
Introduction to arules – A computational

environment for mining association rules and

frequent item sets

Michael Hahsler

Southern Methodist University
Bettina Grün

Johannes Kepler Universität Linz

Kurt Hornik

Wirtschaftsuniversität Wien
Christian Buchta

Wirtschaftsuniversität Wien

Abstract

Mining frequent itemsets and association rules is a popular and well researched ap-
proach for discovering interesting relationships between variables in large databases. The
R package arules presented in this paper provides a basic infrastructure for creating and
manipulating input data sets and for analyzing the resulting itemsets and rules. The pack-
age also includes interfaces to two fast mining algorithms, the popular C implementations
of Apriori and Eclat by Christian Borgelt. These algorithms can be used to mine frequent
itemsets, maximal frequent itemsets, closed frequent itemsets and association rules.

Keywords: data mining, association rules, apriori, eclat.

1. Introduction

Mining frequent itemsets and association rules is a popular and well researched method for dis-
covering interesting relations between variables in large databases. Piatetsky-Shapiro (1991)
describes analyzing and presenting strong rules discovered in databases using different mea-
sures of interestingness. Based on the concept of strong rules, Agrawal, Imielinski, and Swami
(1993) introduced the problem of mining association rules from transaction data as follows:

Let I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm}
be a set of transactions called the database. Each transaction in D has an unique transaction
ID and contains a subset of the items in I. A rule is defined as an implication of the form
X ⇒ Y where X,Y ⊆ I and X ∩ Y = ∅. The sets of items (for short itemsets) X and Y
are called antecedent (left-hand-side or LHS) and consequent (right-hand-side or RHS) of the
rule.

To illustrate the concepts, we use a small example from the supermarket domain. The set of
items is I = {milk, bread, butter, beer} and a small database containing the items is shown in
Figure 1. An example rule for the supermarket could be {milk, bread} ⇒ {butter} meaning
that if milk and bread is bought, customers also buy butter.

To select interesting rules from the set of all possible rules, constraints on various measures of

2 Introduction to arules

significance and interest can be used. The best-known constraints are minimum thresholds on
support and confidence. The support supp(X) of an itemset X is defined as the proportion of
transactions in the data set which contain the itemset. In the example database in Figure 1,
the itemset {milk, bread} has a support of 2/5 = 0.4 since it occurs in 40% of all transactions
(2 out of 5 transactions).

Finding frequent itemsets can be seen as a simplification of the unsupervised learning problem
called “mode finding” or “bump hunting” (Hastie, Tibshirani, and Friedman 2001). For these
problems each item is seen as a variable. The goal is to find prototype values so that the
probability density evaluated at these values is sufficiently large. However, for practical
applications with a large number of variables, probability estimation will be unreliable and
computationally too expensive. This is why in practice frequent itemsets are used instead of
probability estimation.

The confidence of a rule is defined conf(X ⇒ Y) = supp(X ∪ Y)/supp(X). For example, the
rule {milk, bread} ⇒ {butter} has a confidence of 0.2/0.4 = 0.5 in the database in Figure 1,
which means that for 50% of the transactions containing milk and bread the rule is correct.
Confidence can be interpreted as an estimate of the probability P (Y |X), the probability of
finding the RHS of the rule in transactions under the condition that these transactions also
contain the LHS (see e.g., Hipp, Güntzer, and Nakhaeizadeh 2000).

Association rules are required to satisfy both a minimum support and a minimum confidence
constraint at the same time. At medium to low support values, often a great number of
frequent itemsets are found in a database. However, since the definition of support enforces
that all subsets of a frequent itemset have to be also frequent, it is sufficient to only mine all
maximal frequent itemsets, defined as frequent itemsets which are not proper subsets of any
other frequent itemset (Zaki, Parthasarathy, Ogihara, and Li 1997b). Another approach to
reduce the number of mined itemsets is to only mine frequent closed itemsets. An itemset
is closed if no proper superset of the itemset is contained in each transaction in which the
itemset is contained (Pasquier, Bastide, Taouil, and Lakhal 1999; Zaki 2004). Frequent closed
itemsets are a superset of the maximal frequent itemsets. Their advantage over maximal
frequent itemsets is that in addition to yielding all frequent itemsets, they also preserve the
support information for all frequent itemsets which can be important for computing additional
interest measures after the mining process is finished (e.g., confidence for rules generated from
the found itemsets, or all-confidence (Omiecinski 2003)).

A practical solution to the problem of finding too many association rules satisfying the support
and confidence constraints is to further filter or rank found rules using additional interest
measures. A popular measure for this purpose is lift (Brin, Motwani, Ullman, and Tsur
1997). The lift of a rule is defined as lift(X ⇒ Y) = supp(X ∪ Y)/(supp(X)supp(Y)), and

transaction ID items

1 milk, bread
2 bread, butter
3 beer
4 milk, bread, butter
5 bread, butter

Figure 1: An example supermarket database with five transactions.

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 3

can be interpreted as the deviation of the support of the whole rule from the support expected
under independence given the supports of the LHS and the RHS. Greater lift values indicate
stronger associations.

In the last decade, research on algorithms to solve the frequent itemset problem has been
abundant. Goethals and Zaki (2004) compare the currently fastest algorithms. Among these
algorithms are the implementations of the Apriori and Eclat algorithms by Borgelt (2003)
interfaced in the arules environment. The two algorithms use very different mining strategies.
Apriori, developed by Agrawal and Srikant (1994), is a level-wise, breadth-first algorithm
which counts transactions. In contrast, Eclat (Zaki et al. 1997b) employs equivalence classes,
depth-first search and set intersection instead of counting. The algorithms can be used to
mine frequent itemsets, maximal frequent itemsets and closed frequent itemsets. The imple-
mentation of Apriori can additionally be used to generate association rules.

This paper presents arules1, an extension package for R (R Development Core Team 2005)
which provides the infrastructure needed to create and manipulate input data sets for the
mining algorithms and for analyzing the resulting itemsets and rules. Since it is common to
work with large sets of rules and itemsets, the package uses sparse matrix representations
to minimize memory usage. The infrastructure provided by the package was also created to
explicitly facilitate extensibility, both for interfacing new algorithms and for adding new types
of interest measures and associations.

The rest of the paper is organized as follows: In the next section, we give an overview of the
data structures implemented in the package arules. In Section 2 we introduce the functionality
of the classes to handle transaction data and associations. In Section 3 we describe the way
mining algorithms are interfaced in arules using the available interfaces to Apriori and Eclat as
examples. In Section 4 we present some auxiliary methods for support counting, rule induction
and sampling available in arules. We provide several examples in Section 5. The first two
examples show typical R sessions for preparing, analyzing and manipulating a transaction
data set, and for mining association rules. The third example demonstrates how arules can
be extended to integrate a new interest measure. Finally, the fourth example shows how
to use sampling in order to speed up the mining process. We conclude with a summary of
the features and strengths of the package arules as a computational environment for mining
association rules and frequent itemsets.

A previous version of this manuscript was published in the Journal of Statistical Software
(Hahsler, Grün, and Hornik 2005a).

2. Data structure overview

To enable the user to represent and work with input and output data of association rule
mining algorithms in R, a well-designed structure is necessary which can deal in an efficient
way with large amounts of sparse binary data. The S4 class structure implemented in the
package arules is presented in Figure 2.

For input data the classes transactions and tidLists (transaction ID lists, an alternative way
to represent transaction data) are provided. The output of the mining algorithms comprises
the classes itemsets and rules representing sets of itemsets or rules, respectively. Both classes

1The arules package can be obtained from http://CRAN.R-Project.org and the maintainer can be contacted

at michael@hahsler.net.

http://CRAN.R-Project.org
michael@hahsler.net

4 Introduction to arules

associations

quality : data.frame

itemsets rules

itemMatrix

itemInfo : data.frame

tidLists

itemInfo : data.frame

transactionInfo : data.frame

Matrix

ngCMatrix

transactions

transactionInfo : data.frame

ASparameter

ECparameter APparameter

AScontrol

APcontrol ECcontrol

2
0..1

Figure 2: UML class diagram (see Fowler 2004) of the arules package.

directly extend a common virtual class called associations which provides a common interface.
In this structure it is easy to add a new type of associations by adding a new class that
extends associations.

Items in associations and transactions are implemented by the itemMatrix class which provides
a facade for the sparse matrix implementation ngCMatrix from the R package Matrix (Bates
and Maechler 2005).

To control the behavior of the mining algorithms, the two classes ASparameter and AScontrol

are used. Since each algorithm can use additional algorithm-specific parameters, we imple-
mented for each interfaced algorithm its own set of control classes. We used the prefix ‘AP’ for
Apriori and ‘EC’ for Eclat. In this way, it is easy to extend the control classes when interfacing
a new algorithm.

2.1. Representing collections of itemsets

From the definition of the association rule mining problem we see that transaction databases
and sets of associations have in common that they contain sets of items (itemsets) together
with additional information. For example, a transaction in the database contains a transaction
ID and an itemset. A rule in a set of mined association rules contains two itemsets, one for
the LHS and one for the RHS, and additional quality information, e.g., values for various
interest measures.

Collections of itemsets used for transaction databases and sets of associations can be rep-
resented as binary incidence matrices with columns corresponding to the items and rows
corresponding to the itemsets. The matrix entries represent the presence (1) or absence (0) of

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 5

items

i1 i2 i3 i4
milk bread butter beer

it
em

se
ts

X1 1 1 0 0

X2 0 1 0 1

X3 1 1 1 0

X4 0 0 1 0

Figure 3: Example of a collection of itemsets represented as a binary incidence matrix.

an item in a particular itemset. An example of a binary incidence matrix containing itemsets
for the example database in Figure 1 on Page 2 is shown in Figure 3. Note that we need to
store collections of itemsets with possibly duplicated elements (identical rows), i.e, itemsets
containing exactly the same items. This is necessary, since a transaction database can contain
different transactions with the same items. Such a database is still a set of transactions since
each transaction also contains a unique transaction ID.

Since a typical frequent itemset or a typical transaction (e.g., a supermarket transaction)
only contains a small number of items compared to the total number of available items, the
binary incidence matrix will in general be very sparse with many items and a very large
number of rows. A natural representation for such data is a sparse matrix format. For our
implementation we chose the ngCMatrix class defined in package Matrix. The ngCMatrix

is a compressed, sparse, logical, column-oriented matrix which contains the indices of the
TRUE rows and the pointers to the initial indices of elements in each column of the matrix.
Despite the column orientation of the ngCMatrix, it is more convenient to work with incidence
matrices which are row-oriented. This makes the most important manipulation, selecting a
subset of transactions from a data set for mining, more comfortable and efficient. Therefore,
we implemented the class itemMatrix providing a row-oriented facade to the ngCMatrix which
stores a transposed incidence matrix2. In sparse representation the following information
needs to be stored for the collection of itemsets in Figure 3: A vector of indices of the non-
zero elements (row-wise starting with the first row) 1, 2, 2, 4, 1, 2, 3, 3 and the pointers 1, 3, 5, 8
where each row starts in the index vector. The first two pointers indicate that the first row
starts with element one in the index vector and ends with element 2 (since with element 3
already the next row starts). The first two elements of the index vector represent the items in
the first row which are i1 and i2 or milk and bread, respectively. The two vectors are stored in
the ngCMatrix. Note that indices for the ngCMatrix start with zero rather than with one and
thus actually the vectors 0, 1, 1, 3, 0, 3, 3 and 0, 3, 4, 7 are stored. However, the data structure
of the ngCMatrix class is not intended to be directly accessed by the end user of arules. The
interfaces of itemMatrix can be used without knowledge of how the internal representation of
the data works. However, if necessary, the ngCMatrix can be directly accessed by developers
to add functionality to arules (e.g., to develop new types of associations or interest measures
or to efficiently compute a distance matrix between itemsets for clustering). In this case, the
ngCMatrix should be accessed using the coercion mechanism from itemMatrix to ngCMatrix

via as().

2Note that the developers of package Matrix contains some support for a sparse row-oriented format, but

the available functionality currently is rather minimal. Once all required functionality is implemented, arules

will switch the internal representation to sparse row-oriented logical matrices.

6 Introduction to arules

In addition to the sparse matrix, itemMatrix stores item labels (e.g., names of the items) and
handles the necessary mapping between the item label and the corresponding column number
in the incidence matrix. Optionally, itemMatrix can also store additional information on items.
For example, the category hierarchy in a supermarket setting can be stored which enables the
analyst to select only transactions (or as we later see also rules and itemsets) which contain
items from a certain category (e.g., all dairy products).

For itemMatrix, basic matrix operations including dim() and subset selection ([) are available.
The first element of dim() and [corresponds to itemsets or transactions (rows), the second
element to items (columns). For example, on a transaction data set in variable x the subset
selection ‘x[1:10, 16:20]’ selects a matrix containing the first 10 transactions and items 16
to 20.

Since itemMatrix is used to represent sets or collections of itemsets additional functionality is
provided. length() can be used to get the number of itemsets in an itemMatrix. Technically,
length() returns the number of rows in the matrix which is equal to the first element returned
by dim(). Identical itemsets can be found with duplicated(), and duplications can be
removed with unique(). match() can be used to find matching elements in two collections
of itemsets.

With c(), several itemMatrix objects can be combined by successively appending the rows
of the objects, i.e., creating a collection of itemsets which contains the itemsets from all
itemMatrix objects. This operation is only possible if the itemMatrix objects employed are
“compatible,” i.e., if the matrices have the same number of columns and the items are in the
same order. If two objects contain the same items (item labels), but the order in the matrix is
different or one object is missing some items, recode() can be used to make them compatible
by reordering and inserting columns.

To get the actual number of items in the itemsets stored in the itemMatrix, size() is used.
It returns a vector with the number of items (ones) for each element in the set (row sum in
the matrix). Obtaining the sizes from the sparse representations is a very efficient operation,
since it can be calculated directly from the vector of column pointers in the ngCMatrix.
For a purchase incidence matrix, size() will produce a vector as long as the number of
transactions in the matrix with each element of the vector containing the number of items in
the corresponding transaction. This information can be used, e.g., to select or filter unusually
long or short transactions.

itemFrequency() calculates the frequency for each item in an itemMatrix. Conceptually, the
item frequencies are the column sums of the binary matrix. Technically, column sums can be
implemented for sparse representation efficiently by just tabulating the vector of row numbers
of the non-zero elements in the ngCMatrix. Item frequencies can be used for many purposes.
For example, they are needed to compute interest measures. itemFrequency() is also used
by itemFrequencyPlot() to produce a bar plot of item count frequencies or support. Such
a plot gives a quick overview of a set of itemsets and shows which are the most important
items in terms of occurrence frequency.

Coercion from and to matrix and list primitives is provided where names and dimnames are
used as item labels. For the coercion from itemMatrix to list there are two possibilities. The
usual coercion via as() results in a list of vectors of character strings, each containing the
item labels of the items in the corresponding row of the itemMatrix. The actual conversion is
done by LIST() with its default behavior (argument decode set to TRUE). If in turn LIST()

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 7

items

milk bread butter beer

tr
an

sa
ct
io
n
s 1 1 1 0 0

2 0 1 1 0

3 0 0 0 1

4 1 1 1 0

5 0 1 1 0

(a)

transaction ID lists

it
em

s

milk 1, 4

bread 1, 2, 4, 5

butter 2, 4

beer 3

(b)

Figure 4: Example of a set of transactions represented in (a) horizontal layout and in (b)
vertical layout.

is called with the argument decode set to FALSE, the result is a list of integer vectors with
column numbers for items instead of the item labels. For many computations it is useful
to work with such a list and later use the item column numbers to go back to the original
itemMatrix for, e.g., subsetting columns. For subsequently decoding column numbers to item
labels, decode() is also available.

Finally, image() can be used to produce a level plot of an itemMatrix which is useful for quick
visual inspection. For transaction data sets (e.g., point-of-sale data) such a plot can be very
helpful for checking whether the data set contains structural changes (e.g., items were not
offered or out-of-stock during part of the observation period) or to find abnormal transactions
(e.g., transactions which contain almost all items may point to recording problems). Spotting
such problems in the data can be very helpful for data preparation.

2.2. Transaction data

The main application of association rules is for market basket analysis where large transaction
data sets are mined. In this setting each transaction contains the items which were purchased
at one visit to a retail store (see e.g., Berry and Linoff 1997). Transaction data are normally
recorded by point-of-sale scanners and often consists of tuples of the form:

< transaction ID, item ID, . . . >

All tuples with the same transaction ID form a single transaction which contains all the items
given by the item IDs in the tuples. Additional information denoted by the ellipsis dots
might be available. For example, a customer ID might be provided via a loyalty program in
a supermarket. Further information on transactions (e.g., time, location), on the items (e.g.,
category, price), or on the customers (socio-demographic variables such as age, gender, etc.)
might also be available.

For mining, the transaction data is first transformed into a binary purchase incidence matrix
with columns corresponding to the different items and rows corresponding to transactions.
The matrix entries represent the presence (1) or absence (0) of an item in a particular trans-
action. This format is often called the horizontal database layout (Zaki 2000). Alternatively,
transaction data can be represented in a vertical database layout in the form of transaction

8 Introduction to arules

ID lists (Zaki 2000). In this format for each item a list of IDs of the transactions the item is
contained in is stored. In Figure 4 the example database in Figure 1 on Page 2 is depicted
in horizontal and vertical layouts. Depending on the algorithm, one of the layouts is used
for mining. In arules both layouts are implemented as the classes transactions and tidLists.
Similar to transactions, class tidLists also uses a sparse representation to store its lists effi-
ciently. Objects of classes transactions and tidLists can be directly converted into each other
by coercion.

The class transactions directly extends itemMatrix and inherits its basic functionality (e.g.,
subset selection, getting itemset sizes, plotting item frequencies). In addition, transactions
has a slot to store further information for each transaction in form of a data.frame. The slot
can hold arbitrary named vectors with length equal to the number of stored transactions. In
arules the slot is currently used to store transaction IDs, however, it can also be used to store
user IDs, revenue or profit, or other information on each transaction. With this information
subsets of transactions (e.g., only transactions of a certain user or exceeding a specified profit
level) can be selected.

Objects of class transactions can be easily created by coercion from matrix or list. If names or
dimnames are available in these data structures, they are used as item labels or transaction
IDs, accordingly. To import data from a file, the read.transactions() function is provided.
This function reads files structured as shown in Figure 4 and also the very common format
with one line per transaction and the items separated by a predefined character. Finally,
inspect() can be used to inspect transactions (e.g., “interesting” transactions obtained with
subset selection).

Another important application of mining association rules has been proposed by Piatetsky-
Shapiro (1991) and Srikant and Agrawal (1996) for discovering interesting relationships be-
tween the values of categorical and quantitative (metric) attributes. For mining associations
rules, non-binary attributes have to be mapped to binary attributes. The straightforward
mapping method is to transform the metric attributes into k ordinal attributes by building
categories (e.g., an attribute income might be transformed into a ordinal attribute with the
three categories: “low”, “medium” and “high”). Then, in a second step, each categorical at-
tribute with k categories is represented by k binary dummy attributes which correspond to
the items used for mining. An example application using questionnaire data can be found in
Hastie et al. (2001) in the chapter about association rule mining.

The typical representation for data with categorical and quantitative attributes in R is a
data.frame. First, a domain expert has to create useful categories for all metric attributes.
This task is supported in arules by functions such as discretize() which implements equal
interval length, equal frequency, clustering-based and custom interval discretization. After
discretization all columns in the data.frame need to be either logical or factors. The second
step, the generation of binary dummy items, is automated in package arules by coercing from
data.frame to transactions. In this process, the original attribute names and categories are
preserved as additional item information and can be used to select itemsets or rules which
contain items referring to a certain original attributes. By default it is assumed that missing
values do not carry information and thus all of the corresponding dummy items are set to
zero. If the fact that the value of a specific attribute is missing provides information (e.g., a
respondent in an interview refuses to answer a specific question), the domain expert can create
for the attribute a category for missing values which then will be included in the transactions
as its own dummy item.

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 9

The resulting transactions object can be mined and analyzed the same way as market basket
data, see the example in Section 5.1.

2.3. Associations: itemsets and sets of rules

The result of mining transaction data in arules are associations. Conceptually, associations are
sets of objects describing the relationship between some items (e.g., as an itemset or a rule)
which have assigned values for different measures of quality. Such measures can be measures
of significance (e.g., support), or measures of interestingness (e.g., confidence, lift), or other
measures (e.g., revenue covered by the association).

All types of association have a common functionality in arules comprising the following meth-
ods:

❼ summary() to give a short overview of the set and inspect() to display individual
associations,

❼ length() for getting the number of elements in the set,

❼ items() for getting for each association a set of items involved in the association (e.g.,
the union of the items in the LHS and the RHS for each rule),

❼ sorting the set using the values of different quality measures (sort()),

❼ subset extraction ([and subset()),

❼ set operations (union(), intersect() and setequal()), and

❼ matching elements from two sets (match()),

❼ write() for writing associations to disk in human readable form. To save and load
associations in compact form, use save() and load() from the base package.

❼ write.pmml() and read.pmml() can be used to write and read associations using
PMML (Predictive Model Markup Language) via package pmml (Williams 2008).

The associations currently implemented in package arules are sets of itemsets (e.g., used for
frequent itemsets of their closed or maximal subset) and sets of rules (e.g., association rules).
Both classes, itemsets and rules, directly extend the virtual class associations and provide the
functionality described above.

Class itemsets contains one itemMatrix object to store the items as a binary matrix where
each row in the matrix represents an itemset. In addition, it may contain transaction ID lists
as an object of class tidLists. Note that when representing transactions, tidLists store for each
item a transaction list, but here store for each itemset a list of transaction IDs in which the
itemset appears. Such lists are currently only returned by eclat().

Class rules consists of two itemMatrix objects representing the left-hand-side (LHS) and the
right-hand-side (RHS) of the rules, respectively.

The items in the associations and the quality measures can be accessed and manipulated in a
safe way using accessor and replace methods for items, lhs, rhs, and quality. In addition

10 Introduction to arules

the association classes have built-in validity checking which ensures that all elements have
compatible dimensions.

It is simple to add new quality measures to existing associations. Since the quality slot
holds a data.frame, additional columns with new quality measures can be added. These new
measures can then be used to sort or select associations using sort() or subset(). Adding
a new type of associations to arules is straightforward as well. To do so, a developer has
to create a new class extending the virtual associations class and implement the common
functionality described above.

3. Mining algorithm interfaces

In package arules we interface free reference implementations of Apriori and Eclat by Christian
Borgelt (Borgelt and Kruse 2002; Borgelt 2003)3. The code is called directly from R by the
functions apriori() and eclat() and the data objects are directly passed from R to the
C code and back without writing to external files. The implementations can mine frequent
itemsets, and closed and maximal frequent itemsets. In addition, apriori() can also mine
association rules.

The data given to the apriori() and eclat() functions have to be transactions or some-
thing which can be coerced to transactions (e.g., matrix or list). The algorithm parameters are
divided into two groups represented by the arguments parameter and control. The min-
ing parameters (parameter) change the characteristics of the mined itemsets or rules (e.g.,
the minimum support) and the control parameters (control) influence the performance of
the algorithm (e.g., enable or disable initial sorting of the items with respect to their fre-
quency). These arguments have to be instances of the classes APparameter and APcontrol for
the function apriori() or ECparameter and ECcontrol for the function eclat(), respectively.
Alternatively, data which can be coerced to these classes (e.g., NULL which will give the de-
fault values or a named list with names equal to slot names to change the default values)
can be passed. In these classes, each slot specifies a different parameter and the values. The
default values are equal to the defaults of the stand-alone C programs (Borgelt 2004) except
that the standard definition of the support of a rule (Agrawal et al. 1993) is employed for the
specified minimum support required (Borgelt defines the support of a rule as the support of
its antecedent).

For apriori() the appearance feature implemented by Christian Borgelt can also be used.
With argument appearance of function apriori() one can specify which items have to or
must not appear in itemsets or rules. For more information on this feature we refer to the
Apriori manual (Borgelt 2004).

The output of the functions apriori() and eclat() is an object of a class extending associations
which contains the sets of mined associations and can be further analyzed using the function-
ality provided for these classes.

There exist many different algorithms which which use an incidence matrix or transaction
ID list representation as input and solve the frequent and closed frequent itemset problems.
Each algorithm has specific strengths which can be important for very large databases. Such
algorithms, e.g. kDCI, LCM, FP-Growth or Patricia, are discussed in Goethals and Zaki
(2003). The source code of most algorithms is available on the internet and, if a special

3Christian Borgelt provides the source code for Apriori and Eclat at http://www.borgelt.net/fpm.html.

http://www.borgelt.net/fpm.html

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 11

algorithm is needed, interfacing the algorithms for arules is straightforward. The necessary
steps are:

1. Adding interface code to the algorithm, preferably by directly calling into the native
implementation language (rather than using files for communication), and an R function
calling this interface.

2. Implementing extensions for ASparameter and AScontrol.

4. Auxiliary functions

In arules several helpful functions are implemented for support counting, rule induction,
sampling, etc. In the following we will discuss some of these functions.

4.1. Counting support for itemsets

Normally, itemset support is counted during mining the database with a given minimum
support constraint. During this process all frequent itemsets plus some infrequent candidate
itemsets are counted (or support is determined by other means). Especially for databases
with many items and for low minimum support values, this procedure can be extremely time
consuming since in the worst case, the number of frequent itemsets grows exponentially in
the number of items.

If only the support information for a single or a few itemsets is needed, we might not want
to mine the database for all frequent itemsets. We also do not know in advance how high
(or low) to set the minimum support to still get the support information for the itemsets in
question. For this problem, arules contains support() which determines the support for a
set of given sets of items (as an itemMatrix).

For counting, we use a prefix tree (Knuth 1997) to organize the counters. The used prefix
tree is similar to the itemset tree described by Borgelt and Kruse (2002). However, we do not
generate the tree level-wise, but we first generate a prefix tree which only contains the nodes
necessary to hold the counters for all itemsets which need to be counted. Using the nodes
in this tree only, we count the itemsets for each transaction recursively. After counting, the
support for each itemset is contained in the node with the prefix equal to the itemset. The
exact procedure is described in Hahsler, Buchta, and Hornik (2008).

In addition to determining the support of a few itemsets without mining all frequent itemsets,
support() is also useful for finding the support of infrequent itemsets with a support so low
that mining is infeasible due to combinatorial explosion.

4.2. Rule induction

For convenience we introduce X = {X1, X2, . . . , Xl} for sets of itemsets with length l. Anal-
ogously, we write R for sets of rules. A part of the association rule mining problem is the
generation (or induction) of a set of rules R from a set of frequent itemsets X . The imple-
mentation of the Apriori algorithm used in arules already contains a rule induction engine
and by default returns the set of association rules of the form X ⇒ Y which satisfy given

12 Introduction to arules

minimum support and minimum confidence. Following the definition of Agrawal et al. (1993)
Y is restricted to single items.

In some cases it is necessary to separate mining itemsets and generating rules from itemsets.
For example, only rules stemming from a subset of all frequent itemsets might be of interest to
the user. The Apriori implementation efficiently generates rules by reusing the data structures
built during mining the frequent itemsets. However, if Apriori is used to return only itemsets
or Eclat or some other algorithm is used to mine itemsets, the data structure needed for rule
induction is no longer available for computing rule confidence.

If rules need to be induced from an arbitrary set of itemsets, support values required to
calculate confidence are typically missing. For example, if all available information is an
itemset containing five items and we want to induce rules, we need the support of the itemset
(which we might know), but also the support of all subsets of length four. The missing
support information has to be counted from the database. Finally, to induce rules efficiently
for a given set of itemsets, we also have to store support values in a suitable data structure
which allows fast look-ups for calculating rule confidence.

Function ruleInduction() provided in arules uses a prefix tree to induce rules for a given
confidence from an arbitrary set of itemsets X in the following way:

1. Count the support values for each itemset X ∈ X and the subsets {X \ {x} : x ∈ X}
needed for rule generation in a single pass over the database and store them in a suitable
data structure.

2. Populate set R by selectively generating only rules for the itemsets in X using the
support information from the data structure created in step 1.

Efficient support counting is done as described in Section 4.1 above. After counting, all
necessary support counts are contained in the prefix tree. We can retrieve the needed sup-
port values and generating the rules is straight forward. The exact procedure is described
in Hahsler et al. (2008).

4.3. Sampling from transactions

Taking samples from large databases for mining is a powerful technique which is especially
useful if the original database does not fit into main memory, but the sample does. However,
even if the database fits into main memory, sampling can provide an enormous speed-up for
mining at the cost of only little degradation of accuracy.

Mannila, Toivonen, and Verkamo (1994) proposed sampling with replacement for association
rule mining and quantify the estimation error due to sampling. Using Chernov bounds on
the binomial distribution (the number of transactions which contains a given itemset in a
sample), the authors argue that in theory even relatively small samples should provide good
estimates for support.

Zaki, Parthasarathy, Li, and Ogihara (1997a) built upon the theoretic work by Mannila et al.
(1994) and show that for an itemset X with support τ = supp(X) and for an acceptable
relative error of support ǫ (an accuracy of 1− ǫ) at a given confidence level 1− c, the needed
sample size n can be computed by

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 13

n =
−2ln(c)

τǫ2
. (1)

Depending on its support, for each itemset a different sample size is appropriate. As a
heuristic, the authors suggest to use the user specified minimum support threshold for τ .
This means that for itemsets close to minimum support, the given error and confidence level
hold while for more frequent itemsets the error rate will be less. However, with this heuristic
the error rate for itemsets below minimum support can exceed ǫ at the given confidence level
and thus some infrequent itemsets might appear as frequent ones in the sample.

Zaki et al. (1997a) also evaluated sampling in practice on several data sets and conclude that
sampling not only speeds mining up considerably, but also the errors are considerably smaller
than those given by the Chernov bounds and thus samples with size smaller than obtained
by Equation 1 are often sufficient.

Another way to obtain the required sample size for association rule mining is progressive sam-
pling (Parthasarathy 2002). This approach starts with a small sample and uses progressively
larger samples until model accuracy does not improve significantly anymore. Parthasarathy
(2002) defines a proxy for model accuracy improvement by using a similarity measure between
two sets of associations. The idea is that since larger samples will produce more accurate re-
sults, the similarity between two sets of associations of two consecutive samples is low if
accuracy improvements are high and increases with decreasing accuracy improvements. Thus
increasing sample size can be stopped if the similarity between consecutive samples reaches a
“plateau.”

Toivonen (1996) presents an application of sampling to reduce the needed I/O overhead for
very large databases which do not fit into main memory. The idea is to use a random
sample from the data base to mine frequent itemsets at a support threshold below the set
minimum support. The support of these itemsets is then counted in the whole database and
the infrequent itemsets are discarded. If the support threshold to mine the sample is picked
low enough, almost all frequent itemsets and their support will be found in one pass over the
large database.

In arules sampling is implemented by sample() which provides all capabilities of the standard
sampling function in R (e.g., sampling with or without replacement and probability weights).

4.4. Generating synthetic transaction data

Synthetic data can be used to evaluate and compare different mining algorithms and to study
the behavior of measures of interestingness.

In arules the function random.transactions() can be used to create synthetic transaction
data. Currently there are two methods available. The first method reimplements the well
known generator for transaction data for mining association rules developed by Agrawal and
Srikant (1994). The second method implements a simple probabilistic model where each
transaction is the result of one independent Bernoulli trial for each item (see (Hahsler, Hornik,
and Reutterer 2005b)).

4.5. Sub-, super-, maximal and closed itemsets

For some calculations it is necessary to find all sub- or supersets for a specific itemset in a

14 Introduction to arules

set of itemsets. This functionality is implemented as is.subset() and is.superset(). For
example, is.subset(x, y, proper = TRUE), finds all proper subsets of the itemsets in x in
the set y. The result is a logical matrix with length(x) rows and length(y) columns. Each
logical row vector represents which elements in y are subsets of the corresponding element in
x. If y is omitted, the sub- or superset structure within the set x is returned.

Similar methods, is.maximal() and is.closed(), can be used to find all maximal itemsets
or closed itemsets in a set. An itemset is maximal in a set if no proper superset of the itemset
is contained in the set (Zaki et al. 1997b). An itemset is closed, if it is its own closure (i.e.,
for an items no superset with the same support exits) (Pasquier et al. 1999).

Note that these methods can be extremely slow and have high memory usage if the set contains
many itemsets.

4.6. Additional measures of interestingness

arules provides interestMeasure() which can be used to calculate a broad variety of interest
measures for itemsets and rules. To speed up the calculation, we try to reuse the quality
information available from the sets of itemsets or rules (i.e., support, confidence, lift) and,
only if necessary, missing information is obtained from the transactions used to mine the
associations.

For example, available measures for itemsets are:

❼ All-confidence (Omiecinski 2003)

❼ Cross-support ratio (Xiong, Tan, and Kumar 2003)

❼ Support

For rules the following measures are implemented:

❼ Chi square measure (Liu, Hsu, and Ma 1999)

❼ Conviction (Brin et al. 1997)

❼ Confidence

❼ Difference of Confidence (DOC) (Hofmann and Wilhelm 2001)

❼ Hyper-lift and hyper-confidence (Hahsler and Hornik 2007b)

❼ Leverage (Piatetsky-Shapiro 1991)

❼ Lift

❼ Improvement (Bayardo, Agrawal, and Gunopulos 2000)

❼ Support

❼ Several measures from Tan, Kumar, and Srivastava (2004) (e.g., cosine, Gini index,
φ-coefficient, odds ratio)

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 15

4.7. Distance based clustering transactions and associations

To allow for distance based clustering (Gupta, Strehl, and Ghosh 1999), arules provides
dissimilarity() which can be used to calculate dissimilarities and cross-dissimilarities be-
tween transactions or associations (i.e., itemsets and rules). Currently, the following standard
measures for binary data are available: Jaccard coefficient, simple matching coefficient and
dice coefficient. Additionally, dissimilarity between transactions can be calculated based on
affinities between items (Aggarwal, Procopiuc, and Yu 2002).

The result of dissimilarity() is either a dist object, which can be directly used by
most clustering methods in R (e.g., hclust for hierarchical clustering), or an object of class
ar_cross_dissimilarity.

Since the number of transactions or associations in often too large to efficiently calculate a
dissimilarity matrix and apply a clustering algorithm, sample() can be used to cluster only a
subset of transactions (associations). To assign the remaining transactions (associations) to
clusters, predict() implements the nearest neighbor approach for predicting memberships
for new data.

A small example can be found in Hahsler and Hornik (2007a).

5. Examples

5.1. Example 1: Analyzing and preparing a transaction data set

In this example, we show how a data set can be analyzed and manipulated before associations
are mined. This is important for finding problems in the data set which could make the mined
associations useless or at least inferior to associations mined on a properly prepared data set.
For the example, we look at the Epub transaction data contained in package arules. This
data set contains downloads of documents from the Electronic Publication platform of the
Vienna University of Economics and Business available via http://epub.wu-wien.ac.at

from January 2003 to December 2008.

First, we load arules and the data set.

> library("arules")

> data("Epub")

> Epub

transactions in sparse format with

15729 transactions (rows) and

936 items (columns)

We see that the data set consists of 15729 transactions and is represented as a sparse matrix
with 15729 rows and 936 columns which represent the items. Next, we use the summary() to
get more information about the data set.

> summary(Epub)

http://epub.wu-wien.ac.at

16 Introduction to arules

transactions as itemMatrix in sparse format with

15729 rows (elements/itemsets/transactions) and

936 columns (items) and a density of 0.001758755

most frequent items:

doc_11d doc_813 doc_4c6 doc_955 doc_698 (Other)

356 329 288 282 245 24393

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 10 11 12

11615 2189 854 409 198 121 93 50 42 34 26 12

13 14 15 16 17 18 19 20 21 22 23 24

10 10 6 8 6 5 8 2 2 3 2 3

25 26 27 28 30 34 36 38 41 43 52 58

4 5 1 1 1 2 1 2 1 1 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 1.000 1.646 2.000 58.000

includes extended item information - examples:

labels

1 doc_11d

2 doc_13d

3 doc_14c

includes extended transaction information - examples:

transactionID TimeStamp

10792 session_4795 2003-01-01 19:59:00

10793 session_4797 2003-01-02 06:46:01

10794 session_479a 2003-01-02 09:50:38

summary() displays the most frequent items in the data set, information about the transaction
length distribution and that the data set contains some extended transaction information.
We see that the data set contains transaction IDs and in addition time stamps (using class
POSIXct) for the transactions. This additional information can be used for analyzing the data
set.

> year <- strftime(as.POSIXlt(transactionInfo(Epub)[["TimeStamp"]]), "%Y")

> table(year)

year

2003 2004 2005 2006 2007 2008

987 1375 1611 3015 4050 4691

For 2003, the first year in the data set, we have 987 transactions. We can select the corre-
sponding transactions and inspect the structure using a level-plot (see Figure 5).

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 17

Items (Columns)

Tr
an

sa
ct

io
ns

 (
R

ow
s)

200

400

600

800

200 400 600 800

Figure 5: The Epub data set (year 2003).

> Epub2003 <- Epub[year == "2003"]

> length(Epub2003)

[1] 987

> image(Epub2003)

The plot is a direct visualization of the binary incidence matrix where the the dark dots
represent the ones in the matrix. From the plot we see that the items in the data set are
not evenly distributed. In fact, the mostly white area to the right side suggests, that in the
beginning of 2003 only very few items were available (less than 50) and then during the year
more items were added until it reached a number of around 300 items. Also, we can see that
there are some transactions in the data set which contain a very high number of items (denser
horizontal lines). These transactions need further investigation since they could originate
from data collection problems (e.g., a web robot downloading many documents from the
publication site). To find the very long transactions we can use the size() and select very
long transactions (containing more than 20 items).

> transactionInfo(Epub2003[size(Epub2003) > 20])

transactionID TimeStamp

11092 session_56e2 2003-04-29 12:30:38

11371 session_6308 2003-08-17 17:16:12

18 Introduction to arules

We found three long transactions and printed the corresponding transaction information. Of
course, size can be used in a similar fashion to remove long or short transactions.

Transactions can be inspected using inspect(). Since the long transactions identified above
would result in a very long printout, we will inspect the first 5 transactions in the subset for
2003.

> inspect(Epub2003[1:5])

items transactionID TimeStamp

[1] {doc_154} session_4795 2003-01-01 19:59:00

[2] {doc_3d6} session_4797 2003-01-02 06:46:01

[3] {doc_16f} session_479a 2003-01-02 09:50:38

[4] {doc_11d,doc_1a7,doc_f4} session_47b7 2003-01-02 17:55:50

[5] {doc_83} session_47bb 2003-01-02 20:27:44

Most transactions contain one item. Only transaction 4 contains three items. For further
inspection transactions can be converted into a list with:

> as(Epub2003[1:5], "list")

$session_4795

[1] "doc_154"

$session_4797

[1] "doc_3d6"

$session_479a

[1] "doc_16f"

$session_47b7

[1] "doc_11d" "doc_1a7" "doc_f4"

$session_47bb

[1] "doc_83"

Finally, transaction data in horizontal layout can be converted to transaction ID lists in
vertical layout using coercion.

> EpubTidLists <- as(Epub, "tidLists")

> EpubTidLists

tidLists in sparse format with

936 items/itemsets (rows) and

15729 transactions (columns)

For performance reasons the transaction ID list is also stored in a sparse matrix. To get a
list, coercion to list can be used.

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 19

> as(EpubTidLists[1:3], "list")

$doc_11d

[1] "session_47b7" "session_47c2" "session_47d8"

[4] "session_4855" "session_488d" "session_4898"

[7] "session_489b" "session_489c" "session_48a1"

[10] "session_4897" "session_48a0" "session_489d"

[13] "session_48a5" "session_489a" "session_4896"

[16] "session_48aa" "session_48d0" "session_49de"

[19] "session_4b35" "session_4bac" "session_4c54"

[22] "session_4c9a" "session_4d8c" "session_4de5"

[25] "session_4e89" "session_5071" "session_5134"

[28] "session_51e6" "session_5227" "session_522a"

[31] "session_5265" "session_52e0" "session_52ea"

[34] "session_53e1" "session_5522" "session_558a"

[37] "session_558b" "session_5714" "session_5739"

[40] "session_57c5" "session_5813" "session_5861"

[43] "session_wu48452" "session_5955" "session_595a"

[46] "session_5aaa" "session_5acd" "session_5b5f"

[49] "session_5bfc" "session_5f3d" "session_5f42"

[52] "session_5f69" "session_5fcf" "session_6044"

[55] "session_6053" "session_6081" "session_61b5"

[58] "session_635b" "session_64b4" "session_64e4"

[61] "session_65d2" "session_67d1" "session_6824"

[64] "session_68c4" "session_68f8" "session_6b2c"

[67] "session_6c95" "session_6e19" "session_6eab"

[70] "session_6ff8" "session_718e" "session_71c1"

[73] "session_72d6" "session_7303" "session_73d0"

[76] "session_782d" "session_7856" "session_7864"

[79] "session_7a9b" "session_7b24" "session_7bf9"

[82] "session_7cf2" "session_7d5d" "session_7dae"

[85] "session_819b" "session_8329" "session_834d"

[88] "session_84d7" "session_85b0" "session_861b"

[91] "session_867f" "session_8688" "session_86bb"

[94] "session_86ee" "session_8730" "session_8764"

[97] "session_87a9" "session_880a" "session_8853"

[100] "session_88b0" "session_8986" "session_8a08"

[103] "session_8a73" "session_8a87" "session_8aad"

[106] "session_8ae2" "session_8db4" "session_8e1f"

[109] "session_wu53a42" "session_8fad" "session_8fd3"

[112] "session_9083" "session_90d8" "session_9128"

[115] "session_9145" "session_916e" "session_9170"

[118] "session_919e" "session_91df" "session_9226"

[121] "session_9333" "session_9376" "session_937e"

[124] "session_94d5" "session_9539" "session_9678"

[127] "session_96a0" "session_9745" "session_97b3"

[130] "session_985b" "session_9873" "session_9881"

20 Introduction to arules

[133] "session_9994" "session_9a20" "session_9a2f"

[136] "session_wu54edf" "session_9af9" "session_9b69"

[139] "session_9ba4" "session_9c27" "session_9c99"

[142] "session_9ce8" "session_9de3" "session_9e8a"

[145] "session_9ebc" "session_a051" "session_a16e"

[148] "session_a19f" "session_a229" "session_a24a"

[151] "session_a328" "session_a340" "session_a3ab"

[154] "session_a3ee" "session_a43a" "session_a4b2"

[157] "session_a515" "session_a528" "session_a555"

[160] "session_a5bb" "session_a62d" "session_a77a"

[163] "session_ab9c" "session_abe9" "session_ac0e"

[166] "session_ad30" "session_adc9" "session_af06"

[169] "session_af4a" "session_af8d" "session_b0b7"

[172] "session_b391" "session_b6d3" "session_b807"

[175] "session_b8c7" "session_b91f" "session_bb0b"

[178] "session_bb8a" "session_bc3d" "session_bc40"

[181] "session_bceb" "session_bea7" "session_bf9f"

[184] "session_c359" "session_c3c2" "session_c442"

[187] "session_c62d" "session_c6ba" "session_c936"

[190] "session_ca81" "session_cad3" "session_cbd4"

[193] "session_cbe1" "session_cd63" "session_d14f"

[196] "session_d370" "session_d69f" "session_d815"

[199] "session_d82e" "session_d849" "session_d8b5"

[202] "session_da68" "session_db51" "session_db75"

[205] "session_dbcd" "session_dde2" "session_deac"

[208] "session_dfb7" "session_dfe9" "session_e00a"

[211] "session_e2ad" "session_e3c7" "session_e7d2"

[214] "session_e7e5" "session_e7f2" "session_ea38"

[217] "session_edbc" "session_edf9" "session_edfc"

[220] "session_f0be" "session_f2d9" "session_f2fe"

[223] "session_f39b" "session_f5e9" "session_f650"

[226] "session_f853" "session_f989" "session_fab1"

[229] "session_fcef" "session_fd0e" "session_fe49"

[232] "session_fe4f" "session_ffa0" "session_10057"

[235] "session_1019a" "session_1028a" "session_10499"

[238] "session_10513" "session_105e3" "session_10b03"

[241] "session_10b53" "session_10c0c" "session_10cb2"

[244] "session_10e4d" "session_10e67" "session_10e92"

[247] "session_10fbd" "session_10fcc" "session_114f1"

[250] "session_116fb" "session_11822" "session_1185e"

[253] "session_118d0" "session_11b0d" "session_12182"

[256] "session_121af" "session_121ee" "session_12405"

[259] "session_126db" "session_12825" "session_12896"

[262] "session_12a0b" "session_12c7c" "session_12e21"

[265] "session_1346d" "session_13622" "session_13886"

[268] "session_13d33" "session_140bd" "session_14428"

[271] "session_14b8a" "session_14e58" "session_14fdc"

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 21

[274] "session_1517f" "session_151b2" "session_15549"

[277] "session_155a9" "session_1571b" "session_15b18"

[280] "session_15b99" "session_15d2c" "session_15e0c"

[283] "session_15f75" "session_15fbf" "session_16621"

[286] "session_16691" "session_16f0d" "session_17027"

[289] "session_173fe" "session_17eaf" "session_17ecd"

[292] "session_180dd" "session_18641" "session_187ae"

[295] "session_18a0b" "session_18b18" "session_18db4"

[298] "session_19048" "session_19051" "session_19510"

[301] "session_19788" "session_197ee" "session_19c04"

[304] "session_19c7a" "session_19f0c" "session_1a557"

[307] "session_1ac3c" "session_1b733" "session_1b76a"

[310] "session_1b76b" "session_1ba83" "session_1c0a6"

[313] "session_1c11c" "session_1c304" "session_1c4c3"

[316] "session_1cea1" "session_1cfb9" "session_1db2a"

[319] "session_1db96" "session_1dbea" "session_1dc94"

[322] "session_1e361" "session_1e36e" "session_1e91e"

[325] "session_wu6bf8f" "session_1f3a8" "session_1f56c"

[328] "session_1f61e" "session_1f831" "session_1fced"

[331] "session_1fd39" "session_wu6c9e5" "session_20074"

[334] "session_2019f" "session_201a1" "session_209f9"

[337] "session_20e87" "session_2105b" "session_212a2"

[340] "session_2143b" "session_wu6decf" "session_218ca"

[343] "session_21bea" "session_21bfd" "session_223e1"

[346] "session_2248d" "session_22ae6" "session_2324d"

[349] "session_23636" "session_23912" "session_23a70"

[352] "session_23b0d" "session_23c17" "session_240ea"

[355] "session_24256" "session_24484"

$doc_13d

[1] "session_4809" "session_5dbc" "session_8e0b" "session_cf4b"

[5] "session_d92a" "session_102bb" "session_10e9f" "session_11344"

[9] "session_11ca4" "session_12dc9" "session_155b5" "session_1b563"

[13] "session_1c411" "session_1f384" "session_22e97"

$doc_14c

[1] "session_53fb" "session_564b" "session_5697" "session_56e2"

[5] "session_630b" "session_6e80" "session_6f7c" "session_7c8a"

[9] "session_8903" "session_890c" "session_89d2" "session_907e"

[13] "session_98b4" "session_c268" "session_c302" "session_cb86"

[17] "session_d70a" "session_d854" "session_e4c7" "session_f220"

[21] "session_fd57" "session_fe31" "session_10278" "session_115b0"

[25] "session_11baa" "session_11e26" "session_12185" "session_1414b"

[29] "session_14dba" "session_14e47" "session_15738" "session_15a38"

[33] "session_16305" "session_17b35" "session_19af2" "session_1d074"

[37] "session_1fcc4" "session_2272e" "session_23a3e"

22 Introduction to arules

In this representation each item has an entry which is a vector of all transactions it occurs in.
tidLists can be directly used as input for mining algorithms which use such a vertical database
layout to mine associations.

In the next example, we will see how a data set is created and rules are mined.

5.2. Example 2: Preparing and mining a questionnaire data set

As a second example, we prepare and mine questionnaire data. We use the Adult data
set from the UCI machine learning repository (Asuncion and Newman 2007) provided by
package arules. This data set is similar to the marketing data set used by Hastie et al.
(2001) in their chapter about association rule mining. The data originates from the U.S.
census bureau database and contains 48842 instances with 14 attributes like age, work class,
education, etc. In the original applications of the data, the attributes were used to predict
the income level of individuals. We added the attribute income with levels small and large,
representing an income of ≤ USD 50,000 and > USD 50,000, respectively. This data is
included in arules as the data set AdultUCI.

> data("AdultUCI")

> dim(AdultUCI)

[1] 48842 15

> AdultUCI[1:2,]

age workclass fnlwgt education education-num marital-status

1 39 State-gov 77516 Bachelors 13 Never-married

2 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse

occupation relationship race sex capital-gain capital-loss

1 Adm-clerical Not-in-family White Male 2174 0

2 Exec-managerial Husband White Male 0 0

hours-per-week native-country income

1 40 United-States small

2 13 United-States small

AdultUCI contains a mixture of categorical and metric attributes and needs some preparations
before it can be transformed into transaction data suitable for association mining. First, we
remove the two attributes fnlwgt and education-num. The first attribute is a weight calcu-
lated by the creators of the data set from control data provided by the Population Division
of the U.S. census bureau. The second removed attribute is just a numeric representation of
the attribute education which is also part of the data set.

> AdultUCI[["fnlwgt"]] <- NULL

> AdultUCI[["education-num"]] <- NULL

Next, we need to map the four remaining metric attributes (age, hours-per-week, capital-gain
and capital-loss) to ordinal attributes by building suitable categories. We divide the at-
tributes age and hours-per-week into suitable categories using knowledge about typical age

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 23

groups and working hours. For the two capital related attributes, we create a category called
None for cases which have no gains/losses. Then we further divide the group with gains/losses
at their median into the two categories Low and High.

> AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15,25,45,65,100)),

+ labels = c("Young", "Middle-aged", "Senior", "Old"))

> AdultUCI[["hours-per-week"]] <- ordered(cut(AdultUCI[["hours-per-week"]],

+ c(0,25,40,60,168)),

+ labels = c("Part-time", "Full-time", "Over-time", "Workaholic"))

> AdultUCI[["capital-gain"]] <- ordered(cut(AdultUCI[["capital-gain"]],

+ c(-Inf,0,median(AdultUCI[["capital-gain"]][AdultUCI[["capital-gain"]]>0]),Inf)),

+ labels = c("None", "Low", "High"))

> AdultUCI[["capital-loss"]] <- ordered(cut(AdultUCI[["capital-loss"]],

+ c(-Inf,0,

+ median(AdultUCI[["capital-loss"]][AdultUCI[["capital-loss"]]>0]),Inf)),

+ labels = c("none", "low", "high"))

Now, the data can be automatically recoded as a binary incidence matrix by coercing the
data set to transactions.

> Adult <- as(AdultUCI, "transactions")

> Adult

transactions in sparse format with

48842 transactions (rows) and

115 items (columns)

The remaining 115 categorical attributes were automatically recoded into 115 binary items.
During encoding the item labels were generated in the form of <variable name >=<category

label >. Note that for cases with missing values all items corresponding to the attributes
with the missing values were set to zero.

> summary(Adult)

transactions as itemMatrix in sparse format with

48842 rows (elements/itemsets/transactions) and

115 columns (items) and a density of 0.1089939

most frequent items:

capital-loss=none capital-gain=None

46560 44807

native-country=United-States race=White

43832 41762

workclass=Private (Other)

33906 401333

24 Introduction to arules

element (itemset/transaction) length distribution:

sizes

9 10 11 12 13

19 971 2067 15623 30162

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.00 12.00 13.00 12.53 13.00 13.00

includes extended item information - examples:

labels variables levels

1 age=Young age Young

2 age=Middle-aged age Middle-aged

3 age=Senior age Senior

includes extended transaction information - examples:

transactionID

1 1

2 2

3 3

The summary of the transaction data set gives a rough overview showing the most frequent
items, the length distribution of the transactions and the extended item information which
shows which variable and which value were used to create each binary item. In the first
example we see that the item with label age=Middle-aged was generated by variable age and
level middle-aged.

To see which items are important in the data set we can use the itemFrequencyPlot(). To
reduce the number of items, we only plot the item frequency for items with a support greater
than 10% (using the parameter support). For better readability of the labels, we reduce the
label size with the parameter cex.names. The plot is shown in Figure 6.

> itemFrequencyPlot(Adult, support = 0.1, cex.names=0.8)

Next, we call the function apriori() to find all rules (the default association type for
apriori()) with a minimum support of 1% and a confidence of 0.6.

> rules <- apriori(Adult,

+ parameter = list(support = 0.01, confidence = 0.6))

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen

0.6 0.1 1 none FALSE TRUE 5 0.01 1

maxlen target ext

10 rules FALSE

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 25

ite
m

 fr
eq

ue
nc

y
(r

el
at

iv
e)

0.
0

0.
2

0.
4

0.
6

0.
8

ag
e=

Yo
un

g

ag
e=

M
idd

le−
ag

ed

ag
e=

Sen
ior

wor
kc

las
s=

Priv
at

e

ed
uc

at
ion

=H
S−g

ra
d

ed
uc

at
ion

=S
om

e−
co

lle
ge

ed
uc

at
ion

=B
ac

he
lor

s

m
ar

ita
l−s

ta
tu

s=
Divo

rc
ed

m
ar

ita
l−s

ta
tu

s=
M

ar
rie

d−
civ

−s
po

us
e

m
ar

ita
l−s

ta
tu

s=
Nev

er
−m

ar
rie

d

oc
cu

pa
tio

n=
Adm

−c
ler

ica
l

oc
cu

pa
tio

n=
Cra

ft−
re

pa
ir

oc
cu

pa
tio

n=
Exe

c−
m

an
ag

er
ial

oc
cu

pa
tio

n=
Oth

er
−s

er
vic

e

oc
cu

pa
tio

n=
Pro

f−
sp

ec
ial

ty

oc
cu

pa
tio

n=
Sale

s

re
lat

ion
sh

ip=
Hus

ba
nd

re
lat

ion
sh

ip=
Not

−in
−f

am
ily

re
lat

ion
sh

ip=
Own−

ch
ild

re
lat

ion
sh

ip=
Unm

ar
rie

d

ra
ce

=W
hit

e

se
x=

Fe
m

ale

se
x=

M
ale

ca
pit

al−
ga

in=
Non

e

ca
pit

al−
los

s=
no

ne

ho
ur

s−
pe

r−
wee

k=
Par

t−
tim

e

ho
ur

s−
pe

r−
wee

k=
Full

−t
im

e

ho
ur

s−
pe

r−
wee

k=
Ove

r−
tim

e

na
tiv

e−
co

un
try

=U
nit

ed
−S

ta
te

s

inc
om

e=
sm

all

inc
om

e=
lar

ge

Figure 6: Item frequencies of items in the Adult data set with support greater than 10%.

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 488

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[115 item(s), 48842 transaction(s)] done [0.05s].

sorting and recoding items ... [67 item(s)] done [0.02s].

creating transaction tree ... done [0.05s].

checking subsets of size 1 2 3 4 5 6 7 8 9 10 done [1.61s].

writing ... [276443 rule(s)] done [0.06s].

creating S4 object ... done [0.17s].

> rules

set of 276443 rules

First, the function prints the used parameters. Apart from the specified minimum support
and minimum confidence, all parameters have the default values. It is important to note
that with parameter maxlen, the maximum size of mined frequent itemsets, is by default
restricted to 5. Longer association rules are only mined if maxlen is set to a higher value.
After the parameter settings, the output of the C implementation of the algorithm with timing
information is displayed.

26 Introduction to arules

The result of the mining algorithm is a set of 276443 rules. For an overview of the mined rules
summary() can be used. It shows the number of rules, the most frequent items contained in the
left-hand-side and the right-hand-side and their respective length distributions and summary
statistics for the quality measures returned by the mining algorithm.

> summary(rules)

set of 276443 rules

rule length distribution (lhs + rhs):sizes

1 2 3 4 5 6 7 8 9 10

6 432 4981 22127 52669 75104 67198 38094 13244 2588

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 5.000 6.000 6.289 7.000 10.000

summary of quality measures:

support confidence lift count

Min. :0.01001 Min. :0.6000 Min. : 0.7171 Min. : 489

1st Qu.:0.01253 1st Qu.:0.7691 1st Qu.: 1.0100 1st Qu.: 612

Median :0.01701 Median :0.9051 Median : 1.0554 Median : 831

Mean :0.02679 Mean :0.8600 Mean : 1.3109 Mean : 1308

3rd Qu.:0.02741 3rd Qu.:0.9542 3rd Qu.: 1.2980 3rd Qu.: 1339

Max. :0.95328 Max. :1.0000 Max. :20.6826 Max. :46560

mining info:

data ntransactions support confidence

Adult 48842 0.01 0.6

As typical for association rule mining, the number of rules found is huge. To analyze these
rules, for example, subset() can be used to produce separate subsets of rules for each item
which resulted form the variable income in the right-hand-side of the rule. At the same time
we require that the lift measure exceeds 1.2.

> rulesIncomeSmall <- subset(rules, subset = rhs %in% "income=small" & lift > 1.2)

> rulesIncomeLarge <- subset(rules, subset = rhs %in% "income=large" & lift > 1.2)

We now have a set with rules for persons with a small income and a set for persons with
a large income. For comparison, we inspect for both sets the three rules with the highest
confidence (using head()).

> inspect(head(rulesIncomeSmall, n = 3, by = "confidence"))

lhs rhs support confidence lift count

[1] {workclass=Private,

marital-status=Never-married,

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 27

relationship=Own-child,

sex=Male,

hours-per-week=Part-time,

native-country=United-States} => {income=small} 0.01074895 0.7104195 1.403653 525

[2] {workclass=Private,

marital-status=Never-married,

relationship=Own-child,

sex=Male,

hours-per-week=Part-time} => {income=small} 0.01144507 0.7102922 1.403402 559

[3] {workclass=Private,

marital-status=Never-married,

relationship=Own-child,

sex=Male,

capital-gain=None,

hours-per-week=Part-time,

native-country=United-States} => {income=small} 0.01046231 0.7097222 1.402276 511

> inspect(head(rulesIncomeLarge, n = 3, by = "confidence"))

lhs rhs support confidence lift c

[1] {marital-status=Married-civ-spouse,

capital-gain=High,

native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398

[2] {marital-status=Married-civ-spouse,

capital-gain=High,

capital-loss=none,

native-country=United-States} => {income=large} 0.01562180 0.6849192 4.266398

[3] {relationship=Husband,

race=White,

capital-gain=High,

native-country=United-States} => {income=large} 0.01302158 0.6846071 4.264454

From the rules we see that workers in the private sector working part-time or in the service
industry tend to have a small income while persons with high capital gain who are born in the
US tend to have a large income. This example shows that using subset selection and sorting
a set of mined associations can be analyzed even if it is huge.

Finally, the found rules can be written to disk to be shared with other applications. To save
rules in plain text format the function write() is used. The following command saves a set
of rules as the file named ‘data.csv’ in comma separated value (CSV) format.

> write(rulesIncomeSmall, file = "data.csv", sep = ",", col.names = NA)

Alternatively, with package pmml (Williams 2008) the rules can be saved in PMML (Predictive
Modelling Markup Language), a standardized XML-based representation used my many data
mining tools. Note that pmml requires the package XML which might not be available for all
operating systems.

28 Introduction to arules

> write.PMML(rulesIncomeSmall, file = "data.xml")

The saved data can now be easily shared and used by other applications. Itemsets (with
write() also transactions) can be written to a file in the same way.

5.3. Example 3: Extending arules with a new interest measure

In this example, we show how easy it is to add a new interest measure, using all-confidence
as introduced by Omiecinski (2003). The all-confidence of an itemset X is defined as

all-confidence(X) =
supp(X)

maxI⊂Xsupp(I)
(2)

This measure has the property conf(I ⇒ X\I) ≥ all-confidence(X) for all I ⊂ X. This means
that all possible rules generated from itemset X must at least have a confidence given by the
itemset’s all-confidence value. Omiecinski (2003) shows that the support in the denominator
of equation 2 must stem from a single item and thus can be simplified to maxi∈X supp({i}).

To obtain an itemset to calculate all-confidence for, we mine frequent itemsets from the
previously used Adult data set using the Eclat algorithm.

> data("Adult")

> fsets <- eclat(Adult, parameter = list(support = 0.05),

+ control = list(verbose=FALSE))

For the denominator of all-confidence we need to find all mined single items and their corre-
sponding support values. In the following we create a named vector where the names are the
column numbers of the items and the values are their support.

> singleItems <- fsets[size(items(fsets)) == 1]

> ## Get the col numbers we have support for

> singleSupport <- quality(singleItems)$support

> names(singleSupport) <- unlist(LIST(items(singleItems),

+ decode = FALSE))

> head(singleSupport, n = 5)

66 63 111 60 8

0.9532779 0.9173867 0.8974243 0.8550428 0.6941976

Next, we can calculate the all-confidence using Equation 2 for all itemsets. The single item
support needed for the denomination is looked up from the named vector singleSupport and
the resulting measure is added to the set’s quality data frame.

> itemsetList <- LIST(items(fsets), decode = FALSE)

> allConfidence <- quality(fsets)$support /

+ sapply(itemsetList, function(x)

+ max(singleSupport[as.character(x)]))

> quality(fsets) <- cbind(quality(fsets), allConfidence)

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 29

The new quality measure is now part of the set of itemsets.

> summary(fsets)

set of 8496 itemsets

most frequent items:

capital-loss=None native-country=United-States

4082 3973

capital-gain=None race=White

3962 3781

workclass=Private (Other)

3142 21931

element (itemset/transaction) length distribution:sizes

1 2 3 4 5 6 7 8 9 10

36 303 1078 2103 2388 1689 706 171 21 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.000 5.000 4.811 6.000 10.000

summary of quality measures:

support count allConfidence

Min. :0.05002 Min. : 2443 Min. :0.05247

1st Qu.:0.06038 1st Qu.: 2949 1st Qu.:0.06597

Median :0.07546 Median : 3686 Median :0.08428

Mean :0.10124 Mean : 4945 Mean :0.11667

3rd Qu.:0.11279 3rd Qu.: 5509 3rd Qu.:0.12711

Max. :0.95328 Max. :46560 Max. :1.00000

includes transaction ID lists: FALSE

mining info:

data ntransactions support

Adult 48842 0.05

It can be used to manipulate the set. For example, we can look at the itemsets which contain
an item related to education (using partial match with %pin%) and sort them by all-confidence
(we filter itemsets of length 1 first, since they have per definition an all-confidence of 1).

> fsetsEducation <- subset(fsets, subset = items %pin% "education")

> inspect(sort(fsetsEducation[size(fsetsEducation)>1],

+ by = "allConfidence")[1 : 3])

items support count

[1] {education=HS-grad,hours-per-week=Full-time} 0.2090209 10209

[2] {education=HS-grad,income=small} 0.1807051 8826

30 Introduction to arules

[3] {workclass=Private,education=HS-grad} 0.2391794 11682

allConfidence

[1] 0.3572453

[2] 0.3570388

[3] 0.3445408

The resulting itemsets show that the item high school graduate (but no higher education) is
highly associated with working full-time, a small income and working in the private sector.
All-confidence is along with many other measures of interestingness already implemented in
arules as the function interestMeasure().

5.4. Example 4: Sampling

In this example, we show how sampling can be used in arules. We use again the Adult data
set.

> data("Adult")

> Adult

transactions in sparse format with

48842 transactions (rows) and

115 items (columns)

To calculate a reasonable sample size n, we use the formula developed by Zaki et al. (1997a)
and presented in Section 4.3. We choose a minimum support of 5%. As an acceptable error
rate for support ǫ we choose 10% and as the confidence level (1− c) we choose 90%.

> supp <- 0.05

> epsilon <- 0.1

> c <- 0.1

> n <- -2 * log(c)/ (supp * epsilon^2)

> n

[1] 9210.34

The resulting sample size is considerably smaller than the size of the original database. With
sample() we produce a sample of size n with replacement from the database.

> AdultSample <- sample(Adult, n, replace = TRUE)

The sample can be compared with the database (the population) using an item frequency
plot. The item frequencies in the sample are displayed as bars and the item frequencies in
the original database are represented by the line. For better readability of the labels, we only
display frequent items in the plot and reduce the label size with the parameter cex.names.
The plot is shown in Figure 7.

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 31

ite
m

 fr
eq

ue
nc

y
(r

el
at

iv
e)

0.
0

0.
2

0.
4

0.
6

0.
8

ag
e=

Yo
un

g

ag
e=

M
idd

le−
ag

ed

ag
e=

Sen
ior

wor
kc

las
s=

Lo
ca

l−g
ov

wor
kc

las
s=

Priv
at

e

wor
kc

las
s=

Self
−e

m
p−

no
t−

inc

ed
uc

at
ion

=H
S−g

ra
d

ed
uc

at
ion

=S
om

e−
co

lle
ge

ed
uc

at
ion

=B
ac

he
lor

s

ed
uc

at
ion

=M
as

te
rs

m
ar

ita
l−s

ta
tu

s=
Divo

rc
ed

m
ar

ita
l−s

ta
tu

s=
M

ar
rie

d−
civ

−s
po

us
e

m
ar

ita
l−s

ta
tu

s=
Nev

er
−m

ar
rie

d

oc
cu

pa
tio

n=
Adm

−c
ler

ica
l

oc
cu

pa
tio

n=
Cra

ft−
re

pa
ir

oc
cu

pa
tio

n=
Exe

c−
m

an
ag

er
ial

oc
cu

pa
tio

n=
M

ac
hin

e−
op

−in
sp

ct

oc
cu

pa
tio

n=
Oth

er
−s

er
vic

e

oc
cu

pa
tio

n=
Pro

f−
sp

ec
ial

ty

oc
cu

pa
tio

n=
Sale

s

re
lat

ion
sh

ip=
Hus

ba
nd

re
lat

ion
sh

ip=
Not

−in
−f

am
ily

re
lat

ion
sh

ip=
Own−

ch
ild

re
lat

ion
sh

ip=
Unm

ar
rie

d

ra
ce

=B
lac

k

ra
ce

=W
hit

e

se
x=

Fe
m

ale

se
x=

M
ale

ca
pit

al−
ga

in=
Non

e

ca
pit

al−
los

s=
Non

e

ho
ur

s−
pe

r−
wee

k=
Par

t−
tim

e

ho
ur

s−
pe

r−
wee

k=
Full

−t
im

e

ho
ur

s−
pe

r−
wee

k=
Ove

r−
tim

e

na
tiv

e−
co

un
try

=U
nit

ed
−S

ta
te

s

inc
om

e=
sm

all

inc
om

e=
lar

ge

Figure 7: Item frequencies in a sample of the Adult data set (bars) compared to the complete
data set (line).

> itemFrequencyPlot(AdultSample, population = Adult, support = supp,

+ cex.names = 0.7)

Alternatively, a sample can be compared with the population using the lift ratio (with lift

= TRUE). The lift ratio for each item i is P (i|sample)/P (i|population) where the probabilities
are estimated by the item frequencies. A lift ratio of one indicates that the items occur in the
sample in the same proportion as in the population. A lift ratio greater than one indicates
that the item is over-represented in the sample and vice versa. With this plot, large relative
deviations for less frequent items can be identified visually (see Figure 8).

> itemFrequencyPlot(AdultSample, population = Adult,

+ support = supp, lift = TRUE,

+ cex.names = 0.9)

To compare the speed-up reached by sampling we use the Eclat algorithm to mine frequent
itemsets on both, the database and the sample and compare the system time (in seconds)
used for mining.

> time <- system.time(itemsets <- eclat(Adult,

+ parameter = list(support = supp), control = list(verbose = FALSE)))

> time

user system elapsed

0.336 0.000 0.336

32 Introduction to arules

ag
e=

Yo
un

g
ag

e=
M

id
dl

e−
ag

ed
ag

e=
S

en
io

r
w

or
kc

la
ss

=
Lo

ca
l−

go
v

w
or

kc
la

ss
=

P
riv

at
e

w
or

kc
la

ss
=

S
el

f−
em

p−
no

t−
in

c
ed

uc
at

io
n=

H
S

−
gr

ad
ed

uc
at

io
n=

S
om

e−
co

lle
ge

ed
uc

at
io

n=
B

ac
he

lo
rs

ed
uc

at
io

n=
M

as
te

rs
m

ar
ita

l−
st

at
us

=
D

iv
or

ce
d

m
ar

ita
l−

st
at

us
=

M
ar

rie
d−

ci
v−

sp
ou

se
m

ar
ita

l−
st

at
us

=
N

ev
er

−
m

ar
rie

d
oc

cu
pa

tio
n=

A
dm

−
cl

er
ic

al
oc

cu
pa

tio
n=

C
ra

ft−
re

pa
ir

oc
cu

pa
tio

n=
E

xe
c−

m
an

ag
er

ia
l

oc
cu

pa
tio

n=
M

ac
hi

ne
−

op
−

in
sp

ct
oc

cu
pa

tio
n=

O
th

er
−

se
rv

ic
e

oc
cu

pa
tio

n=
P

ro
f−

sp
ec

ia
lty

oc
cu

pa
tio

n=
S

al
es

re
la

tio
ns

hi
p=

H
us

ba
nd

re
la

tio
ns

hi
p=

N
ot

−
in

−
fa

m
ily

re
la

tio
ns

hi
p=

O
w

n−
ch

ild
re

la
tio

ns
hi

p=
U

nm
ar

rie
d

ra
ce

=
B

la
ck

ra
ce

=
W

hi
te

se
x=

F
em

al
e

se
x=

M
al

e
ca

pi
ta

l−
ga

in
=

N
on

e
ca

pi
ta

l−
lo

ss
=

N
on

e
ho

ur
s−

pe
r−

w
ee

k=
P

ar
t−

tim
e

ho
ur

s−
pe

r−
w

ee
k=

F
ul

l−
tim

e
ho

ur
s−

pe
r−

w
ee

k=
O

ve
r−

tim
e

na
tiv

e−
co

un
tr

y=
U

ni
te

d−
S

ta
te

s
in

co
m

e=
sm

al
l

in
co

m
e=

la
rg

e

lif
t r

at
io

0.96

0.98

1.00

1.02

1.04

Figure 8: Deviations of the item frequencies in the sample from the complete Adult data set.

> timeSample <- system.time(itemsetsSample <- eclat(AdultSample,

+ parameter = list(support = supp), control = list(verbose = FALSE)))

> timeSample

user system elapsed

0.060 0.004 0.064

The first element of the vector returned by system.time() gives the (user) CPU time needed
for the execution of the statement in its argument. Therefore, mining the sample instead of
the whole data base results in a speed-up factor of:

> # speed up

> time[1] / timeSample[1]

user.self

5.6

To evaluate the accuracy for the itemsets mined from the sample, we analyze the difference
between the two sets.

> itemsets

set of 8496 itemsets

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 33

> itemsetsSample

set of 8566 itemsets

The two sets have roughly the same size. To check if the sets contain similar itemsets, we
match the sets and see what fraction of frequent itemsets found in the database were also
found in the sample.

> match <- match(itemsets, itemsetsSample, nomatch = 0)

> ## remove no matches

> sum(match > 0) / length(itemsets)

[1] 0.9735169

Almost all frequent itemsets were found using the sample. The summaries of the support
of the frequent itemsets which were not found in the sample and the itemsets which were
frequent in the sample although they were infrequent in the database, respectively, give:

> summary(quality(itemsets[match == 0])$support)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05004 0.05047 0.05098 0.05128 0.05174 0.05604

> summary(quality(itemsetsSample[-match])$support)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05005 0.05049 0.05114 0.05152 0.05223 0.05624

This shows that only itemsets with support very close to the minimum support were falsely
missed or found.

For the frequent itemsets which were found in the database and in the sample, we can calculate
accuracy from the the error rate.

> supportItemsets <- quality(itemsets[which(match > 0)])$support

> supportSample <- quality(itemsetsSample[match])$support

> accuracy <- 1 - abs(supportSample - supportItemsets) / supportItemsets

> summary(accuracy)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8502 0.9642 0.9795 0.9742 0.9904 1.0000

The summary shows that sampling resulted in finding the support of itemsets with high
accuracy. This small example illustrates that for extremely large databases or for application
where mining time is important, sampling can be a powerful technique.

34 Introduction to arules

6. Summary and outlook

With package arules we provide the basic infrastructure which enables us to mine associations
and analyze and manipulate the results. Previously, in R there was no such infrastructure
available. The main features of arules are:

❼ Efficient implementation using sparse matrices.

❼ Simple and intuitive interface to manipulate and analyze transaction data, sets of item-
sets and rules with subset selection and sorting.

❼ Interface to two fast mining algorithms.

❼ Flexibility in terms of adding new quality measures, and additional item and transac-
tion descriptions which can be used for selecting transactions and analyzing resulting
associations.

❼ Extensible data structure to allow for easy implementation of new types of associations
and interfacing new algorithms.

There are several interesting possibilities to extend arules. For example, it would be very
useful to interface algorithms which use statistical measures to find “interesting” itemsets
(which are not necessarily frequent itemsets as used in an association rule context). Such
algorithms include implementations of the χ2-test based algorithm by Silverstein, Brin, and
Motwani (1998) or the baseline frequency approach by DuMouchel and Pregibon (2001). Also,
the implementation of distance based clustering in arules could be used for visualization of
associations (see e.g., Strehl and Ghosh 2003).

Acknowledgments

Part of arules was developed during the project “Statistical Computing with R” funded by of
the “Jubiläumsstiftung der WU Wien.” The authors of arules would like to thank Christian
Borgelt for the implementation of Apriori and Eclat.

References

Aggarwal CC, Procopiuc CM, Yu PS (2002). “Finding Localized Associations in Market
Basket Data.” Knowledge and Data Engineering, 14(1), 51–62.

Agrawal R, Imielinski T, Swami A (1993). “Mining Association Rules between Sets of Items
in Large Databases.” In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, pp. 207–216. ACM Press. URL http://doi.acm.org/10.1145/

170035.170072.

Agrawal R, Srikant R (1994). “Fast Algorithms for Mining Association Rules.” In JB Bocca,
M Jarke, C Zaniolo (eds.), Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–
499. Morgan Kaufmann.

http://doi.acm.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 35

Asuncion A, Newman DJ (2007). UCI Repository of Machine Learning Databases. University
of California, Irvine, Deptartment of Information and Computer Sciences. URL http:

//www.ics.uci.edu/~mlearn/MLRepository.html.

Bates D, Maechler M (2005). Matrix: A Matrix Package for R. R package version 0.95-5.

Bayardo R, Agrawal R, Gunopulos D (2000). “Constraint-based rule mining in large, dense
databases.” Data Mining and Knowledge Discovery, 4(2/3), 217–240.

Berry MJA, Linoff GS (1997). Data Mining Techniques for Marketing, Sales and Customer
Support. Wiley Computer Publishing.

Borgelt C (2003). “Efficient Implementations of Apriori and Eclat.” In FIMI’03: Proceedings
of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.

Borgelt C (2004). Finding Association Rules/Hyperedges with the Apriori Algorithm. Work-
ing Group Neural Networks and Fuzzy Systems, Otto-von-Guericke-University of Magde-
burg, Universitätsplatz 2, D-39106 Magdeburg, Germany. URL http://fuzzy.cs.

uni-magdeburg.de/~borgelt/apriori.html.

Borgelt C, Kruse R (2002). “Induction of Association Rules: Apriori Implementation.” In
Proc. 15th Conf. on Computational Statistics (Compstat 2002, Berlin, Germany). Physika
Verlag, Heidelberg, Germany.

Brin S, Motwani R, Ullman JD, Tsur S (1997). “Dynamic Itemset Counting and Implication
Rules for Market Basket Data.” In SIGMOD 1997, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 255–264. Tucson, Arizona, USA.

DuMouchel W, Pregibon D (2001). “Empirical Bayes Screening for Multi-Item Associations.”
In F Provost, R Srikant (eds.), Proceedings of the ACM SIGKDD Intentional Conference
on Knowledge Discovery in Databases & Data Mining (KDD01), pp. 67–76. ACM Press.

Fowler M (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language.
third edition. Addison-Wesley Professional.

Goethals B, Zaki MJ (eds.) (2003). FIMI’03: Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations. Sun SITE Central Europe (CEUR).

Goethals B, Zaki MJ (2004). “Advances in Frequent Itemset Mining Implementations: Report
on FIMI’03.” SIGKDD Explorations, 6(1), 109–117.

Gupta GK, Strehl A, Ghosh J (1999). “Distance Based Clustering of Association Rules.” In
Proc. ANNIE 1999, St. Louis, volume 9, pp. 759–764. ASME. ISBN 0-7918-0098-9.

Hahsler M, Buchta C, Hornik K (2008). “Selective Association Rule Generation.” Computa-
tional Statistics, 23(2), 303–315. ISSN ISSN 0943-4062.

Hahsler M, Grün B, Hornik K (2005a). “arules – A Computational Environment for Mining
Association Rules and Frequent Item Sets.” Journal of Statistical Software, 14(15), 1–25.
ISSN 1548-7660. URL http://www.jstatsoft.org/v14/i15/.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
http://www.jstatsoft.org/v14/i15/

36 Introduction to arules

Hahsler M, Hornik K (2007a). “Building on the arules Infrastructure for Analyzing Transaction
Data with R.” In R Decker, HJ Lenz (eds.), Advances in Data Analysis, Proceedings of the
30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin,
March 8–10, 2006, Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 449–456. Springer-Verlag.

Hahsler M, Hornik K (2007b). “New Probabilistic Interest Measures for Association Rules.”
Intelligent Data Analysis, 11(5), 437–455. ISSN 1088-467X.

Hahsler M, Hornik K, Reutterer T (2005b). “Implications of Probabilistic Data Model-
ing for Rule Mining.” Technical Report 14, Department of Statistics and Mathematics,
Wirschaftsuniversität Wien, Augasse 2-6, 1090 Wien. URL http://epub.wu-wien.ac.

at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_7f0.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning (Data
Mining, Inference and Prediction). Springer Verlag.

Hipp J, Güntzer U, Nakhaeizadeh G (2000). “Algorithms for Association Rule Mining – A
General Survey and Comparison.” SIGKDD Explorations, 2(2), 1–58.

Hofmann H, Wilhelm A (2001). “Visual comparison of association rules.” Computational
Statistics, 16(3), 399–415. ISSN ISSN 0943-4062.

Knuth D (1997). The Art of Computer Programming, Sorting and Searching, volume 3,
chapter Digital Searching, pp. 492–512. third edition.

Liu B, Hsu W, Ma Y (1999). “Pruning and summarizing the discovered associations.” In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD-99), pp. 125–134. ACM Press.

Mannila H, Toivonen H, Verkamo AI (1994). “Efficient algorithms for discovering association
rules.” In UM Fayyad, R Uthurusamy (eds.), AAAI Workshop on Knowledge Discovery in
Databases (KDD-94), pp. 181–192. AAAI Press, Seattle, Washington.

Omiecinski ER (2003). “Alternative Interest Measures for Mining Associations in Databases.”
IEEE Transactions on Knowledge and Data Engineering, 15(1), 57–69.

Parthasarathy S (2002). “Efficient Progressive Sampling for Association Rules.” In Proceedings
of the 2002 IEEE International Conference on Data Mining (ICDM’02), pp. 354–361. IEEE
Computer Society.

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999). “Discovering Frequent Closed Itemsets for
Association Rules.” In Proceeding of the 7th International Conference on Database Theory,
Lecture Notes In Computer Science (LNCS 1540), pp. 398–416. Springer.

Piatetsky-Shapiro G (1991). “Discovery, Analysis, and Presentation of Strong Rules.” In
G Piatetsky-Shapiro, WJ Frawley (eds.), Knowledge Discovery in Databases. AAAI/MIT
Press, Cambridge, MA.

R Development Core Team (2005). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_7f0
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_7f0
http://www.R-project.org

Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta 37

Silverstein C, Brin S, Motwani R (1998). “Beyond Market Baskets: Generalizing Association
Rules to Dependence Rules.” Data Mining and Knowledge Discovery, 2, 39–68.

Srikant R, Agrawal R (1996). “Mining Quantitative Association Rules in Large Relational
Tables.” In HV Jagadish, IS Mumick (eds.), Int. Conf. on Management of Data, SIGMOD,
pp. 1–12. ACM Press.

Strehl A, Ghosh J (2003). “Relationship-Based Clustering and Visualization for High-
Dimensional Data Mining.” INFORMS Journal on Computing, 15(2), 208–230.

Tan PN, Kumar V, Srivastava J (2004). “Selecting the right objective measure for association
analysis.” Information Systems, 29(4), 293–313.

Toivonen H (1996). “Sampling Large Databases for Association Rules.” In Proceedings of the
22th International Conference on Very Large Data Bases, pp. 134–145. Morgan Kaufmann
Publishers Inc.

Williams G (2008). pmml: Generate PMML for various models. R package version 1.1.7.

Xiong H, Tan PN, Kumar V (2003). “Mining Strong Affinity Association Patterns in Data
Sets with Skewed Support Distribution.” In B Goethals, MJ Zaki (eds.), Proceedings of
the IEEE International Conference on Data Mining, November 19–22, 2003, Melbourne,
Florida, pp. 387–394.

Zaki MJ (2000). “Scalable Algorithms for Association Mining.” IEEE Transactions on Knowl-
edge and Data Engineering, 12(3), 372–390.

Zaki MJ (2004). “Mining Non-Redundant Association Rules.” Data Mining and Knowledge
Discovery, 9, 223–248.

Zaki MJ, Parthasarathy S, Li W, Ogihara M (1997a). “Evaluation of Sampling for Data Mining
of Association Rules.” In Proceedings of the 7th International Workshop on Research Issues
in Data Engineering (RIDE ’97) High Performance Database Management for Large-Scale
Applications, pp. 42–50. IEEE Computer Society.

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997b). “New Algorithms for Fast Discovery
of Association Rules.” Technical Report 651, Computer Science Department, University of
Rochester, Rochester, NY 14627.

Affiliation:

Michael Hahsler
Engineering Management, Information, and Systems
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu
URL: http://lyle.smu.edu/~mhahsler

mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler

	Introduction
	Data structure overview
	Representing collections of itemsets
	Transaction data
	Associations: itemsets and sets of rules

	Mining algorithm interfaces
	Auxiliary functions
	Counting support for itemsets
	Rule induction
	Sampling from transactions
	Generating synthetic transaction data
	Sub-, super-, maximal and closed itemsets
	Additional measures of interestingness
	Distance based clustering transactions and associations

	Examples
	Example 1: Analyzing and preparing a transaction data set
	Example 2: Preparing and mining a questionnaire data set
	Example 3: Extending arules with a new interest measure
	Example 4: Sampling

	Summary and outlook

