Robust Statistical Methods in R Using the WRS2
Package

Patrick Mair Rand Wilcox

Harvard University University of Southern California

Abstract

In this manuscript we present various robust statistical methods popular in the social
sciences, and show how to apply them in R using the WRS2 package available on CRAN.
We elaborate on robust location measures, and present robust t-test and ANOVA ver-
sions for independent and dependent samples, including quantile ANOVA. Furthermore,
we present on running interval smoothers as used in robust ANCOVA, strategies for com-
paring discrete distributions, robust correlation measures and tests, and robust mediator
models.
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1. Introduction

Data are rarely normal. Yet many classical approaches in inferential statistics assume nor-
mally distributed data, especially when it comes to small samples. For large samples the
central limit theorem basically tells us that we do not have to worry too much. Unfortu-
nately, things are much more complex than that, especially in the case of prominent, “dan-
gerous” normality deviations such as skewed distributions, data with outliers, or heavy-tailed
distributions.

Before elaborating on consequences of these violations within the context of statistical testing
and estimation, let us look at the impact of normality deviations from a purely descriptive
angle. It is trivial that the mean can be heavily affected by outliers or highly skewed distribu-
tional shapes. Computing the mean on such data would not give us the “typical” participant;
it is just not a good location measure to characterize the sample. In this case one strategy
is to use more robust measures such as the median or the trimmed mean and perform tests
based on the corresponding sampling distribution of such robust measures.

Another strategy to deal with such violations (especially with skewed data) is to apply trans-
formations such as the logarithm or more sophisticated Box-Cox transformations (Box and
Cox 1964). For instance, in a simple ¢-test scenario where we want to compare two group
means and the data are right-skewed, we could think of applying log-transformations within
each group that would make the data “more normal”. But distributions can remain sufficiently
skewed so as to result in inaccurate confidence intervals and concerns about outliers remain
Wilcox (2012). Another problem with this strategy is that the respective t-test compares
the log-means between the groups (i.e., the geometric means) rather than the original means.
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This might not be in line anymore with the original research question and hypotheses.

Apart from such descriptive considerations, departures from normality influence the main
inferential outcomes. The approximation of sampling distribution of the test statistic can be
highly inaccurate, estimates might be biased, and confidence intervals can have inaccurate
probability coverage. In addition, the power of classical test statistics can be relatively low.

In general, we have the following options when doing inference on small, “ugly” datasets and
we are worried about basic violations. We can stay within the parametric framework and
establish the sampling distribution under the null via permutation strategies. The R (R Core
Team 2016) package coin (Hothorn, Hornik, van de Wiel, and Zeileis 2008) gives a general im-
plementation of basic permutation strategies. However, the basic permutation framework does
not provide a satisfactory techniques for comparing means (Boik 1987) or medians (Romano
1990). Chung and Romano (2013) summarize general theoretical concerns and limitations of
permutation tests. However, they also indicate a variation of the permutation test that might
have practical value.

Another option is to switch into the nonparametric testing world (see Brunner, Domhof, and
Langer 2002, for modern rank-based methods). Prominent examples for classical nonparamet-
ric tests taught in most introductory statistics class are the Mann-Whitney U-test (Mann and
Whitney 1947), the Wilcoxon signed-rank and rank-sum test (Wilcoxon 1945), and Kruskal-
Wallis ANOVA (Kruskal and Wallis 1952). However, there are well-known concerns and
limitations associated with these techniques (Wilcox 2012). For example, when distributions
differ, the Mann-Whitney U-test uses an incorrect estimate of the standard error.

Robust methods for statistical estimation and testing provide another good option to deal
with data that are not well-behaved. Modern developments can be traced back to the 1960’s
with publications by Tukey (1960), Huber (1964), and Hampel (1968). Measures that char-
acterize a distribution (such as location and scale) are said to be robust, if slight changes
in a distribution have a relatively small effect on their value (Wilcox 2012, p. 23). The
mathematical foundation of robust methods (dealing with quantitative, qualitative and in-
finitesimal robustness of parameters) makes no assumptions regarding the functional form
of the probability distribution (see, e.g., Staudte and Sheather 1990). The basic trick is to
view parameters as functionals; expressions for the standard error follow from the influence
function. Robust inferential methods are available that perform well with relatively small
sample sizes, even in situations where classic methods based on means and variances perform
poorly with relatively large sample sizes. Modern robust methods have the potential of sub-
stantially increasing power even under slight departures from normality. And perhaps more
importantly, they can provde a deeper, more accurate and more nuanced understanding of
data compared to classic techniques based on means.

This article introduces the WRS2 package that implements methods from the original WRS
package (Wilcox and Schénbrodt 2016) in a more user-friendly manner. We focus on basic
testing scenarios especially relevant for the social sciences and introduce these methods in an
accessible way. For further technical and computational details on the original WRS functions
as well as additional tests the reader is referred to Wilcox (2012).

Before we elaborate on the WRS2 package, we give an overview of some important robust
methods that are available in various R packages. In general, R is pretty well endowed with
all sorts of robust regression functions and packages such as rlm in MASS (Venables and
Ripley 2002), and lmrob and nlrob in robustbase (Rousseeuw, Croux, Todorov, Ruckstuhl,
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Salibian-Barrera, Verbeke, Koller, and Maechler 2015). Robust mixed-effects models are
implemented in robustlmm (Koller 2015) and robust generalized additive models in robustgam
(Wong, Yao, and Lee 2014). Regarding multivariate methods, the rrcov package (Todorov
and Filzmoser 2009) provides various implementations such as robust multivariate variance-
covariance estimation and robust principal components analysis (PCA). FRB (Van Aelst and
Willems 2013) includes bootstrap based approaches for multivariate regression, PCA and
Hotelling tests, RSKC (Kondo 2014) functions for robust k-means clustering, and robustDA
(Bouveyron and Girard 2015) performs robust discriminant analysis. Additional packages for
robust statistics can be found on the CRAN task view on robust statistics (https://cran.
r-project.org/web/views/Robust.html).

The article is structured as follows. After a brief introduction to robust location measures, we
focus on several robust t-test/ANOVA strategies including repeated measurement designs. We
then elaborate on a robust nonparametric ANCOVA involving running interval smoothers.
Approaches for comparing quantiles and discrete distributions across groups are given in
Section 5 before briefly elaborating on robust correlation coefficients and corresponding tests.
Finally, in Section 7, we present a robust version of a mediator model. For each method
presented in the article we show various applications using the respective functions in WRS2.
The article is kept rather non-technical; for more technical details see Wilcox (2012).

2. Robust measures of location

A robust alternative to the arithmetic mean Z is the trimmed mean which discards a certain
percentage at both ends of the distribution. For instance, a 20% trimmed mean cuts off 20%
at the low end and 20% the high end. In R, a trimmed mean can be computed via the basic
mean function by setting the trim argument accordingly. Note that if the trimming portion is
set to v = 0.5, the trimmed mean Z; results in the median & (which by itself reflects another
robust location measure).

A further robust location alternative to the mean is the Winsorized mean. The process of
giving less weight to observations in the tails of the distribution and higher weight to the
ones in the center is called Winsorizing. Instead of computing the mean on the original
distribution we compute the mean on the Winsorized distribution. Similar to the trimmed
mean, the amount of Winsorizing (i.e., the Winsorizing level) has to be choosen a priori. The
WRS2 function to compute Windsorized means is called winmean.

A general family of robust location measures are so called M-estimators (the “M” stands
for “maximum likelihood-type”) which are based on a loss function to be minimized. In the
simplest case we can think of a loss function of the form Y 7, (z; — ). Minimization results
in a standard mean estimator i = %2?21 x;. Instead of such a quadratic loss we can think
of a more general, differentiable distance function &(-):

Zf(% — ) — min! (1)
=1

Let U = ¢'(-) denote its derivative. The minimization problem reduces to Y ;" | W(2;—ftm) = 0
where p,,, denotes the M-estimator.

Several distance functions have been proposed in the literature. As an example, Huber (1981)
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proposed the following function:

U(x) =

{x if |z < K @)

Ksign(z) if |z] > K

K is the bending constant for which Huber proposed a value of K = 1.28. Increasing K
increases sensitivity to the tails of the distribution. The estimation of M-estimators is per-
formed iteratively (see Wilcox 2012, for details) and implemented in the mest function.

What follows are a few examples of how to compute such simple robust location measures in
R. The data vector we use is taken from Dana (1990) and reflects the time (in sec.) persons
could keep a portion of an apparatus in contact with a specified target.

timevec <- c(77, 87, 88, 114, 151, 210, 219, 246, 253, 262, 296, 299, 306,
376, 428, 515, 666, 1310, 2611)

Let us start with a 10% trimmed mean including standard error:

mean (timevec, 0.1)
## [1] 342.7059
trimse(timevec, 0.1)

## [1] 103.2686

Now the Winsorized mean (10% Winsorizing level) and the median with standard errors:

winmean (timevec, 0.1)
## [1] 380.1579
winse(timevec, 0.1)
## [1] 92.9417
median(timevec)

## [1] 262

msmedse (timevec)

## [1] 77.83901

As a note, msmedse works well when tied values never occur, but it can be highly inaccurate
otherwise. Inferential methods based on a percentile bootstrap effectively deal with this issue.

Finally, the Huber M-estimator with bending constant kept at its default K = 1.28.
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mest (timevec)
## [1] 285.1576
mestse(timevec)

## [1] 52.59286

3. Robust t-test and ANOVA strategies

Now we use these robust location measures in order to test for differences across groups.
In the following subsections we focus on basic t-test strategies (independent and dependent
groups), and various ANOVA approaches including mixed designs (i.e., between-within sub-
jects designs).

3.1. Tests on location measures for two independent groups

Yuen (1974) proposed a test statistic for a two-sample trimmed mean test which allows for
unequal variances. Under the null (Hy: py = pe2), the test statistic follows a t-distribution®.
Details methods based on the median can be found in Wilcox (2012, p. 157-158). If no
trimming is involved, this method reduces to Welch’s classical {-test with unequal variances
(Welch 1938). Yuen’s test is implemented in the yuen function. There is also a bootstrap
version of it (see yuenbt) which is suggested to be used for one-sided testing when the group
sample sizes are unequal.

The example dataset consists of various soccer team statistics in five different European
leagues, collected at the end of the 2008/2009 season. For the moment, let us just focus
on the Spanish Primera Division (20 teams) and the German Bundesliga (18 teams). We
are interested in comparing the trimmed means of goals scored per game across these two
Leagues.

The group-wise boxplots and beanplots in Figure 1 visualize potential differences in the distri-
butions. Spain has a fairly right-skewed goal distribution involving three outliers (Barcelona,
Real Madrid, Atletico Madrid). In the German league, things look more balanced and sym-
metric. Performing a classical t-test is probably not the best option since the Spanish mean
could be affected by the outliers. A saver way is to perform a two-sample test on the trimmed
means. We keep the default trimming level of v = 0.2.

SpainGer <- subset(eurosoccer, League == "Spain" | League == "Germany")
SpainGer <- droplevels(SpainGer)
op <- par(mfrow = c(1,2))
boxplot(GoalsGame ~ League, data = SpainGer,
main = "Boxplot Goals Scored per Game")
beanplot(GoalsGame ~ League, data = SpainGer, log = "",

Tt is not suggested to use this test statistic for a v = 0.5 trimming level (which would result in median
comparisons) since the standard errors become highly inaccurate.
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Figure 1: Left panel: boxplots for scored goals per game (Spanish vs. German league). The
red dots correspond to the 20% trimmed means. Right panel: beanplots for the same setting.

main = "Beanplot Goals Scored per Game", col = "coral")
par (op)

yuen(GoalsGame ~ League, data = SpainGer)

## Call:

## yuen(formula = GoalsGame ~ League, data = SpainGer)
#i#

## Test statistic: 0.8394 (df = 16.17), p-value = 0.4135
#i#

## Trimmed mean difference: -0.11494
## 95 percent confidence interval:
## -0.405 0.1751

The test result suggests that there are no significant differences in the trimmed means across
the two leagues.

In terms of effect size, Algina, Keselman, and Penfield (2005) presented a robust version of
Cohen’s d (Cohen 1988) based on 20% trimmed means and Winsorized variances.

akp.effect(GoalsGame ~ League, data = SpainGer)

## [1] -0.281395
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The same rules of thumb as for Cohen’s d can be used; that is, |d| = 0.2, 0.5, and 0.8
correspond to small, medium, and large effects. The call above assumes equal variances
across both groups. If we can not assume this, Algina et al. (2005) suggest to compute two
effects sizes: one with the Winsorized variance of group 1 in the denominator, and another
one with the Winsorized variance of group 2 in the denominator.

akp.effect(GoalsGame ~ League, data = SpainGer, EQVAR = FALSE)

## [1] -0.4574521 -0.2161548

It can happen that the two effect sizes do not lead to the same conclusions about the strength
of the effect (as in our example to a certain extent). Wilcox and Tian (2011) proposed
an explanatory measure of effect size & which does not suffer from this shortcoming and is
generalizable to multiple groups.

yuen.effect.ci(GoalsGame ~ League, data = SpainGer)
## $effsize

## [1] 0.15517

##

## $CI

## [1] 0.0000000 0.6295249

Values of f = (.10, 0.30, and 0.50 COI"I“GSpOIlA(i to small, medium, and large effect sizes. The
function also gives a confidence interval for &.

If we want to run a test on median differences, or more general M-estimator differences, the
pb2gen function can be used.

pb2gen(GoalsGame ~ League, data = SpainGer, est = "median")

## Call:

## pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "median")
#i#

## Test statistic: -0.1238, p-value = 0.40067
## 95% confidence interval:
## -0.5015 0.195

pb2gen(GoalsGame ~ League, data = SpainGer, est = "onestep")

## Call:

## pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "onestep")
##

## Test statistic: -0.1181, p-value = 0.46411
## 95% confidence interval:
## -0.3786 0.1985
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The first test is related to median differences, the second test to Huber’s ¥ estimator. The
results in this particular example are consistent for various robust location estimators.

3.2. One-way multiple group comparisons

Often it is said that F-tests are quite robust against normality violations. This is not always
the case. In fact, scenarios elaborated in Games (1984), Tan (1982), Wilcox (1996) and Cressie
and Whitford (1986) show that things can go wrong when applying ANOVA in situations
where we have heavy-tailed distributions, unequal sample sizes, and when distributions differ
in skewness. Transforming the data is not a very appealing alternative either because under
general conditions this does not deal effectively with skewness issues or outliers.

The first robust ANOVA alternative presented here is a one-way comparison of multiple
trimmed group means, as implemented in the tlway function. Let J be the number of
groups. The corresponding null hypothesis is:

Hy:pp = peg = -+ = .

The formula for the test statistic, which approximates an F-distribution under the null, can
be found in Wilcox (2012, p. 293). A bootstrap version of it is provided in tiwaybt. If no
trimming is involved we end up with Welch’s ANOVA version allowing for unequal variances
(Welch 1951). A similar test statistic can be derived for comparing medians instead of trimmed
means, implemented in the medlway function. When there are tied values, use instead the
function Qanova.

Let us apply these two tests on the soccer data. This time we include all five leagues in the
dataset. Figure 2 shows the corresponding boxplots and beanplots. We see that Germany
and Italy have a pretty symmetric distribution, England and The Netherlands right-skewed
distributions, and Spain has outliers.

In WRS2 these robust one-way ANOVA variants can be computed as follows:

tlway(GoalsGame ~ League, data = eurosoccer)

## Call:

## tlway(formula = GoalsGame ~ League, data = eurosoccer)
##

## Test statistic: 1.1178

## Degrees of Freedom 1: 4

## Degrees of Freedom 2: 26.95

## p-value: 0.36875

##

## Explanatory measure of effect size: 0.22

medlway(GoalsGame ~ League, data = eurosoccer)
## Call:

## medlway(formula = GoalsGame ~ League, data = eurosoccer)
H#
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Figure 2: Top panel: Boxplots for scored goals per game across five European soccer leagues.
Bottom panel: Beanplots for the same setting.

## Test statistic: 1.2335
## Critical value: 2.2858
## p-value: 0.24

None of the tests suggests a significant difference in robust goal location parameters across
the leagues.

For illustration, we perform all pairwise comparisons on the same data setting. Post hoc tests
on the trimmed means can be computed using the lincon function:

lincon(GoalsGame ~ League, data = eurosoccer)

## Call:
## lincon(formula = GoalsGame ~ League, data = eurosoccer)
##
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#H# psihat ci.lower ci.upper p.value
## England vs. Italy -0.11184 -0.51061 0.28692 0.39635
## England vs. Spain -0.17105 -0.50367 0.16157 0.12502
## England vs. Germany -0.28599 -0.75439 0.18241 0.07203
## England vs. Netherlands -0.22472 -0.69088 0.24145 0.14940
## Italy vs. Spain -0.05921 -0.41380 0.29538 0.60691
## Italy vs. Germany -0.17415 -0.65496 0.30666 0.27444
## Italy vs. Netherlands -0.11287 -0.59157 0.36583 0.47317
## Spain vs. Germany -0.11494 -0.55124 0.32136 0.41350
## Spain vs. Netherlands -0.05366 -0.48748 0.38015 0.69872
## Germany vs. Netherlands 0.06127 -0.47101 0.59356 0.72607

Post hoc tests for the bootstrap version of the trimmed mean ANOVA (t1waybt) are provided
in mecppb20.

3.3. Comparisons involving higher-order designs

Let us start with two-way factorial ANOVA design involving J categories for the first factor,
and K categories for the second factor. The test statistic for the one-way trimmed mean
comparisons can be generalized to two-way designs. The corresponding function is called
t2way. Two-way median comparisons can be performed via med2way whereas for more general
M-estimators, the function pbad2way can be applied. Note that all WRS2 robust ANOVA
functions fit the full model including all possible interactions only.

As an example we use the beer goggles dataset by Field, Miles, and Field (2012). This dataset
is about the effects of alcohol on mate selection in night clubs. The hypothesis is that after
alcohol had been consumed, subjective perceptions of physical attractiveness would become
more inaccurate (beer goggles effect). In this dataset we have the two factors gender (24 male
and 24 female students) and the amount of alcohol consumed (none, 2 pints, 4 pints). At
the end of the evening the researcher took a photograph of the person the participant was
chatting up. The attractiveness of the person on the photo was then evaluated by independent
judges on a scale from 0-100 (response variable). Figure 3 shows the interaction plots using
the median as location measure. It looks like there is some interaction going on between
gender and the amount of alcohol in terms of attractiveness rating. The following code
chunk computes three robust two-way ANOVA versions as well as a standard ANOVA, for
comparison.

t2way (attractiveness ~ gender*alcohol, data = goggles)

med2way (attractiveness ~ gender*alcohol, data = goggles)

pbad2way (attractiveness ~ gender*alcohol, data = goggles, est = "onestep")
summary (aov(attractiveness ~ genderxalcohol, data = goggles))

For each type of ANOVA we get a significant interaction. Going back to the interaction plots
in Figure 3 we see that the attractiveness of the date drops significantly for the males if they
had four pints.

If we are interested in post hoc comparisons, WRS2 provides functions for the trimmed mean
version (mcp2atm) and the M-estimator version (mcp2a). Here are the results for the trimmed
mean version:
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Figure 3: Interaction plot involving the median attractiveness ratings in beer goggles dataset.

mcp2atm(attractiveness ~ gender*alcohol, data = goggles)

## Call:
## mcp2atm(formula = attractiveness ~ gender * alcohol, data = goggles)
#i#

## psihat ci.lower ci.upper p-value
## genderl 10.00000 -6.00223 26.00223 0.20922
## alcoholl -3.33333 -20.49551 13.82885 0.61070
## alcohol2 35.83333 19.32755 52.33911 0.00003
## alcohol3 39.16667 22.46796 55.86537 0.00001
## genderl:alcoholl -3.33333 -20.49551 13.82885 0.61070
## genderl:alcohol2 -29.16667 -45.67245 -12.66089 0.00025
## genderl:alcohol3d -25.83333 -42.53204 -9.13463 0.00080

The most interesting post hoc result is the gender1:alcohol3 contrast which explains the
striking 4 pint attractiveness drop for the males.

Having three-way designs, WRS2 provides the function t3way for robust ANOVA based on
trimmed means. The dataset we use is from Seligman, Nolen-Hoeksema, Thornton, and
Thornton (1990). At a swimming team practice, 58 participants were asked to swim their
best event as far as possible, but in each case the time reported was falsified to indicate
poorer than expected performance (i.e., each swimmer was disappointed). 30 minutes later
the athletes did the same performance again. The authors predicted that on the second
trial more pessimistic swimmers would do worse than on their first trial, whereas optimistic
swimmers would do better. The response is ratio = Timel/Time2. A ratio larger than 1
means that a swimmer performed better in trial 2. Figure 4 shows two separate interaction

11
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Figure 4: Interaction plot involving the trimmed means of the time ratio response for males
and females separately.

plots for male and female swimmers, using the 20% trimmed means.

Now we compute a three-way robust ANOVA on the trimmed means. For comparison, we
also fit a standard three-way ANOVA (since the design is unbalanced we print out the Type
IT Sum-of-Squares).

t3way(Ratio ~ Optim*Sex*Event, data = swimming)

## Call:
## t3way(formula = Ratio ~ Optim * Sex * Event, data = swimming)
H#

## value p.value
## Optim 7.1799150 0.016
## Sex 2.2297985  0.160
## Event 0.3599633  0.845
## Optim:Sex 6.3298070 0.023
## Optim:Event 1.1363057 0.595
## Sex:Event 3.9106283 0.192
## Optim:Sex:Event 1.2273516 0.572

fitaov_op <- aov(Ratio ~ Optim*Sex*Event, data = swimming)
Anova(fitaov_op, type = "II")

## Anova Table (Type II tests)
##
## Response: Ratio
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Figure 5: Interaction plot involving the trimmed means of the time ratio response for gender
and optimists/pessimists (swimming style ignored).

#i# Sum Sq Df F value Pr(>F)
## Optim 0.022923 1 6.4564 0.01449 *
## Sex 0.010084 1 2.8401 0.09871 .
## Event 0.008682 2 1.2226 0.30384
## Optim:Sex 0.018563 1 5.2283 0.02687 *
## Optim:Event 0.005076 2 0.7148 0.49464
## Sex:Event 0.010267 2 1.4459 0.24603
## Optim:Sex:Event 0.001716 2 0.2416 0.78636
## Residuals 0.163323 46

##t ———

## Signif. codes: O 'sx*xk' 0.001 'sx*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The crucial effect is the Optim:Sex two-way interaction. Figure 5 shows the two-way interac-
tion plot, ignoring the swimming style effect. These plots suggests that, if the swimming style
is ignored, for the females it does not matter whether someone is an optimist or a pessimist.
For the males, there is a significant difference in the time ratio for optimists and pessimists.

3.4. Repeated measurement designs

The simplest repeated measurement design is a paired samples t-test scenario. Yuen’s trimmed
mean t-test can be generalized to dependent data settings (i.e., within-subject designs). De-
tails on the test statistic can be found in Wilcox (2012, p. 195-197). The corresponding R
function is called yuend which also reports the explanatory measure of effect size.

The dataset we use for illustration is in the MASS package and presents data pairs involving
weights of girls before and after treatment for anorexia. We use a subset of 17 girls subject to
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Figure 6: Individual weight trajectories of anorexic girls before and after treatment.

family treatment. Figure 6 presents the individual trajectories. We see that for four girls the
treatment did not seem to be effective, for the remaining ones we have an increase in weight.
The paired samples test on the trimmed mean differences gives a significant treatment effect
which tells us that, overall, the treatment was effective (effect size can be labelled as “large”).

anorexiaFT <- subset(anorexia, subset = Treat == "FT")
with(anorexiaFT, yuend(Prewt, Postwt))

## Call:

## yuend(x = Prewt, y = Postwt)

##

## Test statistic: -3.829 (df = 10), p-value = 0.00332
##

## Trimmed mean difference: -8.56364

## 95 percent confidence interval:

## -13.5469 -3.5804

##

## Explanatory measure of effect size: 0.6

Let us extend this setting to more than two dependent groups. The WRS2 package provides
a robust implementation of a heteroscedastic repeated measurement ANOVA based on the
trimmed means. The main function is rmanova with corresponding post hoc tests in rmmcp.
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Figure 7: 22 taster trajectories for three different wines.

The bootstrap version of rmanova is rmanovab with bootstrap post hocs in pairdepb. Each
function for robust repeated measurement ANOVA takes three arguments; the data need to
be in long format: a vector with the responses (argument: y), a factor for the groups (e.g.,
time points; argument: groups), and a factor for the blocks (typically a subject ID; argument:
blocks).

The data we use to illustrate these functions is a hypothetical wine tasting dataset. There
are three types of wine (A, B and C). 22 people tasted each wine five times (in a blind fold
fashion). The response reflects the average ratings for each wine. Thus, each of the three
wines gets one score from each rater. In total, we therefore have 66 scores. The trajectories
are given in Figure 7.

A robust dependent samples ANOVA on the trimmed means can be fitted as follows:

rmanova(y = Taste, groups = Wine, block = Taster)

## Call:

## rmanova(y = Taste, groups = Wine, blocks = Taster)
##

## Test statistic: 3.2614

## Degrees of Freedom 1: 1.61

## Degrees of Freedom 2: 20.92

## p-value: 0.06761

15
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rmmcp(y = Taste, groups = Wine, block = Taster)

## Call:

## rmmcp(y = Taste, groups = Wine, blocks = Taster)

##

## psihat ci.lower ci.upper p.value p.crit sig

## Wine A vs. Wine B 0.02143 -0.02164 0.06449 0.19500 0.0500 FALSE
## Wine A vs. Wine C 0.11429 0.02148 0.20710 0.00492 0.0169 TRUE
## Wine B vs. Wine C 0.08214 0.00891 0.15538 0.00878 0.0250 TRUE

We see that we have a somewhat contradictory result: the global test tells us that there are
no significant differences between the wines, whereas the post hoc tests suggest significant
differences for the Wine C contrasts. Such results sometimes occur in small sample ANOVA
applications when the global test statistic is close to the critical value.

3.5. Mixed designs

This subsection deals with mixed ANOVA designs, that is, we have within-subjects effects
(e.g., due to repeated measurements) and between-subjects effects (group comparisons). For
the parameteric case, the standard aov function in R is able to handle such scenarios, even
though in a very limited way. The ezANOVA function in the ez package (Lawrence 2015)
allows for an easy specification of such models and also provides some permutation options
via ezPerm. Since such designs belong to the mixed-effects model family, standard packages
like Ime4 (Bates, Maechler, Bolker, and Walker 2015) or nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2015) can be applied which provide a great deal of modeling
flexibility.

The main function in WRS2 for computing a between-within subjects ANOVA on the trimmed
means is bwtrim. For general M-estimators, the package offers the bootstrap based functions
sppba, sppbb, and sppbi for the between-subjects effect, the within-subjects effect, and the
interaction effect, respectively. Each of these functions requires the full model specification
through the formula interface as well as an id argument that accounts for the within-subject
structure.

The first example we use is from Wilcox (2012, p. 411). In a study on the effect of consuming
alcohol, the number hangover symptoms were measured for two independent groups, with
each subject consuming alcohol and being measured on three different occasions. One group
consisted of sons of alcoholics and the other was a control group. A representation of the
dataset is given in Figure 8.

First, we fit the between-within subjects ANOVA on the 20% trimmed means:

bwtrim(symptoms ~ group*time, id = id, data = hangover)

## Call:

## bwtrim(formula = symptoms ~ group * time, id = id, data = hangover)
##

## value p.value

## group 6.6087 0.0218
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Figure 8: 20% trimmed means of the number of hangover symptoms across three time points.

## time 4.4931 0.0290
## group:time 0.5663 0.5790

We get significant group and time effects. Second, we fit a standard between-within subjects
ANOVA through bwtrim by setting the trimming level to 0 and check whether we get the
same results as with ezANOVA.

bwtrim(symptoms ~ group*time, id = id, data = hangover, tr = 0)
## Call:
## bwtrim(formula = symptoms ~ group * time, id = id, data = hangover,

#it tr = 0)

##

#H# value p.value
## group 3.2770 0.0783
## time 0.8809 0.4250

## group:time 1.0508 0.3624

hangover$id <- as.factor(hangover$id)
fitF <- ezANOVA(hangover, symptoms, between = group, within = time, wid = id)
fitF$ANOVA

17
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#H# Effect DFn DFd F p p<.05 ges
## 2 group 1 38 3.2770015 0.07817048 0.056208518
## 3 time 2 76 0.8957333 0.41257420 0.007240111
## 4 group:time 2 76 0.9737002 0.38234407 0.007865351

Finally, we base our comparisons on Huber’s M-estimator for which we have to apply three
separate functions, one for each effect.

sppba(symptoms ~ group*time, id, data = hangover)
sppbb(symptoms ~ group*time, id, data = hangover)
sppbi(symptoms ~ group*time, id, data = hangover)

These tests give us a significant group effect whereas the time and interaction effects are not
significant.

Due to the complexity of the hypotheses being testing using these percentile bootstrap func-
tions, let us have a closer look using a slightly more complicated dataset. The study by
McGrath (2016) looked at the effects of two forms of written corrective feedback on lexico-
grammatical accuracy (errorRatio) in the academic writing of English as a foreign language
university students. It had a 3 x 4 within-by-between design with three groups (two treat-
ment and one control; group) measured over four occasions (pretest/treatment, treatment,
post-test, delayed post-test; essay).

It helps to introduce the following notations: We have j = 1,...,J between subjects groups
(in our example J = 3) and k = 1,..., K within subjects groups (e.g., time points; in our
example K = 4). Let Yj;, be the response of participant ¢ (i = 1,..., N), belonging to group
J on measurement occasion k.

Ignoring the group levels j for the moment, Y;;; can be simplified to Y. For two occasions k
and k' we can compute the difference score Djir = Y — Y. Let 0 be some M-estimator
associated with Djgis. In the special case of two measurement occasions (i.e., K = 2), we can
compute a single difference. In our example with K = 4 occasions we can compute (g) =6
such M-estimators. The null hypothesis is:

Hy:0120=013=014="033="024=034

Thus, it is tested whether the “typical” difference score (as measured by an M-estimator)
between any two levels of measurement occasions is 0 (while ignoring the between-subjects
groups). For the essays dataset we get:

sppbb(errorRatio ~ group*essay, id, data = essays)

## Call:

## sppbb(formula = errorRatio ~ group * essay, id = id, data = essays)
##

## Test statistics:

#i# Estimate

## essayl-essay2 -0.083077



##
##
##
##
##
##
##
##

essayl-essay3 O
essayl-essay4 O
essay2-essay3 O
essay2-essay4 -0
essay3-essay4 -0

Test whether the
p-value: 0.362
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.068214
.003929
.092500
.033333
.065769

corrresponding population parameters are the same:

The p-value suggests that we can not reject the Hy of equal difference scores.

In terms of comparisons related to the between-subjects we can think of two principles. The
first one is to perform pairwise group comparisons within each K = 4 measurement occasion.
In our case this leads to 4 x (g) parameters (here, the first index relates to j and the second
index to k). We can establish the following K null hypotheses:

Hél) 2 011 =091 =103
h%m:
Hég) i b3 =023="033
H(()4) i O1a =024 =03

012 =022 =1032

4.

)

We aggregate these hypotheses into a single Hy which tests whether these K nulls are simul-
taneously true.

Ho: 011 —0621 =011 —031=01—031=
O — 020 =012 —030="022—032=
013 —0a3="013—033="023—033=
Oha—024=014—034="034—034=0.

In WRS2 this hypothesis can be tested as follows:

sppba(errorRatio ~
## Call:

## sppba(formula =
##t avg = FALSE)
##

## Test statistics:
##

##

##
##
#H#

group*essay, id, data = essays, avg = FALSE)

errorRatio © group * essay, id = id, data = essays,

Estimate

essayl Control-Indirect 0.17664
essayl Control-Direct 0.10189
essayl Indirect-Direct -0.07475
essay2 Control-Indirect 0.23150

19
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##
##
##
##
##
##
##
##
##
##
##
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essay2 Control-Direct 0.25464
essay2 Indirect-Direct 0.02314
essay3 Control-Indirect 0.05614
essay3 Control-Direct 0.18000
essay3 Indirect-Direct 0.12386
essay4 Control-Indirect 0.43300
essay4 Control-Direct -0.11489
essay4 Indirect-Direct -0.54789

Test whether the corrresponding population parameters are the same:
p-value: 0.546

Again, we can not reject Hy. As we see in this example, many tests have to be carried out.
An alternative that seems more satisfactory in terms of type I errors is to use the average
across measurement occasions, that is

_ 1 E
0j. =+ kZ:l 0 (3)

Correspondingly, in our example a null hypothesis can be formulated as

Hy: 01 =0y =05

and computed via

sppba(errorRatio ~ group*essay, id, data = essays)

##
##
##
##
##
##
##
##
##
##
##

Call:
sppba(formula = errorRatio ~ group * essay, id = id, data = essays)

Test statistics:
Estimate
Control 0.2243
Indirect 0.1054
Direct -0.1189

Test whether the corrresponding population parameters are the same:
p-value: 0.464

Note that in the hangover example above we used the averaged strategy as well and since there
were only two groups (alcoholic vs. control), only a single difference score was computed.

Finally, let us elaborate on the sppbi function which performs tests on the interactions. In
the sppbb call 6 parameters were tested and we ignored the between-subjects group struc-
ture. Now we do not further ignore the group structure and compute M-estimators based on
measurement occasion differences for each group separately. In the notation below the group
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index is on the right hand side of the pipe symbol, the differences in measurement occasions
on the left hand side. The null hypothesis is a follows:

Ho: 0191 — 0131 = 0141 — 02311 = O24pp — O34 =
01212 — 01,32 = 0142 — Oa 312 = Oz 420 — U342 =

01213 — 01,33 = 01,43 — 233 = 02,43 — 0343 = 0.
The WRS2 function call to test this null hypothesis is

sppbi(errorRatio ~ group*essay, id, data = essays)

## Call:

## sppbi(formula = errorRatio ~ group * essay, id = id, data = essays)
##

## Test statistics:

#i# Estimate
## Control essayl-essay2 -0.14667
## Control essayl-essay3 0.12083
## Control essayl-essay4 0.26750
## Control essay2-essay3 -0.11778
## Control essay2-essay4 -0.02222
## Control essay3-essay4 0.09556
## Indirect essayl-essay2 -0.23600
## Indirect essayl-essay3 0.21678
## Indirect essayl-essay4 0.45278
## Indirect essay2-essay3 0.19293
## Indirect essay2-essay4 -0.07889
## Indirect essay3-essay4 -0.27182
## Direct essayl-essay?2 0.10571
## Direct essayl-essay3 0.26905
## Direct essayl-essay4 0.16333
## Direct essay2-essay3  -0.20221
## Direct essay2-essay4 0.10643
## Direct essay3-essay4 0.30864
##

## Test whether the corrresponding population parameters are the same:
## p-value: 0.646

Again, we can not reject Hy.
4. Robust nonparametric ANCOVA

4.1. Running interval smoothers
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Before considering robust ANCOVA, let us elaborate on smoothers. In general, a smoother is
a function that approximates the true regression line via a technique that deals with curvature
in a reasonably flexible manner. Smoothing functions typically have a smoothing parameter
by means of which the user can steer the degree of smoothing. If the parameter is too
small, the smoothing function might overfit the data. If the parameter is too large, we might
disregard important patterns. The general strategy is to find the smallest parameter so that
the plot looks reasonably smooth.

A popular regression smoother is LOWESS (locally weighted scatterplot smoothing) regres-
sion which belongs to the family of nonparametric regression models and can be fitted using
the lowess function in stats. The smoothers presented here involve robust location measures
from Section 2 and are called running interval smoothers.

Let us start with the trimmed mean. We have pairs of observations (z;, y;). The strategy
behind an interval smoother is to compute the y-trimmed mean using all of the y; values for
which the corresponding x;’s are close to a value of interest x (Wilcox 2012, p. 562). Let MAD
be the median absolute deviation, i.e., MAD = median|z; — z|. Let MADN = MAD/z 75,
where zg 75 represents the quantile of the standard normal distribution. The point z is said
to be close to z; if

|x; — x| < f x MADN.

Here, f as a constant which will turn out to be the smoothing parameter. As f increases, the
neighborhood of x gets larger. Let

such that N(z;) indexes all the x; values that are close to x;. Let 0; be a robust location
parameter of interest. A running interval smoother computes n 0; parameters based on the
corresponding y-value for which z; is close to x;. That is, the smoother defines an interval
and runs across all the z-values. Within a regression context, these estimates represent the

fitted values. Eventually, we can plot the (z;,6;) tuples into the (z;,y;) scatterplot which
gives us the nonparametric regression fit. The smoothness of this function depends on f.

The WRS2 package provides smoothers for trimmed means (runmean), general M-estimators
(rungen), and bagging versions of general M-estimators (runmbo), recommended for small
datasets.

Let us look at a data example, involving various f values and various robust location measures
0;. We use a simple dataset from Wright and London (2009) where we are interested whether
the length and heat of a chile are related. The length was measured in centimeters, the heat
on a scale from 0 (“for sissys”) to 11 (“nuclear”). The left panel in Figure 9 displays smoothers
involving different robust location measures. The right panel shows a trimmed mean interval
smoothing with varying smoothing parameter f. We see that, at least in this dataset, there
are no striking differences between the smoothers with varying location measure. The choice
of the smoothing parameter f affects the function heavily, however.

4.2. Robust ANCOVA

ANCOVA involves a factorial design and metric covariates that were not part of the exper-
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Figure 9: Left panel: smoothers with various robust location measures. Right panel: trimmed
mean smoother with varying smoothing parameter f.

imental manipulation. Basic ANCOVA assumes homogeneity of regression slopes across the
groups when regressing the dependent variable on the covariate. A further assumption is
homoscedasticity of the error terms across groups. The robust ANCOVA function in WRS2
does not assume homoscedasticity nor homogeneity of regression slopes. In fact, it does not
make any parametric assumption on the regressions at all and uses running interval smoothing
(trimmed means) for each subgroup. Both nonparametric curves can be tested for subgroup
differences at various points of interest along the z-continuum. This makes it very similar to
what functional data analysis (FDA; see Ramsay and Silverman 2005) is doing. The main
difference is that FDA uses smoothing splines whereas robust ANCOVA, as presented here,
running interval smoothers.

The function ancova fits a robust ANCOVA. In its current implementation it is limited to one
factor with two categories and one covariate only. A bootstrap version of it is implemented
as well (ancboot). Both functions perform the running interval smoothing on the trimmed
means. Yuen tests for trimmed mean differences are performed at specified design points.
It the design point argument (pts) is not specified, the routine automatically computes five
points (for details see Wilcox 2012, p. 611). It is suggested that group sizes around the design
point subject to Yuen’s test should be at least 12. Regarding the multiple testing problem,
the confidence intervals are adjusted to control the probability of at least one Type I error,
the p-values are not.

The dataset we use to demonstrate robust ANCOVA is from Gelman and Hill (2007). It is
based on data involving an educational TV show for children called “The Electric Company”.
In each of four grades, the classes were randomized into treated groups and control groups.
The kids in the treatment group were exposed to the TV show, those in the control group
not. At the beginning and at the end of the school year, students in all the classes were given
a reading test. The average test scores per class (pretest and posttest) were recorded. In
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this analysis we use the pretest score are covariate and are interested in possible differences
between treatment and control group with respect to the postest scores. We are interested in
comparisons at six particular design points. We set the smoothing parameters to a consider-
ably small value.

comppts <- c(18, 70, 80, 90, 100, 110)

fitanc <- ancova(Posttest ~ Pretest + Group, frl = 0.3, fr2 = 0.3,
data = electric, pts = comppts)

fitanc

## Call:
## ancova(formula = Posttest ~ Pretest + Group, data = electric,

#i#t fr1 = 0.3, fr2 = 0.3, pts = comppts)

##

## nl n2 diff se lower CI upper CI statistic p-value
## Pretest = 18 21 20 -11.1128 4.2694 -23.3621 1.1364 2.6029 0.0163
## Pretest = 70 20 21 -3.2186 1.9607 -8.8236 2.3864 1.6416 0.1143
## Pretest = 80 24 23 -2.8146 1.7505 -7.7819  2.1528 1.6079 0.1203
## Pretest = 90 24 22 -5.0670 1.3127 -8.7722 -1.3617 3.8599 0.0006
## Pretest = 100 28 30 -1.8444 0.9937 -4.6214  0.9325 1.8561 0.0729
## Pretest = 110 24 22 -1.2491 0.8167 -3.5572 1.0590 1.5294 0.1380

Figure 10 shows the results of the robust ANCOVA fit. The vertical gray lines mark the
design points. By taking into account the multiple testing nature of the problem, the only
significant group difference we get for a pretest value of x = 90. For illustration, this plot
also includes the linear regression fits for both subgroups (this is what a standard ANCOVA
would do).

5. Other approaches for group comparisons

5.1. Comparing discrete distributions

Having two random variables X and Y with corresponding discrete distributions (sample space
small), it might be of interest to test whether the distributions differ at each realization x
and y (Hyp: P(X =) = P(Y =y)). The function binband provides such an implementation
allowing for both the method proposed by Storer and Kim (1990) and the one by Kulinskaya,
Morgenthaler, and Staudte (2010).

Let us look at a simple artificial example. Consider a study aimed at comparing two methods
for reducing shoulder pain after surgery. We provide the shoulder pain measures for each
method as vector. The binband function compares the two distributions at each possible
value in the joint sample space, here (1,2,...,5).

methodl <- c(2,4,4,2,2,2,4,3,2,4,2,3,2,4,3,2,2,3,5,5,2,2)
method2 <- ¢(5,1,4,4,2,3,3,1,1,1,1,2,2,1,1,5,3,5)
binband (methodl, method2, KMS = TRUE)
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Figure 10: Robust ANCOVA fit on TV show data across treatment and control group. The
nonparametric regression lines for both subgroups are shown as well as the OLS fit (dashed
lines). The vertical lines show the design points our comparisons are based on.

## Call:

## binband(x = methodl, y = method2, KMS = TRUE)

##

## Parameter table:

##  Value pl.est p2.est pl-p2 ci.low ci.up p.value p.crit
## 1 1 0.0000 0.3889 -0.3889 -0.6266 -0.1194 0.004 0.0100
## 2 2 0.5000 0.1667 0.3333 0.0201 0.6115 0.037 0.0125
## 3 3 0.1818 0.1667 0.0152 -0.2337 0.2565 0.930 0.0500
## 4 4 0.2273 0.1111 0.1162 -0.1353 0.3504 0.390 0.0167
## 5 5 0.0909 0.1667 -0.0758 -0.2969 0.1458 0.510 0.0250

Using the Kulinskaya-Morgenthaler-Staudte method (KMS = TRUE) we get the parameter table
above and see that the distributions differ significantly at x,y = 1 only. Note that the function
uses Hochberg’s multiple comparison adjustment to determine critical p-values.

5.2. Quantile comparisons

In Section 3 we described approaches for comparing robust location measures across indepen-
dent groups. One such measure was the median as implemented in pd2gen for the two-group
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case and medlway for one-way ANOVA. Here we generalize this testing approach to arbitrary
quantiles. The corresponding functions are called qcomhd and Qanova for the two-group and
the multiple group case, respectively. Both of them make use of the estimator proposed by

The WRS2 Package

Harrell and Davis (1982) in conjunction with bootstrapping.

To illustrate, we use once more the soccer dataset and start comparing the German Bundesliga

with the Spanish Primera Division along various quantiles.

fitqt <- gcomhd(GoalsGame ~

League, data = SpainGer,

500)

.0500
.0167
.0125

.crit p.value
.0100

0.268
0.464
0.492
0.548

q = c(0.1, 0.25, 0.5, 0.75, 0.95), nboot =
fitqt
## Call:
## qcomhd(formula = GoalsGame ~ League, data = SpainGer, q = c(0.1,
#i# 0.25, 0.5, 0.75, 0.95), nboot = 500)
##
## Parameter table:
## q nl n2 estl est2 estl-est.2 ci.low ci.up p
## 1 0.10 20 18 1.0313 0.9035 0.1278 -0.1552 0.3098 0
## 2 0.25 20 18 1.1950 1.0892 0.1058 -0.1787 0.2899 0
## 3 0.50 20 18 1.3109 1.4304 -0.1194 -0.5058 0.2690 0
## 4 0.75 20 18 1.6220 1.8078 -0.1858 -0.6089 0.4862 0
## 5 0.95 20 18 2.5160 2.2402 0.2758 -0.6043 0.8677 0

We find no significant differences for any of the quantiles (again, the critical p-values take into
account the multiple testing nature of the problem). Note that a dependent samples version

of qcomhd is provided by the Dgcomhd function.

Now we extend the testing scenario above to multiple groups by considering all five leagues

in the dataset and do a quartile comparison.

fitqa <- Qanova(GoalsGame ~

fitqa

##
##
##
##
##
##
##
##

Qanova adjusts the p-values using Hochberg’s method (none of them significant here). For
each quantile it is tested whether the test statistics are the same across the contrasts, leading
to a single p-value per quantile. The constrats itself are setup internally and the design matrix

Call:

League, data = eurosoccer,

q = c(0.25, 0.5, 0.75))

Qanova(formula = GoalsGame ~ League, data = eurosoccer,
0.5, 0.75))

q
q
q

0.5

p-value p.adj

0.25 0.0783 0.2350

0.2800 0.5600

0.75 0.7367 0.7367

can be extracted through fitqa$contrasts.

.0250

q:

0.512

c(0.25,
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6. Robust correlation measures

In this section we present two M-measures of correlation. The first one is the percentage bend
correlation ppp, a robust measure of the linear association between two random variables.
When the underlying data are bivariate normal, pp, gives essentially the same values as
Pearson’s p. In general, py;, is more robust to slight changes in the data than p, similar to the
robust location measures presented in Section 2. Its computation is shown in Wilcox (2012,
p. 447) and involves a bending constant 5 (0 < 8 < 0.5). It is implemented in the function
pbcor which also performs a test on the correlation coefficient (Ho: ppp = 0). For illustration
we use the chile dataset from Section 4.1.

with(chile, pbcor(length, heat))

## Call:

## pbcor(x = length, y = heat)

##

## Robust correlation coefficient: -0.3785
## Test statistic: -3.7251

## p-value: 0.00035

WRS2 also provides the function pball for performing tests on a correlation matrix including
a test statistic H which tests the global hypothesis that all percentage bend correlations in
the matrix are equal to 0.

A second robust correlation measure is the Winsorized correlation p,, which requires the
specification of the amount of Winsorization. The wincor function can be used in a similar
fashion as pbcor; its extension to several random variables is called winall and illustrated here
using the hangover data from Section 3.5. We are interested in the Winsorized correlations
across the three time points for the participants in the alcoholic group:

hangctr <- subset(hangover, subset = group == "alcoholic")
hangwide <- cast(hangctr, id ~ time, value = "symptoms")[,-1]
winall (hangwide)

## Call:

## winall(x = hangwide)

#it

## Robust correlation matrix:
## 1 2 3

## 1 1.0000 0.6363 0.7049

## 2 0.6363 1.0000 0.6185

## 3 0.7049 0.6185 1.0000

#i#

## p-values:

## 1 2 3
## 1 NA 0.00573 0.00178
## 2 0.00573 NA 0.00750

## 3 0.00178 0.00750 NA
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Other types of robust correlation measures are the well-known Kendall’s 7 and Spearman’s p
as implemented in the basic R cor function.

In order to test for equality of two correlation coefficient, twopcor can be used for Pearson

correlations and twocor for percentage bend or Winsorized correlations. Both functions use
a bootstrap internally.

As an example, using the hangover dataset we want to test whether the time 1/time 2 corre-
lation ppp; of the control group is the same as the timel/time2 correlation pppy of the alcoholic

group.

ctl <- subset(hangover, subset = (group == "control" & time == 1))$symp
ct2 <- subset(hangover, subset = (group == "control" & time == 2))$symp
atl <- subset(hangover, subset = (group == "alcoholic" & time == 1))$symp
at2 <- subset(hangover, subset = (group == "alcoholic" & time == 2))$symp

twocor(ctl, ct2, atl, at2, corfun = "pbcor", beta = 0.15)

## Call:

## twocor(xl = ctl, yl = ct2, x2 = atl, y2 = at2, corfun = "pbcor",
## beta = 0.15)

##

## First correlation coefficient: 0.5628

## Second correlation coefficient: 0.5886

## Confidence interval (difference): -0.8222 0.62

## p-value: 0.96739

We can not reject Hp.

7. Robust mediation analysis

As mentioned in the Introduction, R is well-equipped with robust regression models. Here
we focus on one particular approach that is especially relevant in the social sciences area:
mediator models.

A simple mediator model involving a response Y, a predictor X, and a mediator M consists
of the following set of regressions.

Y = Bor + Bui X + €1,
M; = Boz + B12X; + €42,
Y = Boz + P13X; + BasM; + ;3.

In relation to these equations, Baron and Kenny (1986) laid out the following requirements
for a mediating relationship:

e Significant effect of X on Y (f11, first equation).

e Significant effect of X on M (Bi2, second equation).
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e The effect of X on Y when including M as well (third equation) should be reduced. If
B13 is not significant anymore, we have full mediation, if it is still significant we have
partial mediation and we proceed as follows.

The amount of mediation is reflected by the indirect effect 512523 (also called the mediating
effect). Having a partial mediation situation, the state-of-the-art approach to test for media-
tion (Hp: P12f23 = 0) is to apply a bootstrap approach as proposed by Preacher and Hayes
(2004).

In terms of a robust mediator model version, instead of OLS a robust estimation routine needs
be applied to estimate the regression equations above (e.g., an M-estimator as implemented in
the r1m function can be used). For testing the mediating effect, Zu and Yuan (2010) proposed
a corresponding robust approach which is implemented in WRS2 via the ZYmediate function.

The example we show is from Howell (2012) based on data by Leerkes and Crockenberg (2002).
In this dataset (n = 92) the relationship between how girls were raised by there own mother
(MatCare) and their later feelings of maternal self-efficacy (Efficacy), that is, our belief in
our ability to succeed in specific situations. The mediating variable is self-esteem (Esteem).
All variables are scored on a continuous scale from 1 to 4.

In the first part we fit a standard mediator model with bootstrap-based testing of the me-
diating effect. First, we fit the three regressions as outlined above and check whether the
predictor has a significant influence on the response and the mediator, respectively.

set.seed(123)

fit.yx <- Im(Efficacy ~ MatCare, data = Leerkes)

fit.mx <- Im(Esteem ~ MatCare, data = Leerkes)

fit.yxm <- Im(Efficacy ~ MatCare + Esteem, data = Leerkes)

fit.med <- with(Leerkes, mediation(MatCare, Esteem, Efficacy,
bootstrap = TRUE, B = 500))

The first two regression results (not shown here) suggest that maternal care has a significant
influence on the response as well as the mediator. By adding the mediator as predictor (third
1m call), the influence of maternal care on efficacy gets lower. The Preacher-Hayes bootstrap
test (we use the mediate function from MBESS (Kelley 2016) to perform the bootstrap
mediation test) suggests that there is a significant mediator effect:

round(fit.med[1, 1:3], 4)

## Estimate CI.Lower_Percentile CI.Upper_Percentile
#i# 0.0531 0.0161 0.0991

Now we fit the same sequence of models in a robust way. First we estimate three robust
regressions using R’s basic r1m implementation from MASS which uses an M-estimator. Then
we perform a robust test on the mediating effect using ZYmediate from WRS2.

fitr.yx <- rlm(Efficacy ~ MatCare, data = Leerkes)

fitr.mx <- rlm(Esteem ~ MatCare, data = Leerkes)

fitr.yxm <- rlm(Efficacy ~ MatCare + Esteem, data = Leerkes)
with(Leerkes, ZYmediate(MatCare, Efficacy, Esteem))
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## Call:

## ZYmediate(x = MatCare, y = Efficacy, med = Esteem)
##

## Mediated effect: 0.0513

## Confidence interval: 0.0159 0.0953

## p-value: 0.003

For the robust regression setting we get similar results as with OLS. The bootstrap based
robust mediation test suggests again a significant mediator effect.

Note that robust moderator models can be fitted in a similar fashion as ordinary moderator
models. Moderator models are often computed on the base of centered versions of predictor
and moderator variable, including a corresponding interaction term (see, e.g., Howell 2012).
In R, a classical moderator model can be fitted using 1m. A robust version of it can be achieved
by replacing the 1m call by an rlm call.

8. Discussion

This article introduced the WRS2 package for computing basic robust statistical methods in a
user-friendly manner. Such robust models and tests are attractive when certain assumptions
as required by classical statistical methods, are not fulfilled. The most important functions
(with respect to social science applications) from the WRS package have been implemented in
WRS2. The remaining ones are described in Wilcox (2012). As mentioned in the Introduction,
R is already pretty well equipped with robust multivariate implementations. However, future
WRS2 updates will include robust generalizations of Hotelling’s T" as well as robust MANOVA.
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