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The R package ldhmm is developed for the study of financial time series using Hidden Markov Model
(HMM) with the lambda distribution framework. In particular, S&P 500 index is studied in depth due to
its importance in finance and its long history. Major features in the index, such as regime identification,
volatility clustering, and anti-correlation between return and volatility, can be extracted from HMM.
Univariate symmetric lambda distribution is essentially a location-scale family of power-exponential
distribution. Such distribution is suitable for describing highly leptokurtic time series in the financial
market. It provides a theoretically solid foundation to explore such data where the normal distribution
may not be adequate. The index is analyzed from two states to six states, then ten states. The five-state
HMM and above can capture large amount of auto-correlation, matching what’s observed in the data.
This is a major validation for the HMM. Although the stock market can be broadly classified into the
normal regime and the crash regime, The progression of HMM states allows to go beyond the two-regime
paradigm. The index history can be decomposed to a spectrum of volatility states. And the trend of the
mean and volatility in HMM states confirms the recognized fact that the stock market tends to rise when
the volatility is low, while tends to fall when the volatility is high. The pivotal volatility is calculated.
Specifically, we compare the expected volatility from the ten-state HMM to both the VIX index with an
adjustment factor and the realized volatility from Oxford-Man Realized Library. They match quite well.
This indicates high-state HMM can serve as a tool for volatility forecasting.
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1. The Hidden Markov Model

1.1. Notation

The Hidden Markov Model (HMM) implemented in the ldhmm package is the homogeneous
first-order HMM, where the state at time t is only dependent on the states of previous time
t − 1. The mixing distribution is univariate. The parameter space of the HMM is comprised of
π = {θ,Γ , δ}, where θ is a matrix containing parameters of the mixing distributions, Γ is the
transition probability matrix, and δ is the initial state probability vector. In the case of a stationary
solution, δ is also the stationary state distribution vector.
The notations are defined as following:

• The latent states are indexed by an integer, i = 1, 2, . . . ,m, where m is number of states.
• The time series is the log-returns of a financial instrument, indexed by an integer, t =

1, 2, . . . , T . The time period can be daily, weekly, monthly, etc.

†Corresponding author. Email: stevelihn@gmail.com; LinkedIn: https://www.linkedin.com/pub/stephen-horng-twu-
lihn/0/71a/65.



September 16, 2017 Quantitative Finance ldhmm-spx

• The observation at time t in the time series is the log-return between time t− 1 and t, which
is denoted as xt. And xt is unbounded. The vector of all observations can be written as x(T ).

• The latent state at time t is denoted as Ct, which can have an integer value from i = 1, 2, . . . ,m.
• The transition probability matrix is {γij}, or simply Γ in matrix form. γij is the probability

to transition from state i to state j. It is independent of t.
• The initial state probability vector is {δi}, or simply δ in vector form. δ also represents the

stationary state distribution in which δΓ = δ. Notice that δΓ is also defined as α0.
• The mixing probability of observations is represented as Pi (x), which is the probability density

function (PDF) for x when it is in state i. Or simply P (x) in matrix form, where P ii (x) =
Pi (x). That is, P (x) is a diagonal matrix. It is independent of t.

In the financial time series study, we are mostly interested in the stationary solution. The HMM
notations outlined in this paper follow closely the book of Zucchini, MacDonald, and Langrock
(2016). Note that δ and Γ are subject to unity constraints:

∑

i δi = 1 and
∑

j γij = 1.

1.2. Forward, Backward, and Likelihood

The forward probability vector αt is defined as

αt =

{

δP (x1) , when t = 1

αt−1ΓP (xt) , when t = 2, 3, . . . , T.
(1.1)

The backward probability vector βt is defined as

βt =

{

1, when t = T

ΓP (xt+1)β
′
t+1, when t = 1, 2, . . . , T − 1.

(1.2)

The likelihood expectation at time T is LT = αT 1′, which is the quantity to be maximized in
order to find the solution for HMM. And 1 is the identity vector, in which every element is 1.
The state probability Qi

(

t;x(T )
)

is the conditional probability of Ct = i given the observations

x(T ). It is calculated as

Qi

(

t;x(T )
)

=
αt (i)βt (i)

LT

. (1.3)

1.3. Matrix Convention

Assume V is a vector and M is a matrix. The multiplication between vector and matrix is defined
as V M =

∑

i ViMij and MV ′ =
∑

j MijVj . Summing a vector is represented as V 1′ =
∑

i Vi.
Notice that the PDF matrix P only has non-zero values in diagonal cells. Thus it carries some

special properties:

(i) V P (x) results in a vector with element [V P (x)]i = ViPij (x) = ViPi (x), that re-weighs
each state of V by its mixing PDF.

(ii) MP (x) results in a matrix with element [MP (x)]ij = MijPjk (x) = MijPj (x) , which

transitions each state i by re-weighing all the states j’s by their mixing PDF’s, Pj (x).
(iii) The forward algorithm involves V ΓP (x) = ViΓijPj (x) which is a vector indexed by j.
(iv) The backward algorithm involves ΓP (x)V ′ = ΓijPj (x)Vj , which is a vector indexed by i.

In order to prevent over-float and/or under-float in floating point calculation, αt and βt are im-
plemented recursively by their logarithms in the R package. For the same reason, the maximum
likelihood expectation (MLE) optimization minimizes the minus log-likelihood (MLLK),− log (LT ).
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2. Symmetric Lambda Distribution

The ldhmm package focuses on one special case of HMM where the mixing distribution of the
observations is a symmetric λ distribution, which is essentially an exponential-power distribution.
It is briefly introduced as following: The λ distribution is modeled after the state probability
function in statistical physics, where the PDF has an exponential form P (x) ∝ ey(|z|), e.g. y can
be thought of as minus energy levels normalized by temperature. Next, y (z) is assumed to be the

solution of a polynomial of the λ-th order, (±y)λ + . . . + c = z2, where c is a constant, with the
constraint y → −∞ as |z| → ∞. The skewness can be added by a depressed polynomial term, βzy,
say for the y3 case (Lihn (2015)). Finally, in order to conform to a location-scale family, we let
z = (x− µ) /σ. This completes the contruction process.
This broad framework can be refined to focus just on the tail behavior. We set both . . . and c

to zero, and we reach the simplest form of a symmetric λ distribution, (±y)λ = z2. Thus the PDF
used in this package is a two-sided stretched exponential function, defined by the parameter tuple
θ = (µ, σ, λ), (See Section 2.2 of Lihn (2015b))

P (x;µ, σ, λ) =
1

σλΓ
(

λ
2

) e−| x−µ

σ
| 2

λ

. (2.1)

The shape parameter λ is called the “order” of the distribution (Lihn (2017)). When λ = 1,
it converges to a normal distribution. This form of distribution has a rich history with several
different ways of parametrization and construction1. Here the PDF is standardized as Eq. (2.1)
for our purpose of analyzing financial log-return time series. One major difference is to use 2/λ
instead of β as the power of |x− µ| since we prefer λ being in the order of a positive low single-digit
integer, instead of β being a fraction when λ > 2.
For each state i = 1, 2, . . . ,m, we have Pi (x) = P (x;µi, σi, λi). There are three parameters for

each state, θi = (µi, σi, λi). It is written in matrix form as θ = {θi, i = 1, 2, . . . ,m}. Note that µ
is an unconstrained real number, while σ and λ must be positive. And λ is expected to be in the
range of 1 and 4.
The standard deviation Σ (σ, λ) and kurtosis K (λ) of P (x;µ, σ, λ) are

Σ (σ, λ) = σ

[

Γ
(

3λ
2

)

Γ
(

λ
2

)

]
1

2

, (2.2)

K (λ) =
Γ
(

λ
2

)

Γ
(

5λ
2

)

Γ
(

3λ
2

)2 . (2.3)

The kurtosis increases with λ, so does Σ (σ, λ) /σ. Notice that the scale parameter σ is not the
standard deviation, even in the case of λ = 1. (Σ (σ, λ = 1) = σ/

√
2.)

What differentiates this package from other HMM packages is the additional degree of freedom
from λ that can accommodate any level of kurtosis in the HMM states. One doesn’t have to make
assumption that the mixture model has to be made out of Gaussian distributions. If some states

1The following are the well known documentations on the Internet:

(i) The normalp package in R: https://www.jstatsoft.org/article/view/v012i04/v12i04.pdf

(ii) NIST Dataplot: http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/pexpdf.htm

(iii) Wolfram: https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html

(iv) GNU GSL: https://www.gnu.org/software/gsl/manual/html node/The-Exponential-Power-Distribution.html

(v) Wikipedia: https://en.wikipedia.org/wiki/Generalized normal distribution

https://www.jstatsoft.org/article/view/v012i04/v12i04.pdf
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/pexpdf.htm
https://reference.wolfram.com/language/ref/ExponentialPowerDistribution.html
https://www.gnu.org/software/gsl/manual/html_node/The-Exponential-Power-Distribution.html
https://en.wikipedia.org/wiki/Generalized_normal_distribution
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Figure 2.1. Excess kurtosis of the states in six HMM fits for SPX index. In each fit, states are sorted by their
standard deviations in ascending order. Large outliers tend to get pushed to the high-volatility state(s). For other
states with lower volatilities, excess kurtosis decreases as number of states increases.

turn out to be very close to Gaussian, one should be very delighted. However, we see it as the
conclusion drawn from the model, not an assumption going into the model.
In general, kurtosis in each state decreases as number of states increases. Large outliers tend

to get pushed to the high-volatility states. This is illustrated in Figure 2.1 with six HMM fits for
SPX index, which will be elaborated in following sections. However, excess kurtosis never really
“goes away”. Thus it is inappropriate to make full assumption of a Gaussian mixture model. It is
inconsistent with the data.
The symmetric λ distribution family has been shown to possess some beautiful mathematical

properties. For instance, it has a closed form solution for local volatility function and it is related
to an elegant mean-reverting stochastic process (Lihn (2017)). It solves the option pricing model
for both SPX at λ = 4 (Lihn (2016)) and VIX at λ ∈ [2, 4] (Lihn (2017b)). Its skew elliptic sub-
family (λ = 3) can fit log-return distributions very well without resorting to mixture models (Lihn
(2015)).

2.1. Expected Volatility of the Mixture

The log-return and volatility of state i are annualized as

Ri = 252× µi

Vi = 100×
√
252× Σ (σi, λi) ,

(2.4)
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where Σ (σi, λi) is the standard deviation of state i. It is assumed there are 252 trading days
in a year (Shephard and Shephard (2009)). We follow the same convention as in the Oxford-Man
Realized Library (Realized (2009)) in order that we can compare our model volatility to its realized
volatility, which is published daily.
Let R (t) =

∑m
i=1RiQi

(

t;x(T )
)

be the expected log-return of the mixture at time t. Then the
expected volatility V (t) of the mixture at time t is defined as

(

V (t)

100

)2

=

m
∑

i=1

[

(Ri −R (t))2 +

(

Vi

100

)2
]

Qi

(

t;x(T )
)

. (2.5)

V (t) is one of the most important quantities developed in this paper. V (t) of a well-calibrated
HMM can predict the volatility of the stock market. For SPX, V (t) matches the realized volatility
calculated from the high-frequency intraday tick data in Oxford-Man realized data library. This
will be elaborated in Section 6.

3. Analysis of S&P 500 Index

3.1. Setting the Stage

The ldhmm package is specifically tailored for the analysis of SPX index. The package comes with
the daily closing prices from 01/01/1950 to 12/31/2015. The data can be loaded from

> ts = ldhmm.ts_log_rtn ("spx", on="days")

where ts is a list with three components: ts$d contains the vector of dates, ts$x contains the vector
of log-returns, and ts$p contains the vector of prices. Hence ts$x corresponds to the observations
{xt}. This function is also capable of appending live daily closing prices from Federal Reserve
(FRED) with the option of fred.data=TRUE. This is important for daily forecasting purpose.
There are two distinct features in the daily returns of SPX. First, its kurtosis is very large,

around 30. Even after 10 largest outliers are dropped, the kurtosis is still as large as 8.5. This is
computed as

> sapply (0:10, function(drop) kurtosis(ldhmm.drop_outliers(ts$x , drop )))
[1] 30.279540 12.479094 11.631622 10.983566 10.505473 10.041342

9.595356 9.252240 8.903898 8.664750 8.518157

Second, the auto-correlation of the absolute of the returns |xt| is more than 20%. This feature is
called “volatility clustering”. The market data’s ACF can be calculated via the ldhmm.ts abs acf

function:

> ldhmm.ts_abs_acf(ts$x , drop=0, lag.max =6)
[1] 0.2444656 0.2737506 0.2502788 0.2434303 0.2809230 0.2389925
> ldhmm.ts_abs_acf(ts$x , drop=10, lag.max =6)
[1] 0.2271080 0.2461340 0.2290556 0.2375244 0.2520413 0.2273132

We see that SPX’s absolute ACF hovers around 23-28% for the first 6 lags. Dropping 10 largest
outliers doesn’t help reducing the absolute ACF much. The ldhmm package will have to address
these two fundamental features in order to be a suitable tool to model SPX daily data.

3.2. Two States by Normal Distribution

The analysis starts with two states. As shown in Bae, Kim, and Mulvey (2014) and Mulvey and
Liu (2016), the stock market can be classified to two regimes: the normal regime where the
market is calm and rising, and the crash regime where the market is panic and plunges down.
The former is also called “the bull market” while the later “the bear market”. Empirical evidence
shows that the market spent “most” of time in the normal regime.
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We will use the two-state analysis to introduce the usage of the main functions in the package,
and show why the λ distribution is needed. Many functions operate on the internal slots of the
input ldhmm object and produce an enriched output ldhmm object.As the first experiment, we shall
set up the analysis using the normal distribution, which has two parameters: µ and σ. To train
the HMM, one needs to initialize an ldhmm object called h with π = {θ,Γ , δ}, where θ is the
param parameter for the mixing distributions P (x), and the gamma parameter for the transition
probability matrix Γ . If you don’t know how to specify Γ , you can use the ldhmm.gamma init

function to set up a very naive initial matrix. We always assume stationary=TRUE, therefore the
initial state probability vector delta needs not to be provided. We use m=2 to denote number of
states, the ldhmm constructor is called as following,

> m = 2
> param0 = matrix(c(

mu_1 , sigma_1 ,
mu_2 , sigma_2), m, 2, byrow=TRUE)

> gamma0 = ldhmm.gamma_init(m)
> h <- ldhmm(m, param0 , gamma0 , stationary=TRUE)

If this is your first time analyzing a time series, you will have to guess what µi and σi should be.
In this case, (µ1, σ1) is approximately (0.0006, 0.01) and (µ2, σ2) is approximately (−0.0007, 0.02).
Later in Section 6.3, we will propose a universal law on the relation between µ and Σ (σ, λ), which
can also be used to bootstrap the param parameter.
Then we invoke the maximum likelihood expectation (MLE) optimizer with the object h and the

log-return vector ts$x as the training observations:

> hd <- ldhmm.mle(h, ts$x , decode=TRUE , print.level =2)

by default, it uses nlm to minimize MLLK. You can also switch to other supported optimizers by
changing the slot mle.optimizer. The optimization result π = {θ,Γ , δ} is stored in the returned
object hd. When the flag decode=TRUE is set, the result object is further enriched with the decoded
state information based on ts$x. The decoding algorithm is in the ldhmm.decoding function.
We now inspect the content of the object hd for our stationary solution. The mixing distribution

parameters are

> hd@param
mu sigma

[1,] 0.0005841565 0.008990645
[2,] -0.0006888613 0.023348432

The transition probability matrix Γ is

> hd@gamma
[,1] [,2]

[1,] 0.98835236 0.01164764
[2,] 0.03858714 0.96141286

And the stationary state probability vector δ is

> hd@delta
[1] 0.768136 0.231864

These results can be accomplished by other HMM softwares. E.g. one can easily generate the same
result via depmixS4 as a way of validation.
However there is an issue if we look deeper into the data. The kurtosis isn’t right. The theoretical

statistics of each state is

> ldhmm.ld_stats(hd)
mean sd kurtosis

[1,] 0.0005841565 0.006357346 3
[2,] -0.0006888613 0.016509834 3

Compare this to the statistics of the data classified in each state, as shown below:
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> hd@states.local.stats
mean sd kurtosis skewness length

[1,] 0.0006007835 0.006333934 3.565389 -0.02491462 12868
[2,] -0.0007847466 0.016749016 14.828955 -0.71360850 3737

We see that the kurtoses of the data are not 3. In fact, the kurtosis of the second state is very
high (14.8), and it has a pronounced skewness (-0.7). Thus, although we obtain some result, the
statistics of theoretical model is inconsistent with what’s observed in the data. This is the main
reason for using λ distribution, which can properly account for the behavior of the tails and produce
consistent statistics.

3.3. Two States by λ Distribution

The symmetric λ distribution has three parameters, θi = (µi, σi, λi). To run the analysis, one needs
to initialize the param parameter and construct the input object h as below:

> m = 2
> param0 = matrix(c(

mu_1 , sigma_1 , lambda_1 ,
mu_2 , sigma_2 , lambda_2), m, 3, byrow=TRUE)

> gamma0 = ldhmm.gamma_init(m)
> h <- ldhmm(m, param0 , gamma0 , stationary=TRUE)

You can simply use λ = 1 if you are not sure how to guess λ, and reference µ and σ from your
previous fits. The MLE optimizer is pretty good at converging to the proper λ. Now you can follow
the same procedure to invoke the MLE optimizer and obtain the trained object hd.

> hd <- ldhmm.mle(h, ts$x , decode=TRUE , print.level =2)

We can take a look at the content of the result. The mixing distribution parameters are

> hd@param
mu sigma lambda

[1,] 0.0006179039 0.006958493 1.418630
[2,] -0.0003604997 0.013167718 1.710065

We see that both states have λ larger than 1, indicating both states are leptokurtic.
The transition probability matrix Γ is

> hd@gamma
[,1] [,2]

[1,] 0.99339098 0.006609019
[2,] 0.01631407 0.983685929

And the stationary state probability vector δ is

> hd@delta
[1] 0.7116872 0.2883128

The statistics of the data classified in each state can be shown by

> hd@states.local.stats
mean sd kurtosis skewness length

[1,] 0.0005747770 0.006296764 3.821433 -0.05581264 11977
[2,] -0.0004506958 0.015358800 17.010688 -0.79468256 4628

On the other hand, the theoretical statistics of each state is

> ldhmm.ld_stats(hd)
mean sd kurtosis

[1,] 0.0006179039 0.006326634 3.990282
[2,] -0.0003604997 0.014766363 4.890138
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The kurtosis of the first state matches (3.82 vs 3.99), but the kurtosis of the second state still
differ quite a bit. What is going on? This is because there are very large outliers in the data that
can not be captured by the two-state model. The package provides the following utility to drop
those outliers then calculate statistics. It turns out that, after 11 largest moves are dropped (out
of 4600 observations), the kurtosis of the second state can be reconciled:

> ldhmm.calc_stats_from_obs(hd , drop =11)
mean sd kurtosis skewness length

[1,] 0.0005778304 0.006250343 3.657341 -0.04427838 11966
[2,] -0.0003396821 0.014416549 4.847647 -0.04041189 4617
# notice the reduced kurtosis and skewness of [2,]

Not only the kurtosis is rectified, the large skewness of the second state is also remediated. The
concept of dropping the few largest outliers is called “asymptotic statistics”, which was discussed
in Section 8.1 of Lihn (2015).

3.4. AIC and BIC

In addition to better capturing kurtosis, we also observe that λ distribution is superior than normal
distribution by comparing the MLLK, AIC, and BIC, as shown in the following table:

MLLK AIC BIC

Normal -56086 -112160 -112114
Lambda -56473 -112929 -112867

According to both AIC and BIC, the choice of λ distribution is more appropriate. We will use
AIC and BIC as our guide for model selection, as we gradually increase the number of states in
the following sections.

3.5. Interpretation of Two States - Regime Identification

Now we are in a good shape in terms of modeling, we shall make some interpretations based on
the two-state HMM result:

(i) The first state represents the normal state, where the mean is positive. The second state
represents the crash state, where the mean is negative.

(ii) The standard deviation of the crash state is more than twice of the normal state, depicting
the panic and volatility of the bear markets. The higher kurtosis in combination with a
negative return also indicates more frequent violent moves during sell-off.

(iii) According to the stationary state probability vector delta, the market spent 70% of its
time in normal state.

The result from HMM answers the empirical observations with solid numbers.
The regime identification is to classify the stock market into a few regimes that human can

understand intuitively. Two-state HMM are ideal for such task due to its simplicity. In this package,
the best way to visualize the states is to compare the expected volatility V (t) from Eq. (2.5) to the
realized volatility calculated from Oxford-Man realized variance data. This can be accomplished
by the following function:

> ldhmm.oxford_man_plot_obs(hd)

The graph is shown in Figure 3.1. V (t) is derived from the 2-state HMM trained by the SPX
history from 1950 to 2015, then decoded locally via the log-returns of SPX2.r time series from 2000
till now. The main finding is that V (t) mirrors the trend of the realized volatility calculated from
SPX2.rv. In terms of regime identification, we observe that the low volatility state corresponds to
the bull markets, e.g. very cleanly from mid-2003 to mid-2007, and from 2013 to mid-2015, and
extremely low volatility period from mid-2016 to 2017. The high volatility state corresponds to the
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Figure 3.1. Comparison of the expected volatility V (t) from two-state HMM (black) vs the realized volatility (red)
from Oxford-Man realized variance data set. Two-state HMM is the simplest model to illustrate the normal and
crash regimes. The red line is the daily realized volatility, and the red dots are the 5-day moving average. The dash
blue lines are the volatilities of the HMM states. The solid blue line is the rescaled SPX price index. The black dots
in the insert show the (Ri, Vi) values of each state.

bear markets, e.g. the dot-com bubble collapse from 2000 to mid-2003, and the financial crisis from
mid-2007 to 2009, the mid-2010 and mid-2011 corrections, and the correction from H2 of 2015 to
Q1 of 2016.

3.6. Kurtosis and ACF

Now we can examine whether two-state HMM helps to understand the issues of kurtosis and ACF.
Simulated observations can be generated as following

> hs <- ldhmm.simulate_state_transition(hd , init =100000)
> kurtosis(hs@observations)
[1] 8.542578

The model kurtosis matches SPX data after 10 largest outliers are dropped. So the model is in
a good range. The reader should be warned that kurtosis is an unstable statistics, you may get
somewhat different numbers each time you run.
The compute-intensive simulation that generates the model’s absolute ACF is packaged into the

ldhmm.simulate abs acf function:

> ldhmm.simulate_abs_acf(hd , n=100000 , lag.max =1)
[1] 0.1389113

The ACF number is too low, it is nowhere near 23% that we are expecting. Thus the two-state
HMM has some degree of volatility clustering but can not fully reflect the feature for SPX. We
must increase number of states. The issue of ACF will be examined again in Section 5.
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4. The More States The Better

We will explore the HMM with more states, from 3, 4, 5, 6, then 10. By carefully crafting the param
parameter with different ranges of standard deviation, the MLE optimizer can converge reasonably
well. The following are the results for 3, 4, 5, 6 states. The 10-state result is presented in Section
5.1. The main takeaway is that the MLE is optimized at five states based on AIC and BIC. And
ten-state HMM brings us very close to the State Space Model (SSM) where the states are almost
continuous in a certain range.

4.1. Three States

The three-state HMM produces better AIC and BIC scores than the two-state HMM. The MLLK
is -56799, AIC is -113569, and BIC is -113453. Its result is shown below:

> hd@param
mu sigma lambda

[1,] 0.0007057892 0.005933416 1.356518
[2,] 0.0003024532 0.011299302 1.221545 # the intermediate state
[3,] -0.0011976005 0.018191048 1.689612
> hd@gamma

[,1] [,2] [,3]
[1,] 9.858362e-01 0.01366418 0.0004996217
[2,] 1.299432e-02 0.98201140 0.0049942767
[3,] 9.997684e-05 0.02298345 0.9769165696
> hd@delta
[1] 0.4264269 0.4639618 0.1096113
> ldhmm.ld_stats(hd)

mean sd kurtosis
[1,] 0.0007057892 0.005176394 3.822568
[2,] 0.0003024532 0.009052779 3.484238
[3,] -0.0011976005 0.020085198 4.820435
> hd@states.local.stats

mean sd kurtosis length
[1,] 0.0006740378 0.005097534 3.754966 7206
[2,] 0.0003038977 0.009099652 3.445072 7719
[3,] -0.0014313206 0.020958050 12.971801 1680
> ldhmm.calc_stats_from_obs(hd , drop =3)[3 ,] # remove 3 days of outliers!

mean sd kurtosis length
[3,] -0.0014237631 0.019883053 4.772711 1677
> hs <- ldhmm.simulate_state_transition(hd , init =100000)
> kurtosis(hs@observations)
[1] 10.85158

We find that

(i) An intermediate state (2) emerges between the normal state (1) and the crash state (3).
(ii) The crash state now has a much larger negative return and volatility.
(iii) According to gamma, The market spent only 11% of time in state 3 (vs 43% in state 1, and

46% in state 2). The “true” crash state is meaningfully isolated.
(iv) From gamma, we see that there is only 0.55% chance getting into state 3, but has 2.3%

chance getting out of it.
(v) We only need to remove 3 days of outliers to make the kurtosis of the third state consistent.
(vi) An important pattern begins to develop in the output of ldhmm.ld stats: the states align

with the increasing volatilities. The larger the volatility the smaller the return.
(vii) The simulated model kurtosis of the mixture is increased to nearly 11. As more states are

added with different means and variances, the kurtosis will increase steadily.

Figure 4.1 shows the comparison of the expected volatility V (t) from three-state HMM vs the
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Figure 4.1. Comparison of the expected volatility V (t) from three-state HMM (black) vs the realized volatility
(red) from Oxford-Man realized variance data set. Three-state HMM reveals the intermediate state or the so-called
transition state. The red line is the daily realized volatility, and the red dots are the 5-day moving average. The dash
blue lines are the volatilities of the HMM states. The solid blue line is the rescaled SPX price index. The black dots
in the insert show the (Ri, Vi) values of each state.

volatility from Oxford-Man realized variance data set. The worldview isn’t binary anymore. We
observe that the bull market is a condition of staying in state 1 and 2 persistently. On the other
hand, the bear market was formed by oscillations between state 2 and 3. Maybe the definitive start
of a bull market can be defined as the first touch of state 1, while the definitive start of a bear
market as the first touch of state 3 (which ends previous bull market).

4.2. Four States

The AIC and BIC scores continue to improve for four states. The MLLK is -56913, AIC is -113779,
and BIC is -113594. In this fit, we only need to remove one day of outlier in state 4 to make the
kurtosis match. Obviously the outlier is Black Monday of 1987. Its HMM result is shown below:

> hd@param
mu sigma lambda

[1,] 9.196106e-04 0.005229458 1.261847
[2,] 3.757789e-04 0.008665867 1.272882
[3,] -6.420789e-05 0.014844040 1.185018
[4,] -1.498255e-03 0.026035525 1.582056
> floor(hd@gamma *10000)/100

[,1] [,2] [,3] [,4]
[1,] 97.77 2.06 0.16 0.00
[2,] 0.91 98.31 0.77 0.00
[3,] 0.00 1.69 97.59 0.70
[4,] 0.23 0.27 4.00 95.48
> hd@delta
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[1] 0.21250126 0.50825276 0.24145344 0.03779254
> ldhmm.ld_stats(hd)

mean sd kurtosis
[1,] 9.196106e-04 0.004294759 3.581640
[2,] 3.757789e-04 0.007166091 3.608837
[3,] -6.420789e-05 0.011634897 3.398529
[4,] -1.498255e-03 0.026543720 4.470772
> hd@states.local.stats

mean sd kurtosis length
[1,] 0.0009779361 0.004145592 3.338066 3534
[2,] 0.0003718359 0.007141628 3.633649 8462
[3,] -0.0001573969 0.011778537 3.252953 3943
[4,] -0.0017771802 0.028106106 9.779386 666
> ldhmm.calc_stats_from_obs(hd , 1)[4 ,] # remove 1 day!

mean sd kurtosis length
[4,] -0.0014354959 0.026707143 4.111900 665
> hs <- ldhmm.simulate_state_transition(hd , init =100000)
> kurtosis(hs@observations)
[1] 14.06909

The volatility of states is refined from (0.5%, 0.9%, 2%) to (0.4%, 0.7%, 1.2%, 2.7%). The third
state has 1.2% volatility and almost zero return, which fits the concept of the transition state. If it
transitions back to state 1 or 2, then the bull market resumes. If it transitions to state 4, the crash
state, then the market suffers violent downward moves. And notice that the market only spent 4%
of time in the devastating crash state (However, it was not so infrequent since 2000).

4.3. Five States

The AIC and BIC scores improves slightly. The MLLK is -56971.67, AIC is -113873, and BIC is
-113603. In this fit, we only need to remove one day of outlier in state 5 to lower the kurtosis. Its
HMM result is shown below:

> hd@param
mu sigma lambda

[1,] 0.0009930523 0.005075172 1.248172
[2,] 0.0002569163 0.008111946 1.288760
[3,] 0.0005442314 0.012434221 1.205838
[4,] -0.0010363320 0.021245575 1.160083
[5,] -0.0045300495 0.040342119 1.541332
> floor(hd@gamma *10000)/100

[,1] [,2] [,3] [,4] [,5]
[1,] 97.40 2.57 0.01 0.00 0.00
[2,] 1.07 98.10 0.62 0.19 0.00
[3,] 0.13 1.14 98.17 0.44 0.10
[4,] 0.00 0.01 2.48 97.08 0.41
[5,] 0.00 0.00 0.05 6.16 93.78
> hd@delta
[1] 0.19101121 0.42689342 0.27665911 0.09439302 0.01104324
> ldhmm.ld_stats(hd)

mean sd kurtosis
[1,] 0.0009930523 0.004132910 3.548254
[2,] 0.0002569163 0.006775294 3.648374
[3,] 0.0005442314 0.009867994 3.447088
[4,] -0.0010363320 0.016409895 3.341393
[5,] -0.0045300495 0.039941736 4.345499
> hd@states.local.stats

mean sd kurtosis length
[1,] 0.0010151286 0.004003505 3.348072 3034
[2,] 0.0002467643 0.006683865 3.622080 7306
[3,] 0.0005733122 0.009970374 3.313509 4578
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Figure 4.2. Comparison of the expected volatility V (t) from five-state HMM (black) vs the realized volatility (red)
from Oxford-Man realized variance data set. Five-state is considered the optimal HMM according to AIC and BIC.
The red line is the daily realized volatility, and the red dots are the 5-day moving average. The dash blue lines are
the volatilities of the HMM states.

[4,] -0.0011935638 0.016867423 3.385824 1520
[5,] -0.0053585776 0.042302368 6.829236 167
> ldhmm.calc_stats_from_obs(hd , 1)[5 ,] # remove 1 day!

mean sd kurtosis length
[5,] -0.0040113568 0.038670313 2.993876 166
> hs <- ldhmm.simulate_state_transition(hd , init =100000)
> kurtosis(hs@observations)
[1] 18.30003
> ldhmm.simulate_abs_acf(hd , n=200000 , lag.max =6)
[1] 0.2458919 0.2467940 0.2386975 0.2339076 0.2219662 0.2147192

The five-state HMM has several attractive features:

(i) From AIC and BIC’s perspective, five-state is the most optimized HMM in model selection.
(ii) The excess kurtosis of states, as shown in Figure 2.1, is most evenly distributed.
(iii) The complexity of states are not too much and not too less. There are two low-volatility

states (1, 2, bull market), one transition state (3), and two high-volatility states (4, 5, bear
market).

(iv) The simulated kurtosis of 18.3 is reasonably high to reflect what’s observed in the data.
(v) The first few lags of the absolute ACF (24%) are very close to what’s observed in the data.

Figure 4.2 shows the comparison of the expected volatility V (t) from five-state HMM vs the volatil-
ity from Oxford-Man realized variance data set. We observe that the bull market is a condition
to stay in the two low-volatility states, state 1 and 2, persistently. On the other hand, the bear
market was formed by oscillations between state 3 and 4. And the fifth state is very destructive.
The diagonal cells of the transition probability matrix (hd@gamma) are above 97% for the lower

4 states. This means these HHM states are distinct states (think of them as quantum states), and



September 16, 2017 Quantitative Finance ldhmm-spx

at any given time, the market state is pushed to almost a single state. Only the fifth state has a
lower 94% diagonally, which allows it to transition to state 3 and 4 with significant probability. In
next section, we will present the ten-state HMM, whose structure of transition probability matrix
is very different. The probabilities of diagonal cells are much lower, many are in the range of 90%.

4.4. Six States

The AIC and BIC scores no longer improves. The MLLK is -56962, AIC is -113828, and BIC
is -113457. What is interesting is that the sixth state can pick up those days of extremely high
volatility, making its kurtosis at 23. But other than this feature, it doesn’t appear to add value to
other aspects of the HMM. From the six states and above, we begin to observe the fine structure
in the data, where the volatilities of two neighboring states (state 2 and 3) are almost the same
(degenerate) but they have very different µ’s.
Here we only show the param result and the statistics of the mixing distributions:

> hd@param:
mu sigma lambda

[1,] 0.0010213403 0.004999996 1.319998
[2,] -0.0002915723 0.008400014 1.170002
[3,] 0.0013732134 0.008900007 1.350000
[4,] -0.0003144338 0.015699970 1.040001
[5,] -0.0007789220 0.023000009 1.279999
[6,] -0.0053364110 0.007000002 3.880000
> ldhmm.ld_stats(hd)

mean sd kurtosis
[1,] 0.0010213403 0.004259999 3.727569
[2,] -0.0002915723 0.006525897 3.363990
[3,] 0.0013732134 0.007731493 3.805421
[4,] -0.0003144338 0.011337999 3.081299
[5,] -0.0007789220 0.019104501 3.626500
[6,] -0.0053364110 0.066665445 23.107859 # large kurtosis

5. Auto-Correlation and Ten-State HMM

One of the most important validations for the HMM is whether it can model the auto-correlation
in the absolute of log-returns. After the six-state HMM, we venture to the ten-state HMM, which
possesses some interesting properties not seen in the lower-state HMM’s.

5.1. Ten-State HMM

The statistics of the mixing distributions is shown below:

> s <- data.frame(ldhmm.ld_stats(hd))
> s[order(s$sd),]

mean sd kurtosis
1 0.0010218351 0.003896462 3.510961
3 0.0017494924 0.005476218 3.017826
2 -0.0009153308 0.006529737 3.146678
6 0.0011360615 0.008168016 3.087349
4 -0.0003438331 0.009366239 3.794715
7 0.0006138718 0.009694191 3.184742
5 -0.0004305358 0.010531909 13.376046 # large kurtosis
8 -0.0008658711 0.012999651 3.119932
9 -0.0000020415 0.018809720 2.969632
10 -0.0038099143 0.036805330 14.992067 # large kurtosis
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There are two states (5 and 10) that have large kurtosis. There are two states (2 and 3) around
stdev = 0.005 with two large opposite returns. These are the fine structures of the market data.
The largest moves don’t necessarily have to be bucketed into the most volatile state.
The transition probability matrix Γ is:

> floor(hd@gamma *10000)/100
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 95.57 3.58 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[2,] 3.49 91.94 3.64 0.91 0.00 0.00 0.00 0.00 0.00 0.00
[3,] 1.03 4.67 90.62 2.95 0.71 0.00 0.00 0.00 0.00 0.00
[4,] 0.00 1.04 5.66 90.65 1.64 0.98 0.00 0.00 0.00 0.00
[5,] 0.00 0.00 1.08 5.60 87.28 4.98 1.03 0.00 0.00 0.00
[6,] 0.00 0.00 0.00 1.06 2.04 92.02 3.91 0.94 0.00 0.00
[7,] 0.00 0.00 0.00 0.00 0.83 4.06 90.96 3.25 0.87 0.00
[8,] 0.00 0.00 0.00 0.00 0.00 1.01 4.53 90.48 3.09 0.86
[9,] 0.00 0.00 0.00 0.00 0.00 0.00 1.03 4.53 91.37 3.05
[10,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4.34 94.64

It shows a feature that other lower-state HMM’s don’t have. That is, each state has about 90%
probability to stay in the same state, and has large enough probability to move to two states above
and two states below. Thus at any given time, the state probability is spread across several states.
(Think of it as superposition of quantum states.) Thus we have a spectrum of almost continuous
state distribution. Such flexibility produces much better long-range dependency and more accurate
volatility prediction. Ten-state HMM has an impressive ACF up to 200 lags, which is discussed
next.

5.2. Absolute ACF of 5-State and 10-State

The market data’s ACF can be calculated via the ldhmm.ts abs acf function:

> ldhmm.ts_abs_acf(ts$x , lag.max =6)
[1] 0.2444656 0.2737506 0.2502788 0.2434303 0.2809230 0.2389925

We see that the the market’s ACF hovers around 24-28% for the first 6 lags.
The model’s absolute ACF can be simulated via the ldhmm.simulate abs acf function. The

simulation takes place in a similar fashion to how αt is calculated. The initial sampling simulates
{(C1, x1)} such that their distributions reflect δP (x1). Each subsequent leg {(Ct, xt)} is obtained
by applying ΓP (xt) to {(Ct−1, xt−1)}. And the absolute auto-correlation is calculated between
|xt−1| and |xt|. We use a large sample size, n=200,000, so that tail probability can be properly
accounted for. The following shows the ACF comparison from two-state to ten-state:

> ldhmm.simulate_abs_acf(hd , n=200000 , lag.max =6)
# 2-state
[1] 0.1498026 0.1469878 0.1405985 0.1409026 0.1309578 0.1337567
# 3-state
[1] 0.2019167 0.1965990 0.1948321 0.1898597 0.1828851 0.1853974
# 4-state
[1] 0.2243816 0.2222023 0.2096111 0.2046574 0.2008934 0.1967752
# 5-state
[1] 0.2458919 0.2467940 0.2386975 0.2339076 0.2219662 0.2147192
# 6-state
[1] 0.2148965 0.2187334 0.1952582 0.1872222 0.1857958 0.1709845
# 10-state
[1] 0.2275259 0.2208111 0.2113389 0.2072190 0.2014405 0.2071603

The ACF is too low for two-state and three-state HMM. We see the five-state HMM can capture
the highest level of ACF - above 24% in the first lag, which is very close to the market data. Thus
we postulate that five-state HMM can forecast a decent amount of correlation for the first few lags.
We also observe that six-state HMM can not improve ACF in its first few lags.
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Figure 5.1. Absolute ACF of the five-state (blue) and ten-state (black) HMM up to 200 lags. Red line is the absolute
ACF of the SPX index.

However, if we compare the long-range dependency up to 200 lags, we observe that five-state
ACF dies out quickly, but ten-state ACF stays relatively high. In Figure 5.1, we examine the 200-
lag ACF figures of five-state (blue) and ten-state (black) HHMs, compared to the SPX data (red).
Overall, the ACF curve of ten-state performs much better than five-state, except the five-state is
superior for the first few lags. Both five-state and ten-state have merits. But since the ten-state
HMM produces what we call a “volatility spectrum”, it is more attractive and is the focus of
exploration in the next section.
The reason that ten-state HMM has very good long-range dependency is probably related to its

more dispersed transition probability matrix Γ (see Section 5.1). The distances between adjacent
states are not large, so at any given time, the state probability can be spread across several states.
This allows the HMM to better associate past observations with new observations, and produce
continually adjusted expected volatility.

6. Volatility Prediction

From our experience of fitting multi-state HMM, we begin to see that the HMM states are the
volatility states. As number of states increases, the concept of a volatility spectrum emerges. Thus
we would like to have as many states as we possibly can as long as we can still maintain statistical
significance. (When there are very few observations in each state, one can not interpret the meaning
of the states anymore. This is the danger of overfitting.) We find that ten-state HMM is a stable
model that can represent the concept of volatility spectrum very well.
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Figure 6.1. The expected volatility V (t) of ten-state HMM (black) vs adjusted VIX index (red). The fit is based on
all SPX data from 1950 to 2015. VIX is adjusted by the long-term average of the daily ratios between V (t) and VIX
during the overlapping period. This ratio is 0.79. The dash blue lines are the volatility of the HMM states. The SPX
log-price level is drawn in blue line as a reference so that each spike can be identified with well-known bear markets
in history.

6.1. Historical Volatility from Ten-State HMM

We use the ten-state HHM to demonstrate its capability of volatility forecasting. The package
comes with the trained ldhmm object so you don’t have to redo the time-consuming fitting. We
load this object and calculate the historical volatility as below:

> hs <- ldhmm.read_sample_object ()
> spx <- ldhmm.ts_log_rtn(on="days")
> hss <- ldhmm.decoding(hs , spx$x)
> V <- ldhmm.decode_stats_history(hss , annualize=TRUE)[,"V"]
> plot(spx$d , V, type="l")

Figure 6.1 shows the expected volatility V (t) of the ten-state HMM result from 1950 to 2015
(black). The first attempt to understand what V (t) means is to compare it to the VIX index
(available since 1990). It is found that VIX is consistently higher than V (t). We calculate the
long-term average of daily ratios between V (t) and VIX during the overlapping period. This ratio
is 0.79, which is used to adjust VIX down as shown in the red line. The reader can observe that
V (t) and the adjusted VIX matches quite well. Thus V (t) is indeed a quantity that has real-world
meaning.
The second attempt is to compare V (t) to the realized volatility from the Oxford-Man Realized

Library (available since 2000). To plot the volatility with Oxford-Man data,

> hs <- ldhmm.read_sample_object ()
> ldhmm.oxford_man_plot_obs(hs)

The most recent data file will be downloaded automatically from the website of Oxford-Man In-
stitute. Figure 6.2 shows the expected volatility V (t) from the ten-state HMM decoded by SPX2.r
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Figure 6.2. Comparison of the expected volatility V (t) from ten-state HMM (black) vs the volatility from Oxford-
Man realized variance data set (red). The red line is the daily realized volatility, and the red dots are the 5-day
moving average. The ten states are able to label the realized volatility almost continuously, which is close to a State
Space Model (SSM). And V (t) matches the moving average of Oxford data reasonably well. The dash blue lines are
the volatilities of the HMM states.

time series (black)1. It is compared to the realized volatility annualized from SPX2.rv daily vari-
ance time series (red). The red line is the daily data and the red dots are the 5-day moving average.
The reason for moving average is that the daily realized volatility is much more volatile. We can
clearly see that V (t) is a predictive analytics for realized volatility. It matches the moving average
of Oxford-Man data reasonably well. Thus we find a very useful application for high-state HHM -
It has the capability to figure out the realized volatility of a financial time series without having
to calculate it from intra-day high-frequency data.
One can also narrow down the date range of the plot by specifying the start.date and end.date

to a shorter, more recent date range. If vix.adj.ratio is specified (it is default to NULL), the VIX
index will be plotted with the adjustment. One can study how the three volatility gauges change
on a daily basis. An example is shown in Figure 6.3. We observe that HMM moves between the
trends of the realized volatility and VIX, but it has its opinion. For instance, in late 2015, it moves
above the other two gauges. But in late 2016, it is sided with the extremely low realized volatility
in Oxford data.

6.2. Volatility Forecasting

A simple method to forecast volatility for next time period is proposed here. We use the historical
observations x(T0) to fit HMM and obtain a stationary result π = {θ,Γ , δ}. Assume the historical

1Note that one can use one set of observations x(T ) to train HMM and obtain a stationary result π = {θ,Γ , δ}. Then use π

to decode another time series x
′(T ′) .
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Figure 6.3. The 18-month range plot of the expected volatility V (t) from ten-state HMM (black) vs the volatility
from Oxford-Man realized variance data set (red dots) and the adjusted VIX index (magenta line). This plot illustrates
the usage of start.date and end.date to specify a shorter, more recent date range in order to study how the three
volatility gauges change on a daily basis. The VIX adjustment ratio is 0.79.

observations up to the most recent closes is x(T ), and next-day’s observation will be xt+1. We con-
struct a new observation set x′(T+1) =

{

x(T ), xt+1

}

. Then use π to decode x′(T+1) and calculate the
expected volatility V (t+ 1;xt+1) which is conditional on the future observation xt+1. By providing
different inputs of xt+1, e.g. log-returns from -2% to 2% by 0.5%, one can forecast the volatility for
a range of next-day moves. This method is implemented in ldhmm.forecast volatility function:

> spx2 <- ldhmm.oxford_man_ts ("SPX2.r", log=TRUE)
> xf <- seq(-0.02, 0.02, by =0.005) # to be forecasted
> ldhmm.forecast_volatility(hd , spx2$x , xf)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.02000 -0.01500 -0.010000 -0.005000 0.000000 0.005000
[2,] 12.07079 10.72948 9.128792 7.500931 6.808746 6.916728

[,13] [,14] [,15]
[1,] 0.010000 0.015000 0.02000
[2,] 7.762019 9.496151 12.07038

The reader should be noted that this is different from the typical HMM forecast, where the
forecast involves predicting the most likely distributions of states and observations for next few
periods. That is forecasting the market’s direction. But here we are forecasting the most likely
volatility based on a hypothetical market movement scenario.

6.3. The Inverse Relation between Volatility and Return

It is commonly known that the return of S&P 500 is inversely correlated to the volatility. This
can be explained by the high anti-correlation of the daily changes between S&P 500 and the VIX
index (See Figure 2 of Papanicolaou and Sircar (2014)). Here we attempt to use our HMM results
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to formulate this empirical law from a different angle.
The reader may have observed from the inserts of 2, 3, 5, 10 states that the relations between Vi

and Ri are quite linear. The slopes are negative, that is, lower volatility is associated with positive
return, while higher volatility with negative expected return. We can formulate this linear relation
as

Ri = Y (V0 − Vi) , ∀ i, (6.1)

where Y is called the “yield” of volatility differential, and V0 is called the “pivotal realized volatil-
ity”. By plotting the results from 2-state, 3-state, 4-state, 5-state, and 10-state together, as shown
in Figure 6.4, we can calculate the linear regression and obtain

V0 ≈ 17.4,
V0(V IX) ≈ 17.4/0.79 = 22.0,

Y ≈ 2.2%.
(6.2)

V0(V IX) is the pivotal volatility adjusted to the VIX scale (ref Figure 6.1). The meaning of V0 is
that when the realized volatility is below V0 , it is very likely S&P 500 will go up and continue in
its bull market. However, if the realized volatility is above V0 persistently, the market will go down
and enter into a bear market. The level of VIX=22 as the turning point between bull markets and
bear markets coincides very well with the common understanding. In fact, this level is commonly
believed to be the long-term equilibrium in the VIX term structure1.
The meaning of Y is that, for every point of volatility increase, S&P 500 will lose about 2.2% of

annual return on average. For example, in the long run, if we expect S&P 500 to increase about
10% per year, its volatility must be below V0 − 10/2.2 ≈ 12.9. If we expect S&P 500 to increase
about 20% per year, its volatility must be below V0 − 20/2.2 ≈ 8.3, which is very low. Thus Y and
V0 are handy numbers to calculation market expectation.
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