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Abstract

Inference in quantile analysis has received considerable attention in the recent years.
Linear quantile mixed models (Geraci and Bottai 2014) represent a flexible statistical tool
to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal,
which induce some form of clustering. In this paper, I will show how to estimate con-
ditional quantile functions with random effects using the R package lqmm. Modeling,
estimation and inference are discussed in detail using a real data example. A thorough
description of the optimization algorithms is also provided.

Keywords: asymmetric Laplace distribution, non-smooth optimization, random effects.

1. Introduction

In classical statistics, a common assumption is that sample observations are drawn inde-
pendently from the same population. However, dependent data arise in many studies. For
example, clinical observations, such as blood pressure or insulin measurements, taken repeat-
edly on the same individuals are likely to be more similar than observations from different
individuals; environmental measurements (e.g., air pollution or rainfall measurements) that
are taken in the same geographic area will show substantial degree of spatial correlation.
Groups of dependent observations are commonly called clusters.

Mixed-effects models (or mixed models; Pinheiro and Bates 2000; Demidenko 2004) are highly
popular and flexible regression models used to analyze the conditional mean of clustered
outcome variables. The extent of applications of mixed models is vast, ranging from medical
studies, in which responses to an exposure or a treatment show a strong degree of heterogeneity
between subjects due to unobserved genetic factors, to agricultural field trials, environmental
and wildlife ecology studies, to mention a few.

Mixed models are based on the assumption that predictors affect the conditional distribution
of the outcome only through its location parameter (i.e., the mean). Empirical evidence shows
that this assumption is inappropriate in a number of real-world applications. For example,
the negative effects of maternal smoking during pregnancy or lack of prenatal care have been
amply documented. In particular, these factors have been shown to decrease the average
weight of infants at birth. However, infants who rank lower in the distribution (i.e., low
birthweight infants) are affected by smoking and lack of prenatal care at a greater extent
than average-weighting infants, and the latter at a greater extent than those who rank higher
in the distribution (Abrevaya 2001; Koenker and Hallock 2001; Geraci 2013). In general,
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individuals who rank differently according to some outcome variable (e.g., blood pressure,
body mass index, size of a tumor) might be affected by risk factors (e.g., age, gender, socio-
economic status) to a different extent or even in opposite ways. Quantile regression (QR) is
a statistical tool that extends regression for the mean to the analysis of the entire conditional
distribution of the outcome variable. Therefore, location, scale and shape of the distribution
can be examined through the analysis of conditional quantile models to provide a complete
picture of the distributional effects.

The application of QR methods to clustered data is an emerging area of research in statistics.
There have been several proposals of QR for dependent data, including Lipsitz, Fitzmaurice,
Molenberghs, and Zhao (1997), Koenker (2004), Geraci and Bottai (2007), Reich, Bondell,
and Wang (2010), and Canay (2011). Recently, Geraci and Bottai (2014) developed a class
of models, called linear quantile mixed models (LQMMs), which extends quantile regression
models with random intercepts (Geraci 2005; Geraci and Bottai 2007) to include random
slopes, and introduced new computational approaches. These are based on the asymmetric
Laplace (AL) likelihood (Hinkley and Revankar 1977), which has a well-known relationship
with the L1-norm objective function described by Koenker and Bassett (1978).

Briefly, consider a sample of observations
(
x>i , yi

)
, i = 1, . . . ,M , drawn independently from a

population with continuous distribution function Fyi|xi
. The latter is assumed to be unknown,

with quantile function given by its inverse Qyi|xi
≡ F−1yi|xi

. In linear QR problems, the goal

is to estimate models of the type Qyi|xi
(τ) = x>i β

(τ), where τ , 0 < τ < 1, denotes the
quantile level of interest. The τth regression quantile is defined as any solution of (Koenker
and Bassett 1978)

min
β∈Rp

M∑
i=1

ρτ

(
yi − x>i β

)
, (1)

where ρτ (v) = τ max(v, 0)+(1−τ) max(−v, 0) is the asymmetrically weighted L1 loss function.
Nonlinear QR is discussed by Koenker (2005).

Over the past few years, a number of QR methods based on the AL distribution appeared
in the literature (Koenker and Machado 1999; Yu and Moyeed 2001; Geraci and Bottai 2007;
Lee and Neocleous 2010; Farcomeni 2012; Wang 2012). A continuous random variable w ∈ R
is said to follow an AL density with parameters (µ, σ, τ), w ∼ AL(µ, σ, τ), if its density can
be expressed as

p(w|µ, σ, τ) =
τ(1− τ)

σ
exp

{
− 1

σ
ρτ (w − µ)

}
,

where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, and 0 < τ < 1
is the skewness parameter. Mean and variance of this distribution are given by E(w) =

µ + σ 1−2τ
τ(1−τ) and VAR(w) = σ2(1−2τ+2τ2)

(1−τ)2τ2 (Yu and Zhang 2005). Note that ρτ (·) is the loss

function introduced in (1). It is easy to verify that the location parameter µ is the τth
quantile of w, i.e., P (w ≤ µ) = τ . Therefore, for a fixed τ , it is convenient to estimate the
τth regression quantile from the model

yi = µ
(τ)
i + ε

(τ)
i , i = 1, . . . ,M, (2)

where µ
(τ)
i = x>i β

(τ) and ε
(τ)
i ∼ AL (0, σ, τ). The AL assumption is ancillary as it is not

assumed that Fyi|xi
is truly AL. Computationally, however, the maximum likelihood estimate



Marco Geraci 3

Age (years)

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

20

25

30

8 10 12 14

●
●

●

●

F01

● ●

●

●

F02

8 10 12 14

●

● ●

●

F03

●
● ●

●

F04

8 10 12 14

●

● ●
●

F05

●
● ●

●

F06

8 10 12 14

●
● ●

●

F07

● ● ● ●

F08

8 10 12 14

●
●

● ●

F09

●

● ● ●

F10

●
●

●

●

M01

8 10 12 14

●
● ●

●

M02

● ●

●

●

M03

8 10 12 14

●

●
● ●

M04

●

●
●

●

M05

8 10 12 14

●
●

●

●

M06

● ●

●

●

M07

8 10 12 14

●

●

●
●

M08

●

●

●

●

M09

8 10 12 14

20

25

30

● ●

● ●

M10

Figure 1: Trellis plot of pituitary-pterygomaxillary fissure distance conditional on age in 10
girls (subjects F1–F10) and 10 boys (subjects M01–M10). A loess smooth is shown in each
panel.

(MLE) of β(τ) from Equation 2 is equivalent to the solution of (1). Such computational equiv-
alence provided Geraci (2005) with a (quasi-)likelihood framework within which estimating
the conditional quantiles of longitudinal outcomes.

This paper’s focus is on the package lqmm (Geraci 2014) for the R statistical computing
environment (R Core Team 2013), which is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=lqmm. In the next section, the
dataset that will be used to illustrate LQMM methods is briefly described. The models
and the estimation algorithms are introduced in Sections 3 and 4, respectively. Section 5 is
dedicated to lqmm methods. Short examples and related R code are given throughout to
illustrate individual commands. A more extensive data analysis using LQMMs is offered in
Section 6. The notation used in this paper, as well as the labeling adopted in the lqmm
package, follows closely that of Geraci and Bottai (2014). Vectors and matrices are denoted
in bold, Ik denotes the k×k identity matrix, and

⊕n
i=1 Ai is the direct sum of the n matrices

Ai.

2. Orthodontic growth data

These data collect repeated measurements of the distance between the center of the pituitary
to the pterygomaxillary fissure, two points that are identified on x-ray exposures of the side
of the head, in 27 children (16 boys, 11 girls). Measurements were taken by researchers of
the University of North Carolina Dental School at four different ages (8, 10, 12, 14 years),
giving 108 observations in total, to study growth patterns by sex. The dataset was reported

http://CRAN.R-project.org/package=lqmm
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in Potthoff and Roy (1964) and used for illustration of mixed modeling methods by Pinheiro
and Bates (2000). The dataset is available in the package nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2014) as well as in lqmm. I load the former as it provides useful
functions for objects of class ‘groupedData’ and then I obtain the summary of the dataset as
follows:

R> library("nlme")

R> data("Orthodont", package = "nlme")

R> Orthodont$Subject <- as.character(Orthodont$Subject)

R> Orthodont <- update(Orthodont, units = list(x = "(years)", y = "(mm)"),

+ order.groups = FALSE)

R> summary(Orthodont)

distance age Subject Sex

Min. :16.50 Min. : 8.0 F01 : 4 Male :64

1st Qu.:22.00 1st Qu.: 9.5 F02 : 4 Female:44

Median :23.75 Median :11.0 F03 : 4

Mean :24.02 Mean :11.0 F04 : 4

3rd Qu.:26.00 3rd Qu.:12.5 F05 : 4

Max. :31.50 Max. :14.0 F06 : 4

(Other):84

A trellis plot (Sarkar 2008) of selected individual temporal trajectories in the pituitary-
pterygomaxillary fissure distance is shown in Figure 1. This was obtained with the plot

method for ‘nfnGroupedData’ objects provided by package nlme. To simplify some of the
examples, only a subset (i.e., girls) is used (see also Pinheiro and Bates 2000, p. 35). The full
dataset is analyzed in Section 6.

3. Models for clustered data

3.1. Linear mixed models

Consider clustered data in the form
(
x>ij , z

>
ij , yij

)
, for j = 1, . . . , ni and i = 1, . . . ,M , N =∑

i ni, where x>ij is the jth row of a known ni × p matrix Xi, z>ij is the jth row of a known

ni× q matrix Zi and yij is the jth observation of the ith response vector yi = (yi1, . . . , yini)
>.

Mixed effects models represent a common and well-known class of regression models used to
analyze data coming from similar designs. A typical formulation of a linear mixed model
(LMM) for clustered data is given by

yij = x>ijβ + z>ijui + εij , j = 1, . . . , ni, i = 1, . . . ,M ,

where β and ui, i = 1, . . . ,M , are, respectively, fixed and random effects associated with p
and q model covariates and the response vector yi is assumed to follow a multivariate normal
distribution characterized by some parameter θ. The dependence among the observations
within the ith cluster is induced by the random effect vector ui, which is shared by all
observations within the same cluster. However, the random effects and the within-cluster
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errors are assumed to be independent for different clusters and to be mutually independent
for the same cluster (Pinheiro and Bates 2000).

In matrix form, the model above can be written as

y = Xβ + Zu + ε, (3)

where y = (y1, . . . ,yM )>, X =
[
X>1 | . . . |X>M

]>
, Z =

⊕M
i=1 Zi, and u = (u>1 , . . . ,u

>
M )>.

From a conditional point of view, the LMM is a location-shift model. That is, the predictors
X = {x1, . . . ,xp} and Z = {z1, . . . , zq}, where often X ⊇ Z, are assumed to shift the
conditional expectation E (y|u) = Xβ + Zu only, without affecting the response distribution
in any other respect. However, a particular marginal model can be derived from (3) (Lee
and Nelder 2004). Suppose X = Z and COV (ε) = ψ2

ε IN . Equation 3 can be rewritten as
y = Xβ+ε∗, where ε∗ = Zu+ε, with E (y) = Xβ and COV (ε∗) = ZCOV (u) Z>+ψ2

ε IN . The
within-cluster random term then confers a specific heteroscedastic structure to the model’s
error term ε∗, despite the iid assumptions on ε.

For example, consider the orthodontic growth data described earlier. Using the package lme4
(Bates, Maechler, Bolker, and Walker 2014), a random-intercept model is fitted by restricted
maximum likelihood (REML) to estimate the growth rate in girls. The random effects ui,
i = 1, . . . , 11, are therefore assumed N

(
0, ψ2

u

)
. Note also that the variable age is centered at

11 years so that the cross-product between intercept and slope is zero.

R> library("lme4")

R> Orthodont$age.c <- Orthodont$age - 11

R> Orthodont.sub <- subset(Orthodont, Orthodont$Sex == "Female")

R> fit.lmer <- lmer(distance ~ age.c + (1 | Subject), data = Orthodont.sub)

R> fit.lmer

Linear mixed model fit by REML ['lmerMod']

Formula: distance ~ age.c + (1 | Subject)

Data: Orthodont.sub

REML criterion at convergence: 141.2183

Random effects:

Groups Name Std.Dev.

Subject (Intercept) 2.068

Residual 0.780

Number of obs: 44, groups: Subject, 11

Fixed Effects:

(Intercept) age.c

22.6477 0.4795

The interpretation of the results reported above is as follows. The mean distance at age 11
years in this sample is β̂0 = 22.65 mm while the mean slope or growth rate over the observed
time period is β̂1 = 0.48 mm per year, which are average characteristics of the population
that these subjects represent. At the individual level, girl-specific trajectories are randomly
shifted around the population mean curve with an estimated variance ψ̂2

u = 4.28 mm2. The
intraclass correlation coefficient (ICC) is given by ψ̂2

u/(ψ̂
2
u + ψ̂2

ε) = 4.28/(4.28 + 0.61) = 0.87,
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Figure 2: Histogram of pituitary-pterygomaxillary fissure distance in girls by age.

which suggests that measurements within the same subject are strongly correlated at the mean
of the marginal distribution of the response. In other words, 87% of the total variability in
the response not explained by the population average and the population age effect is due to
unobserved heterogeneity between subjects.

These results, however informative, do not tell us what happens in the rest of the conditional
distribution. Most importantly, the data show signs of non-normality (Figure 2) for which
the assumptions of a location-shift model may prove inappropriate.

3.2. Linear quantile mixed models

As seen in Section 1, the convenience of using an AL distribution allows estimating the
τth conditional quantile using maximum likelihood methods. Let us assume that the yi’s,
i = 1, . . . ,M , conditionally on a q×1 vector of random effects ui, are independently distributed
according to an unknown continuous distribution Fyi|ui

(therefore the Gaussian assumption
for yi|ui of a LMM is abandoned). Independence is also assumed for the within-cluster errors,
though in principle extensions to allow for within-cluster correlation can be considered. A

joint AL model for yi|ui is introduced, with location and scale parameters given by µ
(τ)
i =
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Xiθ
(τ)
x + Ziui and σ(τ), respectively, where θ

(τ)
x ∈ Rp is a vector of unknown fixed effects.

The τth LQMM is given by

y = µ(τ) + ε(τ), (4)

where µ(τ) =
(
µ
(τ)
1 , . . . ,µ

(τ)
M

)>
, which can be compactly written in matrix form as µ(τ) =

Xθ
(τ)
x + Zu. The skewness parameter τ is set a priori and defines the quantile level to be es-

timated. Also, ui = (ui1, . . . , uiq)
>, for i = 1, . . . ,M , is assumed to be a zero-median random

vector independent from the model’s error term and distributed according to p
(
ui|Ψ(τ)

)
,

where Ψ(τ) is a q × q covariance matrix. Note that all the parameters are τ -dependent. The
random effects vector u depends on τ through Ψ(τ). The superscript τ will be omitted when
this is not source of confusion.

From the LQMM in Equation 4, the joint density of (y,u) based on M clusters in the τth
quantile is given by

p(y,u|θ(τ)
x , σ(τ),Ψ(τ)) = p(y|θ(τ)

x , σ(τ),u)p(u|Ψ(τ))

=
M∏
i=1

p(yi|θ(τ)
x , σ(τ),ui)p(ui|Ψ(τ)). (5)

It is worth stressing that, although the conditional distribution Fyij |ui
is assumed to be un-

known, its τth quantile is conveniently estimated as the location parameter µ
(τ)
ij = x>ijθ

(τ)
x +

z>ijui of an AL distribution with scale σ(τ) and (given) skewness τ . Since the model’s in-

terpretation is conditional, one could also define the parameter θ
(τ)
x as the τth quantile of

yij |ui = 0.

Following the definition of the joint density in Equation 5, the next step consists in adopting
an estimation strategy for the parameters of interest, which prompts considerations on how to
deal with the unobserved random effects u. There is a rich literature on mixed models estima-
tion. The typical approach is to integrate the random effects out from the joint distribution
and then optimize the integrated (log-) likelihood. The marginal likelihood of a LMM, for
example, has a closed-form expression (Pinheiro and Bates 2000) and (restricted) maximum
likelihood estimation is carried out using iterative algorithms such as EM (Dempster, Laird,
and Rubin 1977) or Newton-Raphson (Laird and Ware 1982) algorithms. In models where
integrals do not have a closed-form solution, one needs to resort to approximate methods such
as marginal and penalized quasi-likelihood methods, Markov Chain Monte Carlo methods,
and numerical integration. This is the case of generalized linear mixed models (Booth and
Hobert 1999; Rabe-Hesketh, Skrondal, and Pickles 2002; Pinheiro and Chao 2006), nonlinear
mixed models (Pinheiro and Bates 1995) and models for non-Gaussian continuous responses
(Staudenmayer, Lake, and Wand 2009).

The first attempt to fit quantile regression models with random intercepts led to a Monte Carlo
EM procedure (Geraci and Bottai 2007), which, however, can be computationally intensive
and inefficient. A different approach based on Gaussian quadrature has been proposed by
Geraci and Bottai (2014) and implemented in the R package lqmm.

Briefly, the log-likelihood for M clusters integrated over Rq is (up to an additive constant)
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given by

`
(
θ(τ)
x , σ(τ),Ψ(τ)|y

)
=

M∑
i=1

[
log σ(τ)ni

+ log

∫
Rq

exp

{
− 1

σ
ρτ

(
yi − µ

(τ)
i

)}
p
(
ui|Ψ(τ)

)
dui

]
,

where I used the simplified notation σ
(τ)
ni = τni(1− τ)ni/σni and ρτ

(
yi − µ

(τ)
i

)
=∑ni

j=1 ρτ

(
yij − µ(τ)ij

)
. For fitting purposes, the covariance matrix of the random effects is

parameterized in terms of an m-dimensional vector of non-redundant parameters θz, i.e.,

Ψ (θz). The parameter of interest is defined as θ =
(
θ>x ,θ

>
z

)>
.

It is immediate to verify that there is a strict relationship between the choice of a distribution
for u and the type of quadrature. The assumption of normal random effects, u ∼ N (0,Ψ),
which is often introduced in mixed models, leads directly to a Gauss-Hermite quadrature
(Geraci and Bottai 2014) for the approximate AL-based log-likelihood

`app (θ, σ|y) =

M∑
i=1

log


K∑

k1=1

· · ·
K∑

kq=1

p

(
yi|θx, σ,

(
Ψ>
)1/2

vk1,...,kq

)
×

q∏
l=1

wkl

 , (6)

with nodes vk1,...,kq = (vk1 , . . . , vkq)> and weights wkl , l = 1, . . . , q, respectively. The constant
K is an integer giving the number of points for each of the q one-dimensional integrals over the
real line. As a robust alternative to the Gaussian distribution, it is also possible to consider
the symmetric Laplace (double-exponential) distribution, which leads to an approximation
similar to Equation 6, but where the nodes and weights are those from a Gauss-Laguerre
quadrature rule. In lqmm, the quadrature nodes and weights are obtained using the command
gauss.quad from statmod (Smyth, Hu, Dunn, Phipson, and Chen 2013).

3.3. The main call lqmm

I now illustrate the basic arguments in the main command lqmm. After loading the package
lqmm

R> library("lqmm")

Package lqmm (1.5) loaded. Type citation("lqmm") on how to cite this package

the documentation for lqmm is accessed through help("lqmm"). The arguments of this func-
tion can also be displayed on the R console:

R> args(lqmm)

function (fixed, random, group, covariance = "pdDiag", tau = 0.5,

nK = 7, type = "normal", rule = 1, data = sys.frame(sys.parent()),

subset, weights, na.action = na.fail, control = list(), contrasts = NULL,

fit = TRUE)
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Let us start with a simple model for the conditional median of distance using the orthodontic
growth data. As in Section 3.1, a random intercept is included in the linear predictor to
account for the correlation of repeated observations within Subject. The first two arguments,
fixed and random, are formula objects that define, respectively, the fixed and the random

parts of the linear predictor µ
(τ)
i = Xiθ

(τ)
x + Ziui, i = 1, . . . ,M , while the clustering or

grouping variable is defined in the argument group. All variables are taken from the optional
data frame data. Finally, the quantile level τ is specified using the argument tau (by default,
the median):

R> fit.lqmm <- lqmm(fixed = distance ~ age.c, random = ~ 1, group =

+ Subject, tau = 0.5, nK = 7, type = "normal", data = Orthodont.sub)

R> fit.lqmm

Call: lqmm(fixed = distance ~ age.c, random = ~1, group = Subject,

tau = 0.5, nK = 7, type = "normal", data = Orthodont.sub)

Quantile 0.5

Fixed effects:

(Intercept) age.c

22.9410 0.4417

Covariance matrix of the random effects:

(Intercept)

2.341

Residual scale parameter: 0.2969 (standard deviation 0.8397)

Log-likelihood: -68.19

Number of observations: 44

Number of groups: 11

Before entering in the details of the estimation algorithms, let us read the output obtained
from the above call to lqmm, which returns an R list of class ‘lqmm’. The estimated fixed effects
θ̂x = (22.94, 0.44)> show that the median distance at age 11 years in girls is 22.94 mm while
the median slope or growth rate is 0.44 mm per year. The random effects have an estimated
variance of ψ̂2

u = 2.34 mm2. The ICC is given by ψ̂2
u/(ψ̂

2
u + ψ̂2) = 2.34/(2.34 + 0.842) = 0.77.

One of course might ask where the number 0.84 comes from. Recall that a measure of the
scale of the residuals obtained after solving (1) can be calculated as (Koenker 2005)

1

M

M∑
i=1

ρτ

(
yi − x>i β̂

)
,

which is also the MLE of the scale parameter of an AL distribution (Yu and Zhang 2005). As
seen previously, σ is related to the variance of an AL, which provides a model-based ‘residual
variance’ to derive the ICC above. Given σ̂ = 0.2969 and τ = 0.5, one can also calculate
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R> sqrt(varAL(sigma = 0.2969, tau = 0.5))

[1] 0.83976

The estimated parameters are stored in the fitted object fit.lqmm as fit.lqmm$theta (θ),
fit.lqmm$theta_x (θx), fit.lqmm$theta_z (θz), and fit.lqmm$scale (σ). The generic
function coefficients (or coef) can be used to obtain the fixed effects while the function
VarCorr extracts the matrix Ψ, as shown below. The use of VarCorr is recommended since,
as mentioned before, Ψ is parametrized in terms of θz.

R> coef(fit.lqmm)

(Intercept) age.c

22.9410472 0.4417377

R> VarCorr(fit.lqmm)

(Intercept)

2.340926

In general, the interpretation of the LQMM parameters is specific to the quantile being
estimated (Geraci and Bottai 2014). For example, the output below shows that rate of
growth in girls is 0.50 mm per year at the third quartile (τ = 0.75). The random effects have
an estimated variance of ψ̂2

u = 2.21 mm2, yielding an ICC equal to 0.71. The basic idea of
LQMM is that the covariates might exert different effects at different quantiles of the outcome
distribution, as assessed in standard quantile regression (Koenker and Bassett 1978), and that
the degree of unobserved heterogeneity might also be characterized with τ -specific variance
parameters.

R> lqmm(fixed = distance ~ age.c, random = ~ 1, group = Subject,

+ tau = 0.75, nK = 7, type = "normal", data = Orthodont.sub)

Call: lqmm(fixed = distance ~ age.c, random = ~1, group = Subject,

tau = 0.75, nK = 7, type = "normal", data = Orthodont.sub)

Quantile 0.75

Fixed effects:

(Intercept) age.c

23.22 0.50

Covariance matrix of the random effects:

(Intercept)

2.207

Residual scale parameter: 0.2233 (standard deviation 0.9416)

Log-likelihood: -68.06

Number of observations: 44

Number of groups: 11
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Covariance
matrix

Argument
covariance

VAR (ul)
l = 1, . . . , q

COV (ul, ul′)
l 6= l′

m
Argument
type

Multiple of an
identity

pdIdent ψ2
u 0 1

"normal" or
"robust"

Compound
symmetry

pdCompSymm ψ2
u φ

1 (q = 1) or
2 (q > 1)

"normal" only

Diagonal pdDiag ψ2
l 0 q

"normal" or
"robust"

General
positive-definite

pdSymm ψ2
l φll′ q(q + 1)/2 "normal" only

Table 1: Summary table of the covariance structures available in lqmm and type of quadrature
available.

Let us now focus on the arguments type and covariance, which are relevant to the choice of
the distribution of the random effects and, ultimately, to numerical integration. The number
of quadrature nodes K is specified with nK and this is set to 7 by default. Since guidance
on how to choose K in LQMMs is given by Geraci and Bottai (2014), here I will not discuss
this issue further. However, a general recommendation is to start with low values of K (say,
K < 10), as the total size of the quadrature grid, Kq, grows exponentially with the number of
random effects. The argument type takes the character string "normal" for Gaussian random
effects (i.e., Gauss-Hermite quadrature) or "robust" for Laplace random effects (i.e., Gauss-
Laguerre quadrature). However, while the Gauss-Hermite quadrature allows for all types of
covariance matrix Ψ implemented in lqmm, the Gauss-Laguerre quadrature can be used for
uncorrelated random effects only (see Geraci and Bottai 2014, for further details). Table 1
gives a summary of the options currently available in the package. The types of covariance
matrices specified in covariance are named as in nlme. The table also includes the number
of unique parameters for each type of matrix, that is, the dimension m of θz.

Another argument related to the choice of the quadrature rule is rule, which introduces inte-
gration on sparse grids (Heiss and Winschel 2008) and nested integration rules for Gaussian
weights (Genz and Keister 1996) as implemented in the package SparseGrid (Heiss and Win-
schel 2008; Ypma 2013). This part of the code, which has not yet been extensively tested,
aims at introducing computational relief when the size of the quadrature grid is large. Further
studies are needed to assess the performance of these approaches.

4. Estimation algorithms

4.1. Optimization control

In lqmm, there are currently two algorithms to minimize the negative integrated log-likelihood
in Equation 6. The default is the gradient-search method described by Geraci and Bottai
(2014), which makes use of the Clarke’s derivative of the objective function to find the path
of steepest descent. The alternative is Nelder-Mead optimization, as implemented in optim,
which belongs to the class of direct search methods.

The argument control in lqmm takes a named list of optimization control parameters. Such
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a list is also produced by the function lqmmControl, whose arguments and corresponding
default values are displayed below:

R> args(lqmmControl)

function (method = "gs", LP_tol_ll = 1e-05, LP_tol_theta = 1e-05,

check_theta = FALSE, LP_step = NULL, beta = 0.5, gamma = 1,

reset_step = FALSE, LP_max_iter = 500, UP_tol = 1e-04, UP_max_iter = 20,

startQR = FALSE, verbose = FALSE)

The argument method specifies the optimization algorithm: gradient-based (method = "gs")
or derivative-free (method = "df") minimization. The basic computing engines lqmm.fit.gs
and lqmm.fit.df are called within lqmm but they can be used outside of the main call. These
functions and the relevant lqmmControl’s parameters are described in the next two sections.

4.2. Gradient-search optimization

The function lqmm.fit.gs executes the gradient-based estimation of θ. It is a wrapper for
the C function gradientSd_h and it performs pre- and post-estimation checks. The gradient-
search algorithm (Geraci and Bottai 2014) works as follows. From a current parameter value,
the algorithm searches the positive semi-line in the direction of the gradient for a new pa-
rameter value at which the likelihood is larger. The algorithm stops when the change in the
likelihood is less than a specified tolerance. At iteration t, let s

(
θt
)

denote Clarke’s gradi-
ent of the negative approximate log-likelihood, rewritten compactly as `app

(
θt, σ0

)
, given σ0.

The minimization steps for θ are:

1. Initialize θ0; δ0; σ0 and set t = 0.

2. If `app
(
θt − δts

(
θt
)
, σ0
)
≥ `app

(
θt, σ0

)
(a) then set δt+1 = aδt;

(b) else if |`app
(
θt, σ0

)
− `app

(
θt − δts

(
θt
)
, σ0
)
| < ω1

(i) then set θt+1 = θt − δts
(
θt
)
; return θt+1; stop;

(ii) else set θt+1 = θt − δts
(
θt
)
; δt+1 = bδt.

3. Set t = t+ 1; go to Step 2.

A check on the convergence of the parameter θ can be introduced in Step (b) by verifying
max | δts

(
θt
)
|< ω2, where ω2 > 0 controls the tolerance. By default, this check is not carried

out in lqmm but it can be changed by setting check_theta = TRUE in lqmmControl.

The iterative loop for θ is the ‘lower’ level of the optimization. The ‘upper’ level of the al-
gorithm consists in updating the scale parameter: once the algorithm finds a solution for θ,
given σ0, the scale parameter is estimated residually to obtain σ1. If the change in the pa-
rameter, is sufficiently small, say |σ0−σ1| < ω3, with ω3 > 0, the algorithm stops. Otherwise
another iterative loop for θ is initialized by setting σ = σ1 and so forth until convergence is
achieved for σ as well.

The starting values θ0 and σ0 are specified in lqmm.fit.gs’s arguments theta_0 and sigma_0,
respectively. The starting values for θx and σ are provided automatically by lqmm, either
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using ordinary least-squares estimates or, if startQR = TRUE, L1-norm estimates using lqm

(see Section 7). The elements of theta_z are all set equal to one. The initial step δ0 > 0
is specified in the argument LP_step of lqmmControl. If not provided by the user, this is
set equal to the standard deviation of the response variable. Additionally, it is possible to
instruct the algorithm to reset δ to its initial value (reset_step = TRUE) at Step (2.ii) of the
algorithm above, i.e., δt+1 = δ0.

The values for the tolerance parameters ω1, ω2, and ω3 can be passed to the arguments
LP_tol_ll, LP_tol_theta and UP_tol, respectively. The contraction step factor a ∈ (0, 1)
and the expansion step factor b ≥ 1 are specified in the arguments beta and gamma, respec-
tively. Finally, the maximum numbers of iterations for the lower and upper loops are given
in LP_max_iter and UP_max_iter, respectively. It is possible to monitor the value of the
objective function as the algorithm proceeds by setting verbose = TRUE.

The function lqmm.fit.gs can be called directly by the user. This allows, for example,
specifying arbitrary starting values for θ and σ. The list of arguments can be created by first
calling lqmm with fit = FALSE. This object, opportunely modified, can be then passed to
lqmm.fit.gs:

R> fit.args <- lqmm(fixed = distance ~ age.c, random = ~ 1, group =

+ Subject, tau = 0.5, nK = 7, type = "normal", data = Orthodont.sub,

+ fit = FALSE)

R> fit.args$theta_0

(Intercept) age.c

22.6477273 0.4795455 1.0000000

R> fit.args$theta_0[3] <- 0.001

R> do.call("lqmm.fit.gs", args = fit.args)

$theta

[1] 2.260618e+01 4.646043e-01 7.221280e-05

$scale

[1] 0.8368506

$gradient

[1] 0.8706574 0.2220348 0.4181307

$logLik

[1] -97.15939

$opt

$opt$low_loop

[1] 22

$opt$upp_loop

[1] 2
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The output above shows that setting the starting value for theta_z (which in this case is the
third element of theta) to 0.001 causes the algorithm to converge to a different optimum for
θz, in the vicinity of the starting point itself. Care, therefore, must be taken in defining the
initial values. The output also reports the number of iterations at convergence for the upper
loop (opt$upp_loop) and that for the last cycle of the lower loop (opt$low_loop). If the
algorithm fails to converge, a warning will be produced. By way of example, let us set the
maximum number of iterations for θ to a small value, say LP_max_iter = 10:

R> fit.args$control$LP_max_iter <- 10

R> do.call("lqmm.fit.gs", args = fit.args)

$theta

[1] 22.622664418 0.465670539 0.002287113

$scale

[1] 0.837245

$gradient

[1] 1.19432138 1.19432138 -0.08808333

$logLik

[1] -97.18022

$opt

$opt$low_loop

[1] -1

$opt$upp_loop

[1] 2

Warning message:

In errorHandling(OPTIMIZATION$low_loop, "low", control$LP_max_iter, :

Lower loop did not converge in: lqmm. Try increasing max number of iterations

(10) or tolerance (1e-05)

The warning message will suggest using less restrictive convergence criteria, while reporting
in parentheses those last used. Note that opt$low_loop is equal to −1, which is the value
that the function errorHandling interprets as ‘algorithm did not converge’, as opposed to
−2, which is the code for ‘algorithm did not start’.

4.3. Derivative-free optimization

As mentioned before, the derivative-free algorithm is based on Nelder-Mead optimization
routines. The function lqmm.fit.df is a wrapper for the command optim, which in turn
minimizes the negative approximate log-likelihood as returned by the C function ll_h_R. It
proceeds similarly to gradient-search by alternating a loop for θ and a step to update σ. The
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parameters LP_tol_ll, LP_max_iter and verbose in lqmmControl are passed to optim via
the arguments abstol, maxit and trace, respectively.

Two successive calls to fit.lqmm.df using the list fit.args are shown below: the first with
theta_z left equal to 0.001, the second with theta_z changed back to 1. The maximum
number of iterations is restored to 500.

R> fit.args$control$LP_max_iter <- 500

R> fit.args$control$verbose <- TRUE

R> do.call("lqmm.fit.df", args = fit.args)

Upper loop = 1

Nelder-Mead direct search function minimizer

function value for initial parameters = 97.525938

Scaled convergence tolerance is 1.45325e-06

Stepsize computed as 2.264773

[...]

Exiting from Nelder Mead minimizer

178 function evaluations used

(1) logLik = -84.378

[snip]

Upper loop = 4

[...]

Exiting from Nelder Mead minimizer

219 function evaluations used

(4) logLik = -68.16

$theta

(Intercept) I(age - 11)

22.937500 0.437500 1.515932

$scale

[1] 0.2963305

$logLik

[1] -68.15952

$opt

$opt$low_loop

[1] 219

$opt$upp_loop

[1] 4

R> fit.args$theta_0[3] <- 1

R> do.call("lqmm.fit.df", args = fit.args)

[...]

$theta
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(Intercept) I(age - 11)

22.9374987 0.4375005 1.5159317

$scale

[1] 0.2963305

$logLik

[1] -68.15952

$opt

$opt$low_loop

[1] 147

$opt$upp_loop

[1] 3

These two calls produce similar estimates of the parameters. However, convergence in the
first call is attained with a larger overall number of function evaluations (889 against 675,
respectively).

In comparison, gradient search needed in total 93 evaluations of the likelihood and score
functions when starting from

R> fit.args$theta_0

(Intercept) age.c

22.6477273 0.4795455 1.0000000

converging to

R> do.call("lqmm.fit.gs", args = fit.args)

[...]

$theta

[1] 22.9410472 0.4417377 1.5300087

$scale

[1] 0.2968949

$gradient

[1] -1.1507525 -0.8904712 2.8303527

$logLik

[1] -68.19345

$opt

$opt$low_loop

[1] 21
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$opt$upp_loop

[1] 3

It is possible to transform theta_z back to ψ̂2
u using the function covHandling, for example:

R> covHandling(theta = 1.5300087, n = 1, cov_name = fit.args$cov_name,

+ quad_type = "normal")

[1] 2.340927

When the estimated covariance matrix is not positive definite, this function will produce a
warning and will apply an approximation to the nearest symmetric positive definite matrix
by using make.positive.definite from corpcor (Schäfer, Opgen-Rhein, Zuber, Ahdesmäki,
Duarte Silva, and Strimmer 2013).

5. Methods for ‘lqmm’ objects

5.1. The summary and bootstrap functions

Consider first a call to lmer using the orthodontic growth data, in which both random inter-
cepts and slopes are specified in the linear predictor:

R> fit.lmer <- lmer(distance ~ age.c + (age.c | Subject),

+ data = Orthodont.sub)

R> summary(fit.lmer)

Linear mixed model fit by REML ['lmerMod']

Formula: distance ~ age.c + (age.c | Subject)

Data: Orthodont.sub

REML criterion at convergence: 137.4

Scaled residuals:

Min 1Q Median 3Q Max

-1.8544 -0.4678 0.0678 0.4298 1.5922

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 4.3190 2.0782

age.c 0.0259 0.1609 0.53

Residual 0.4466 0.6683

Number of obs: 44, groups: Subject, 11

Fixed effects:

Estimate Std. Error t value
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(Intercept) 22.64773 0.63466 35.68

age.c 0.47955 0.06621 7.24

Correlation of Fixed Effects:

(Intr)

age.c 0.384

To estimate a similar model for the quartiles of distance conditional on age.c (age centered
on 11 years), the vector c(0.25, 0.5, 0.75) is passed to the argument tau. The resulting
lqmm object will contain the estimates of the three quantile models, which are fitted sequen-
tially and independently using the same formulas for fixed and random effects. The covariance
model of the random effects "pdSymm" will have in this case m = 3 unique parameters (two
variances, one for the intercept and one for the slope, and one intercept-slope covariance).

R> fit.lqmm <- lqmm(distance ~ age.c, random = ~ age.c, group = Subject,

+ covariance = "pdSymm", tau = c(0.25, 0.5, 0.75), nK = 7,

+ type = "normal", data = Orthodont.sub,

+ control = lqmmControl(method = "df"))

The summary method for ‘lqmm’ objects produces a summary object that provides standard
errors, (1−α)% confidence intervals and p values for the coefficients and the scale parameter
of each quantile model. Inference on parameters is based on block-bootstrap (Geraci and
Bottai 2014), which is currently the only method implemented in the package. The number of
bootstrap replications (default 50) can be specified in the summary method using the additional
argument R. The results of the likelihood ratio test and AIC values are also produced.

R> system.time(print(fit.lqmm.s <- summary(fit.lqmm, R = 100, seed = 52)))

Call: lqmm(fixed = distance ~ age.c, random = ~age.c, group = Subject,

covariance = "pdSymm", tau = c(0.25, 0.5, 0.75), nK = 7, type = "normal",

data = Orthodont.sub, control = lqmmControl(method = "df"))

tau = 0.25

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 22.80948 0.82165 21.17915 24.4398 < 2.2e-16 ***

age.c 0.46518 0.13831 0.19075 0.7396 0.001096 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

tau = 0.5

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 23.11215 0.83347 21.45836 24.7659 < 2.2e-16 ***

age.c 0.53738 0.10559 0.32787 0.7469 1.71e-06 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

tau = 0.75

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 24.273541 0.830865 22.624924 25.9222 < 2.2e-16 ***

age.c 0.575486 0.093357 0.390246 0.7607 1.539e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null model (likelihood ratio):

[1] 25.869 (p = 3.653e-07) 28.732 (p = 8.314e-08) 8.175 (p = 4.247e-03)

AIC:

[1] 146.4 (df = 6) 141.6 (df = 6) 154.0 (df = 6)

user system elapsed

60.70 0.00 60.71

There were 31 warnings (use warnings() to see them)

It is interesting to note in the output above that the magnitude of the slope for age increases
with increasing quantile level. The elapsed CPU time was about one minute to run 100 repli-
cations for three quantiles (approximately 0.04 seconds per sample). The ‘non-convergence’
warnings

R> warnings()

Warning messages:

1: In errorHandling(OPTIMIZATION$low_loop, "low", control$LP_max_iter, ... :

Lower loop did not converge in: lqmm. Try increasing max number of

iterations (500) or tolerance (1e-05)

[...]

may be of less concern if they occur during bootstrap. This may happen when the algorithm
requires a certain number of data points to estimate the specified regression model but one
or more bootstrap samples do not provide adequate information because of a particular con-
figuration of their units. Clearly, this situation is more likely to happen when estimating tail
quantiles with a number of parameters that is relatively high given the size and design of the
dataset. In the first instance, one can assess the summary output by using less stringent op-
timization parameters. This is shown below by increasing the number of maximum iterations
and the tolerance for the previous example. As a result, essentially the same estimates are
obtained but with no warnings:

R> fit.lqmm$control$LP_tol_ll <- 1e-3

R> fit.lqmm$control$LP_max_iter <- 1000

R> summary(fit.lqmm, R = 100, seed = 52)
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The function boot.lqmm executes the bootstrapping, producing an object of class ‘boot.lqmm’
that is stored within the summary output (e.g., fit.lqmm.s$B). The function boot.lqmm can
also be applied directly to a fitted ‘lqmm’ object:

R> fit.boot <- boot(fit.lqmm, R = 100, seed = 52, startQR = FALSE)

Among the boot.lqmm’s arguments, it is worth calling the attention on startQR. If set to
TRUE, the fitted parameters in the ‘lqmm’ object are used as starting values for each bootstrap
sample. On the one hand this may speed up the fitting process. However, it may also cause
the algorithm to converge too often to a similar optimum, which would ultimately result in
underestimated standard errors. Finally, all bootstrap estimates are stored in an array of
dimension c(R, p + m, nt), where R represents the number of bootstrap replications, p +

m the length of theta and nt the length of tau. Estimated parameters for fixed (theta_x)
and random (theta_z) effects can be extracted separately from a ‘boot.lqmm’ object using
the generic function extractBoot, while a summary can be produced using function summary

method for ‘lqmm’ objects:

R> extractBoot(fit.lqmm.s$B, "random")

R> extractBoot(fit.boot, "random")

R> summary(fit.lqmm.s$B)

R> summary(fit.boot)

Bootstrap estimates can also be used to perform inference on the difference between regression
quantiles. A 95% bootstrap confidence interval for the interquartile regression coefficients can
be computed as follows:

R> B <- extractBoot(fit.boot, "fixed")[, "age.c", c(1, 3)]

R> quantile(apply(B, 1, diff), probs = c(.025, 0.975))

2.5% 97.5%

-0.4141825 0.1731508

5.2. Prediction functions

Other important functions include ranef.lqmm and methods for predict and residuals for
‘lqmm’ objects. Here I introduce the former in detail and briefly describe the other two.

Prediction of random effects in LQMMs is still an ongoing research issue. Geraci and Bot-
tai (2014) provided provisional guidance on the development of an approach based on best
prediction. The best linear predictor (BLP) of u for the τth LQMM is given by

u
(τ)
BLP = Ψ(τ)Z>Σ−1

{
y −Xθ(τ)

x − E
(
ε(τ)
)}

, (7)

where Σ ≡ COV (y) = ZΨ(τ)Z> + ψ
(τ)
ε IN and ψ

(τ)
ε = σ2(1−2τ+2τ2)

(1−τ)2τ2 .

For a median random-intercepts model, the BLP in Equation 7 simplifies to

u
(0.5)
BLP = Z>

{
ZZ> + λIN

}−1 {
y −Xθ(0.5)

x

}
, (8)
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where λ = ψ
(0.5)
ε /ψ2

u, provided that ψ2
u > 0. Note that ψ

(0.5)
ε = 8σ2.

The BLP in Equation 8 resembles that obtained from a LMM. It is therefore reasonable
to expect that predicted random effects from a mean and a median mixed model should be
comparable when the parameters’ estimates are similar. The code to obtain predicted subject-
specific intercepts and slopes of the mean and median models for the orthodontic growth data
is shown below:

R> uhat.lqmm <- ranef(fit.lqmm)[["0.50"]]

R> uhat.lmer <- ranef(fit.lmer)$Subject

R> cbind(uhat.lqmm, uhat.lmer)

(Intercept) age.c (Intercept) age.c

F01 -1.67336060 -0.151487226 -1.24648089 -0.07544777

F02 -0.06175306 0.145982503 0.37669314 0.15411767

F03 0.65729898 0.199918276 1.10996494 0.19327305

F04 1.65962130 0.024167200 2.16096221 0.04633894

F05 -0.50600768 -0.166157311 -0.04428769 -0.09397913

F06 -1.91022033 -0.159960086 -1.48909333 -0.08088227

F07 -0.10411736 0.003396539 0.34952067 0.03985811

F08 0.18762578 -0.197773117 0.67268063 -0.12337948

F09 -1.92716605 -0.216994472 -1.49996231 -0.12658609

F10 -4.38453818 -0.206149328 -4.02837218 -0.10366657

F11 3.11467111 0.189073132 3.63837480 0.17035354

The BLP of the random effects is implemented in the function ranef.lqmm, which takes a
‘lqmm’ object as the only argument. If more than one quantile model has been fitted, the
output of ranef.lqmm will be a named list of predictions, with names given by tau.

Prediction of the response can be carried out using the corresponding predict method. The
argument level specifies whether predictions should be returned at the ‘population’ level

(level = 0), that is ŷ(τ) = Xθ̂
(τ)
x , or at the ‘cluster’ level (level = 1), that is ŷ(τ) =

Xθ̂
(τ)
x + Zû

(τ)
BLP. This is similar to the argument level in the predict method for ‘lme’

objects in package nlme (the reader is referred to Geraci and Bottai 2014 for a discussion on the
interpretation of the regression coefficients at the population level in LQMM). Analogously,
residuals can be calculated at one or the other level by using the corresponding residuals

method as shown below:

R> predict(fit.lqmm, level = 0)

R> residuals(fit.lqmm, level = 0)

By way of example, Figure 3 shows the mean and quartile regression lines predicted for each of
the 11 girls (that is, level = 1) in the orthodontic growth data (see Figure 1.14 in Pinheiro
and Bates 2000, p. 38). While medians and means tally in magnitude and sign, for some
subjects the distance between the first and third quartiles varies by age, which suggests the
presence of a slight heteroscedasticity in the conditional distribution y|u.
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Figure 3: Trellis plot of subject-specific predicted curves (level = 1) of pituitary-
pterygomaxillary fissure distance in girls (mean, solid line; median, dashed line; first and
third quartiles, dotted lines).

6. Modeling conditional quantiles

So far individual lqmm commands have been described separately. In this section the focus
is on performing a quantile analysis and discussing related modeling choices.

Consider three linear quantile models with fixed and random effects for age, sex and age-sex
interaction. The random effects are assumed normally distributed with either identity (Model
1), or compound symmetry (Model 2) or diagonal (Model 3) covariance matrices. A fourth
model (Model 4) includes the same fixed effects, but no interaction in the vector u, which is
assumed normally distributed with diagonal covariance matrix. The number of quadrature
nodes nK was set to 9, while the estimation control parameters were defined as

R> ctrl <- lqmmControl(method = "df", LP_tol_ll = 1e-4, LP_tol_theta = 1e-4,

+ check_theta = TRUE, LP_max_iter = 1000)

Three quartiles were estimated as follows

R> fit.lqmm.id <- lqmm(distance ~ age.c * Sex, random = ~ age.c * Sex,

+ group = Subject, covariance = "pdIdent", tau = c(0.25, 0.5, 0.75),

+ nK = 9, type = "normal", data = Orthodont, control = ctrl)

R> fit.lqmm.csymm <- lqmm(distance ~ age.c * Sex, random = ~ age.c * Sex,

+ group = Subject, covariance = "pdCompSymm", tau = c(0.25, 0.5, 0.75),

+ nK = 9, type = "normal", data = Orthodont, control = ctrl)
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R> fit.lqmm.diag <- lqmm(distance ~ age.c * Sex, random = ~ age.c * Sex,

+ group = Subject, covariance = "pdDiag", tau = c(0.25, 0.5, 0.75),

+ nK = 9, type = "normal", data = Orthodont, control = ctrl)

R> fit.lqmm.diag2 <- lqmm(distance ~ age.c * Sex, random = ~ age.c,

+ group = Subject, covariance = "pdDiag", tau = c(0.25, 0.5, 0.75),

+ nK = 9, type = "normal", data = Orthodont, control = ctrl)

Table 2 shows estimated parameters for the LQMMs described above. Standard errors were
based on R = 50 bootstrap replications. The values reported in the last column were obtained
from analogous LMMs with equivalent fixed and random effects structures. However, Model
4 was fitted using the function nlme::varIdent (e.g., Pinheiro and Bates 2000, p. 177) to
allow for different variances by sex for the within-group error.

The estimates from Model 1 suggest that at τ = 0.75 the population growth rate in boys
is faster than the rate at lower quantiles. In other words, the effort required to stay on the
same quantile level between any two time points is greater for those who rank higher in the
outcome distribution than for those who rank lower in the distribution (clearly, this does not
imply that if a given subject ranks, say, 75th at age 8 years will necessarily rank similarly at a
later time). However, the difference in slopes between the first and third quartiles contributes
to a mere 0.66 mm over a 6-year time period, which may not be clinically relevant. Growth
trajectories in girls start from lower levels and proceed at slower pace than in boys at all
quantiles. The estimated variance of the random effects, assumed to be the same for age, sex
and age-sex interaction, is very small or null at τ = 0.25, but larger at higher quartiles. As
compared to Models 2–4, Model 1 is the most parsimonious but it provides the worst AIC
values for τ = 0.25 and τ = 0.75.

Model 2, which allows random effects to be correlated, yet imposes the same variance param-
eters, does not offer an improvement with respect to Model 1, except for τ = 0.25.

Models 3 and 4, in contrast, show substantially lower AIC values, and these are similar
between the two models at all quartiles. Note also that, as compared to the first two models,
Models 3 and 4 provide a better AIC value for the mean. Furthermore, the AIC for Model
4 (429.52) is lower than that for Model 3 (450.60). This improvement is explained by the
heteroscedastic component of the model. Without it, Model 4 provides an AIC value of 448.58.
The estimates of the fixed slopes for age, in either boys or girls, are approximately constant
across quartiles. The estimated variance parameters also indicate that the random intercepts
vary considerably between subjects, slightly less for τ = 0.5 as compared to the other two
quartiles and the mean. In contrast, there is little or null variation between subject-specific
slopes. The conclusion that can be drawn based on the orthodontic growth data is that there
is no evidence of unequal growth rates in terms of pituitary-pterygomaxillary fissure distance
for either boys or girls ranking below and above the median. There seems to be, however, a
reduced level of heterogeneity near the median.

The analysis can be further extended to assess individual growth trajectories. Each panel
in Figure 4 plots individual measurements for boys and girls at different ages, together with
predicted marginal (that is, level = 0) quartiles using Model 4 (Table 2). Note that the
slopes differ by sex but not by subject. This type of plot provides centile curves analogous to
those typically used for screening purposes. For example, the growth paths of subjects ‘F01’
and ‘F10’ lie below the first quartile at all ages. A plot like the one in Figure 3, on the other
hand, can be used for ‘conditional’ screening (Wei and He 2006). Note that in the conditional
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τ = 0.25 τ = 0.5 τ = 0.75 LMM

Model 1 – covariance = "pdIdent"

intercept 23.43 (0.81) 24.97 (0.57) 26.25 (0.74) 24.97 (0.30)
age 0.64 (0.13) 0.66 (0.12) 0.75 (0.16) 0.78 (0.25)
sex −2.05 (0.93) −1.97 (0.75) −2.25 (0.98) −2.32 (0.54)
age:sex −0.27 (0.58) −0.16 (0.20) −0.25 (0.35) −0.30 (0.49)
ψ2
u (age, sex, age:sex) 0.00 2.15 0.96 0.91

log-likelihood −242.73 −224.33 −239.72 −240.59
AIC 497.45 460.65 491.44 493.19

Model 2 – covariance = "pdCompSymm"

intercept 23.73(0.71) 24.92 (0.62) 26.33 (0.67) 24.97 (0.30)
age 0.74 (0.35) 0.64 (0.10) 0.76 (0.17) 0.78 (0.25)
sex −1.66 (0.82) −1.93 (0.80) −2.50 (1.02) −2.32 (0.54)
age:sex −0.32 (0.54) −0.14 (0.30) −0.31 (0.25) −0.30 (0.49)
ψ2
u (diagonal) 1.47 2.20 1.23 0.90
φ (off-diagonal) 0.01 0.06 0.06 0.01
log-likelihood −230.76 −223.97 −237.60 −240.59
AIC 475.51 461.94 489.20 495.18

Model 3 – covariance = "pdDiag"

intercept 24.49 (0.91) 25.24 (0.67) 26.25 (0.62) 24.97 (0.46)
age 0.75 (0.10) 0.75 (0.09) 0.75 (0.09) 0.78 (0.08)
sex −1.99 (0.94) −2.24 (0.77) −2.94 (0.88) −2.32 (0.78)
age:sex −0.25 (0.14) −0.25 (0.12) −0.31 (0.11) −0.30 (0.13)
ψ2
1 (intercept) 2.91 2.12 3.81 2.92
ψ2
2 (age) 0.06 0.00 0.03 0.03
ψ2
3 (sex) 2.90 2.15 3.36 1.09
ψ2
4 (age:sex) 0.00 0.00 0.00 0.00

log-likelihood −209.62 −201.43 −205.70 −216.30
AIC 437.24 420.86 429.41 450.60

Model 4 – covariance = "pdDiag"

intercept 24.75 (0.89) 25.23 (0.75) 26.24 (0.71) 24.97 (0.51)
age 0.75 (0.12) 0.73 (0.09) 0.75 (0.11) 0.78 (0.10)
sex −2.13 (0.86) −2.30 (1.07) −2.86 (0.99) −2.32 (0.76)
age:sex −0.37 (0.15) −0.28 (0.12) −0.37 (0.15) −0.30 (0.12)
ψ2
1 (intercept) 3.82 2.82 3.73 3.44
ψ2
2 (age) 0.00 0.00 0.00 0.02

log-likelihood −210.71 −203.97 −207.20 −205.76
AIC 435.42 421.95 428.39 429.52

Table 2: Fitted models of pituitary-pterygomaxillary fissure distance conditional on age (base-
line: 11 years) and sex (baseline: boys) for three quartiles and the mean (LMM). Standard
errors are in parentheses.

plot the measurements for subjects ‘F01’ and ‘F10’ rank within the first and third conditional
quartiles or very close to them.
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Figure 4: Trellis plot of predicted marginal curves (level = 0) of pituitary-pterygomaxillary
fissure distance in boys and girls (median, dashed line; first and third quartiles, dotted lines).

7. Quantile regression for independent data

The package lqmm deals mainly with clustered data. However, some functions are also pro-
vided to estimate quantile regression models for independent data via maximization of the AL
likelihood with a gradient-search algorithm (Bottai, Orsini, and Geraci 2014). See also the
package quantreg (Koenker 2013) for estimation based on linear programming algorithms.

The main function lqm has the typical syntax of R regression fitting functions, with some
arguments analogous to those in lqmm:

R> args(lqm)

function (formula, data, subset, na.action, weights = NULL, tau = 0.5,

contrasts = NULL, control = list(), fit = TRUE)

Methods and functions for objects of class ‘lqm’ include coefficients, predict, summary,
logLik, AIC, and boot.

Finally the function lqm.counts implements the quantile methods for independent count data
proposed by Machado and Santos Silva (2005), using lqm.fit.gs as computing engine.

8. Conclusion

The lqmm package implements methods developed by Geraci and Bottai (2014) for conditional
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quantile estimation with clustered data, originally proposed by Geraci (2005). The R code is
written in S3-style, while main fitting procedures are coded in C. Ongoing methodological work
in LQMMs includes developing approaches with a reduced computational burden for both
model’s estimation and standard error calculation. Future extensions of the lqmm package
will also provide functions for complex survey estimation and multiple imputation as proposed
by Geraci (2013).
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