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The ‘mev’ package was originally introduced to implement the exact unconditional sampling algo-
rithms in Dombry et al. (2016). Thetwo algorithms therein allow one to simulate simple max-stable ran-
dom vectors. The implementation will work efficiently for moderate dimensions and do not currently
take approximate schemes for large spatial domains.

1 Functions and use

There are two main functions, rmev and rmevspec. rmev samples from simple max-stable processes,
meaning it will return an n ×d matrix of samples, where each of the column has a sample from a unit
Frechet distribution. In constrast, rmevspec returns sample on the unit simplex from the spectral (or
angular) measure. One could use this to test estimation based on spectral densities, or to construct
samples from Pareto processes.

The syntax is

library(mev)

#Sample of size 1000 from a 5-dimensional logistic model

x <- rmev(n=1000, d=5, param=0.5, model="log")

#Marginal parameters are all standard Frechet, meaning GEV(1,1,1)

apply(x, 2, function(col){ismev::gev.fit(col, show=FALSE)$mle})

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.0240 1.008 1.0800 0.9986 1.011

## [2,] 1.0115 1.025 1.0626 1.0024 1.002

## [3,] 0.9758 1.023 0.9808 1.0051 1.004

#Sample from the corresponding spectral density

w <- rmevspec(n=1000, d=5, param=0.5, model="log")

#All rows sum to 1 by construction

head(rowSums(w))

## [1] 1 1 1 1 1 1
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#The marginal mean is 1/d

round(colMeans(w),2)

## [1] 0.19 0.20 0.20 0.20 0.20

2 Description of the models implemented

The different models implemented are described in Dombry et al. (2016), but some other models can be
found and are described here.

1. logistic distribution (log) The logistic model of Gumbel (1960) (the Gumbel Archimedean copula)

P (X ≤ x) = exp

−(
n∑

i=1

(
1

xi

)α) 1
α


for α > 1. By default, rmev will transform an argument in (0,1) without warning, to conform with
the implementation. The spectral measure density is

hW (w ) = 1

d

Γ(d −α)

Γ(1−α)
αd−1

(
d∏

j=1
w j

)−(α+1) ( d∑
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w−α
j

)1/α−d

, w ∈Sd

2. asymmetric logistic distribution (alog) This model was proposed by Tawn (1990). It shares the
same parametrization as the evd package, merely replacing the algorithm for the generation of
logistic variates. Let Bd be the collection of all nonempty subsets of {1, . . . ,d}. The distribution
function of the d-variate asymmetric logistic distribution is

P (X ≤ x) = exp

− ∑
b∈Bd
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i∈b

(
θi ,b

xi

)αb
) 1
αb

,


while the spectral density is

hW (w ) = 1

d

∏d−1
j=1 ( jαb −1)∏

i∈b wi

(∏
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wi

)αb
(∑
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wi

)αb
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The parameters θi ,b must be provided in a list and represent the asymmetry parameter. The sam-
pling algorithm, from Stephenson (2003) gives some insight on the construction mechanism as a
max-mixture of logistic distributions. Consider sampling Z b from a logistic distribution of dimen-
sion |b| (or Fréchet variates if |b| = 1) with parameter αb (possibly recycled). Each marginal value
corresponds to the maximum of the weighted corresponding entry. That is, Xi = maxb∈Bθi ,b Zi ,b

for all i = 1, . . . ,d . The max-mixture is valid provided that
∑

b∈Bd
θi ,b = 1 for i = 1, . . . ,d . As such, em-

pirical estimates of the spectral measure will almost surely place mass on the inside of the simplex
rather than on subfaces.
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3. negative logistic distribution (neglog) The distribution function of the min-stable distribution
due to Galambos (1975) is

P (X ≤ x) = exp

− ∑
b∈B

(−1)|b|
(∑

i∈b
xi

−α
) 1
α


forα≤ 0 and corresponds to the model in Dombry et al. (2016). The density is (Kotz and Nadarajah,
2000)

hW (w ) = 1
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4. asymmetric negative logistic distribution (aneglog) The asymmetric negative logistic model is
alluded to in Joe (1990) as a generalization of the Galambos model. It is constructed in the same
way as the asymmetric logistic distribution; see Theorem 1 in Stephenson (2003). Let αb ≤ 0 for all
b ∈Bd and θi ,b ≥ 0 with

∑
b∈Bd

θi ,b = 1; the distribution function is then

P (X ≤ x) = exp

− ∑
b∈B

∑
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) 1
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 .

The density is (Kotz and Nadarajah, 2000)

hW (w ) = 1

d
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In particular, it does not correspond to the “negative logistic distribution” given in e.g. §4.2 of
Coles and Tawn (1991) or §3.5.3 of Kotz and Nadarajah (2000). The latter is not a valid distribution
function in dimension d ≥ 3 as the constraints therein on the parameters θi ,b are necessary, but
not sufficient.

Joe (1990) mentions generalizations of the distribution as given above but the constraints were not
enforced elsewhere in the literature. The proof that the distribution is valid follows from Theorem 1
of Stephenson (2003) as it is a max-mixture. Note that the parametrization of the asymmetric neg-
ative logistic distribution does not match the bivariate implementation of rbvevd.

5. multilogistic distribution (bilog) This multivariate extension of the logistic, proposed by Boldi
(2009), places mass on the interior of the simplex. Let W ∈Sd be the solution of

W j

Wd
=

C jU
−α j

j

CdU−αd
d

, j = 1, . . . ,d

where C j = Γ(d −α j )/Γ(1−α j ) for j = 1, . . . ,d and U ∈Sd follows a d-mixture of Dirichlet with the
j th component being D(1−δ jα j ), so that the mixture has density function

hU (u) = 1

d

d∑
j=1

Γ(d −α j )

Γ(1−α j )
u
−α j

j
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for 0 <α j < 1, j = 1, . . . ,d . The spectral density is given by

hW (w ) = 1

d

(
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j=1
α j u j

)−1 (
d∏

j=1
α j ud

)(
d∑
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)
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j

for α j ∈ (0,1)

6. Coles and Tawn Dirichlet distribution (ct) The Dirichlet model of Coles and Tawn (1991)

hW (w ) = 1

d

Γ
(
1+∑d

j=1α j

)
∏d

j=1α j w j

(
d∑

j=1
α j w j

)−(d+1) d∏
j=1

α j

d∏
j=1

(
α j w j∑d

k=1αk wk
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for α j > 0.

7. scaled extremal Dirichlet (sdir) The angular density of the scaled extremal Dirichlet model with
parameters ρ >−min(α) andα ∈Rd+ is given, for all w ∈Sd , by

hW (w ) = Γ(ᾱ+ρ)

dρd−1 ∏d
i=1Γ(αi )

〈
{c(α,ρ)}1/ρ , w 1/ρ〉−ρ−ᾱ d∏

i=1
{c(αi ,ρ)}αi /ρwαi /ρ−1

i .

where c(α,ρ) is the d-vector with entries Γ(αi +ρ)/Γ(αi ) for i = 1, . . . ,d .

8. Hüsler–Reiss (hr), due to Hüsler and Reiss (1989). It is a special case of the Brown–Resnick pro-
cess. While Engelke et al. (2015) state that Hüsler–Reiss variates can be sampled following the same
scheme, the spatial analog is conditioned on a particular site (s0), which complicates the compar-
isons with the other methods.

Let I− j = {1, . . . ,d} \ { j } and λ2
i j ≥ 0 be entries of a strictly conditionally negative definite matrice

Λ, for which λ2
i j = λ2

j i . Then, following Nikoloulopoulos et al. (2009) (Remark 2.5) and Huser and

Davison (2013), we can write the distribution function as

P (X ≤ x) = exp

[
−

d∑
j=1

1

x j
Φd−1,Σ− j

(
λi j − 1

2λi j
log

(
x j

xi

)
, i ∈ I− j

)]
.

where the partial correlation matrix Σ− j has elements

%i ,k; j =
λ2

i j +λ2
k j −λ2

i k

2λi jλk j

and λi i = 0 for all i ∈ I− j so that the diagonal entries %i ,i ; j = 1.1

The evd package implementation has a bivariate implementation of the Hüsler–Reiss distribu-
tion with dependence parameter r , with ri k = 1/λi k or 2/r = √

2γ(h) for h = ‖si − si‖ for the

1Engelke et al. (2015) uses the covariance matrix with entries are ς= 2(λ2
i j +λ2

k j −λ2
i k ), so the resulting expression is evaluated at

2λ2
. j −log

( x j
x− j

)
instead. We recover the same expression by standardizing, since this amounts to division by the standard deviations

2λ. j
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Brown–Resnick model. In this setting, it is particularly easy since the only requirement is non-
negativity of the parameter. For inference in dimension d > 2, one needs to impose the constraint
Λ= {λ2

i j }d
i , j=1 ∈D (cf. Engelke et al. (2015), p.3), where

D =
{

A ∈ [0,∞)d×d : x>Ax < 0, ∀ x ∈Rd \ {0}

with
d∑

i=1
xi = 0, ai j = a j i , ai i = 0 ∀ i , j ∈ {1, . . . ,d}

}
denotes the set of symmetric conditionally negative definite matrices with zero diagonal entries.
An avenue to automatically satisfy these requirements is to optimize over a symmetric positive
definite matrix parameterΣ= L>L, where L is an upper triangular matrix whose diagonal element
are on the log-scale to ensure uniqueness of the Cholesky factorization; see Pinheiro and Bates
(1996). By taking

Λ(Σ) =
(

0 diag(Σ)>
diag(Σ) 1diag(Σ)>+diag(Σ)1>−2Σ

)
one can perform unconstrained optimization for the non-zero elements of L which are in one-to-
one correspondence with those ofΛ.

It easily follows that generating Z from a d −1 dimensional log-Gaussian distribution with covari-
ance Cov (Zi , Zk ) = 2(λ2

i j +λ2
k j −λ2

i k ) for i ,k ∈ I− j with mean vector −2λ2
• j gives the finite dimen-

sional analog of the Brown–Resnick process in the mixture representation of Dombry et al. (2016).

The rmev function checks conditional negative definiteness of the matrix. The easiest way to do so
negative definiteness of Λ with real entries is to form Λ̃ = PΛP>, where P is an d ×d matrix with
ones on the diagonal, −1 on the (i , i +1) entries for i = 1, . . .d −1 and zeros elsewhere. If the matrix
Λ ∈D, then the eigenvalues of the leading (d −1)× (d −1) submatrix of Λ̃will all be negative.

For a set of d locations, one can supply the variogram matrix as valid input to the method.

9. Brown–Resnick (br) The Brown–Resnick process is the extension of the Hüsler–Reiss distribution,
and is a max-stable process associated with the log-Gaussian distribution.

It is often in the spatial setting conditioned on a location (typically the origin). Users can provide
a variogram function that takes distance as argument and is vectorized. If vario is provided, the
model will simulate from an intrinsically stationary Gaussian process. The user can alternatively
provide a covariance matrix sigma obtained by conditioning on a site, in which case simulations
are from a stationary Gaussian process. See Engelke et al. (2015) or Dombry et al. (2016) for more
information.

10. Extremal Student (extstud) of Nikoloulopoulos et al. (2009), eq. 2.8, with unit Fréchet margins is

P (X ≤ x) = exp

− d∑
j=1

1

x j
Td−1,ν+1,R− j

√√√√ ν+1

1−ρ2
i j

[(
xi

x j

)1/ν

−ρi j

]
, i ∈ I− j

 ,

where Td−1 is the distribution function of the d − 1 dimensional Student-t distribution and the
partial correlation matrix R− j has diagonal entry

ri ,i ; j = 1, ri ,k; j =
ρi k −ρi jρk j√

1−ρ2
i j

√
1−ρ2

k j
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for i 6= k, i ,k ∈ I− j .

The user must provide a valid correlation matrix (the function checks for diagonal elements), which
can be obtained from a variogram.

11. Dirichlet mixture (dirmix) proposed by Boldi and Davison (2007), see Dombry et al. (2016) for
details on the mixture. The spectral density of the model is

hW (w ) =
m∑

k=1
πk
Γ(α1k +·· ·+αdk )∏d

i=1Γ(αi k )

(
1−

d−1∑
i=1

wi

)αdk−1 d−1∏
i=1

wαi k−1
i

The argument param is thus a d ×m matrix of coefficients, while the argument for the m-vector
weights gives the relative contribution of each Dirichlet mixture component.

12. Smith model (smith), from the unpublished report of Smith (1990). It corresponds to a moving
maximum process on a domain X. The de Haan representation of the process is

Z (x) = max
i∈N

ζi h(x −ηi ), ηi ∈X

where {ζi ,ηi }i∈N is a Poisson point process on R+×X with intensity measure ζ−2dζdη and h is the
density of the multivariate Gaussian distribution. Other h could be used in principle, but are not
implemented.
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