095 } else {
096 results[3, "Raw"] <- round(mean(answers[items], na.rm=TRUE), 2) # mean answered items
097 if (sex=="Male") results[3, "T"] <- toT(results[3, "Raw"], 2.31, 0.89) # compute T score
098 else results[3, "T"] <- toT(results[3, "Raw"], 2.62, 1.01)
099 results[3, "Graph"] <- makeGraph(results[3, "T"]) # make the graph

12

100 }
101
102 # Vector for writing scores to a file
103 # --------------------
104 results.scores <- unlist(results[-c(1, 2, 6)]) # not Acronym, Scale & Graph columns
105 names <- paste(results$Acronym, names(results.scores), sep=".")
106 names(results.scores) <- sub("[0-9]+$", "", names) # delete ending numbers
107
108 # Ruler for graph column
109 # --------------------
110 names(results)[6] <- "0 10 20 30 40 50 60 70 80 90 100"
111
112 # Combine C & D scales ### CODE INSERTED MANUALLY
113 CD <- round(mean(c(results[1, 'Raw'], results[2, 'Raw'])), 2) ###
114 results[4,] <- c("", "", "", "", "", "") # blank row to improve readability ###
115 results[5,] <- c("CD", "Close/Dependent", "", CD, "", "") # no data for T score ###
116
117 # Attachment style assignement ###
118 if (is.na(CD)) style <- "Not evaluable" # if all answers are missings ###
119 else if (CD > 3 & results[3, "Raw"] < 3) style <- "Secure" ###
120 else if (CD > 3 & results[3, "Raw"] > 3) style <- "Preoccupied" ###
121 else if (CD < 3 & results[3, "Raw"] < 3) style <- "Dismissing" ###
122 else if (CD < 3 & results[3, "Raw"] > 3) style <- "Fearful" ###
123 else style <- "Not classificable" ###
124
125 # Show style as a plot ### CODE INSERTED MANUALLY
126 windows(title="Attachment style") ###
127 require(graph) ###
128 plot(CD, results[3, "Raw"], xlim=c(1,5), ylim=c(1,5), pch=3, cex=2, col="blue", lwd=5, ###
129 xlab="Close/Dependent", ylab="Anxiety", main=paste(id, date.test), ###
130 font.sub=2, sub="The position of the subject is represented by a blue cross") ###
131 abline(v=3) ###
132 abline(h=3) ###
133 text(2, 2, labels="Dismissing", col="gray60", font=2, cex=2) ###
134 text(4, 2, labels="Secure", col="gray60", font=2, cex=2) ###
135 text(2, 4, labels="Fearful", col="gray60", font=2, cex=2) ###
136 text(4, 4, labels="Preocupied", col="gray60", font=2, cex=2) ###
137
138 # Output in form of list
139 # ------------------
140 results.lst <- list(paste("Total number of missing items: ",
141 blanks,
142 " (",
143 pcnt.blanks,
144 "%)",
145 sep=""),
146 "", ### CODE INSERTED MANUALLY
147 'According to the author, attach styles assignement "is quite exploratory...', ###
148 '[use] with caution, and only in conjunction with the continuous measures."', ###
149 "", ###
150 paste("Attach style:", style), ###
151 "", ###
152 "T-scores computed using mean and standard deviation from 414 USA college students,", ###
153 "reported by Ledley et al. J Psychopath Behav Assess 2006, 28:33-40." ###
154)
155
156 # Return results
157 # ------------------
158 list(results.lst = results.lst,
159 results.df = results,
150 results.scores = results.scores)
161
162 } # end of scoring.fun

13

