
1 Goodness-of-Fit Test for Normality Using the

Minimum Hellinger Distance

Statistical data analysis techniques rest on assumptions about the form of the
data. Some techniques are sensitive to small deviations from the assumptions
while others are more robust. Unfortunately, robust techniques are not usually
optimal when the data follow the true model. However, one robust estimator
(beran1977a) (beran1977b) based on the minimum Hellinger distance be-
tween a parametric family of densities and a nonparametric density estimator
(called the mhde) is also asymptotically efficient (stather1981). The minimized
Hellinger distance can also be used in a goodness-of-fit test for the parametric
family (beran1977a).

Empirically based critical values for a goodness-of-fit test for normality based
on the Hellinger distance were developed (eslinger1991) using a limited number
of simulations and they are not readily accessible to the general community
of practitioners. This paper updates and expands the critical values for the
minimum Hellinger distance goodness-of-fit test for normality and introduces
the mhde R package (mhde). The package determines the mean and standard
deviation of the normal distribution that minimizes the Hellinger distance and
calculates the p-value for a goodness-of-fit test.

2 Statistical methods

Let f(x) and g(x) be absolutely continuous functions. The square of the Hellinger
distance (hellinger1909) is defined as:

H2 =
1

2

∫

(f1/2(x)− g1/2(x))2dx (1)

Some authors omit the 1
2 term in the distance definition, but we include it.

For purposes of this paper, f and g are constrained to be probability density
functions that integrate to 1 by definition. Using this constraint, one can expand
the square in the integral and obtain the following alternative form:

H2 = 1−
∫

√

f(x)g(x)dx (2)

The Hellinger distance is the integral of a non-negative function and it
reaches the minimum value of 0 when f and g are identical. The expanded
form in Equation 2 shows it can take on a maximum value of 1 when f and g

are mutually singular.
For this paper, f denotes the family of normal densities. Thus,

f(x) =
1

σ
√
2π

e−( x−µ

σ
)2 (3)

for −∞ ≤ µ ≤ ∞ and σ > 0. The goodness-of-fit test uses a null hypothesis
that the data come a normal distribution without specifying the mean and
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standard deviation. The minimum Hellinger distance approach can be used with
any parametric family of distributions, but the mhde R package only contains
routines and p values for the family of normal densities.

2.1 Sample density fitting using the Epanechnikov kernel

This implementation defines g as the data-based density obtained by using the
Ephanechnikov kernel (epanechnikov1969). The kernel has the form w(z) =
0.75(1− z2) for −1 < z < 1 and 0 elsewhere. Let the n sample data be denoted
by x1, ..., xn. The data-based kernel density at any point y is calculated from

gn(y) =
1

nhn

n
∑

i=1

w(
y − xi

hn
) (4)

The term hn is a constant at any specific sample size. The sequence of hn

terms must converge to zero as the sample size goes to ∞. An optimal form for
hn is available (schucany1977) when estimating the mean value of the normal
distribution, but the resulting sequence leads to biased scale estimates.

It is useful to treat hn as the product of a scale value, sn, and a constant,
cn. The scale value, sn, can be approximated by the sample median absolute
deviation. Location estimates for normal models are relatively insensitive to the
choice of cn, while scale estimates are quite sensitive to the choice of cn. The cn
sequence in the mhde R package was chosen to yield unbiased scale estimates
for the normal family of densities. As a benefit, the location estimates are
also unbiased. Initial empirical studies (eslinger1991) used 5000 replications
at 15 sample sizes in the 20 to 1000 range to obtain the functional form cn =
2.283n−0.287. Unfortunately, this simple sequence leads to biased scale estimates
for sample sizes smaller than about 20.

An expanded empirical study used 276 different sample sizes ranging from 5
to 10,000 to determine the optimal cn sequence. Six replications were performed
at each sample size. Each replication used a Gauss-Newton iterative approach
to pick the cn to yield the unbiased scale estimate based on 106 samples. Specific
values for cn use the average of the six replicates for samples sizes from 5 to 40.
Larger sample sizes all use a fit of the form cn = a × nb but the sample sizes
are divided into 17 subsets. The functional fits within each subset pass lack
of fitness tests and the largest residuals within subsets are smaller than 0.1%
of the nominal cn. Explicit values of cn are not provided in the text, but the
mhde.cn function in the R package can be used to retrieve the cn value for any
sample size.

2.2 Critical values

The previous published limited set of critical values (eslinger1991) use the form
of Equation 1 without the 1

2 term and are not valid for the new cn sequence.
New critical values, mc, for a goodness-of-fit test for normality were derived
empirically using the new cn sequence. The percentiles of the distribution when
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the data are normally distributed were calculated at 63 different levels from
0.0001 to 0.9999 using 12 replicates of 106 data sets at 276 sample sizes from 5
to 10,000. The large number of data sets provides stable percentiles in the tails
of the distribution.

The mc values use the average of replicates for samples sizes from 5 to 40.
Larger sizes all use a fit of the form mc = a × nb where the sample sizes are
broken into 18 separate groups. For n larger than 8000, the functional form is
cn = 2.4130n−0.29332, thus the sequence does converge to 0 for large samples
sizes. Explicit values of mc are not provided in the text, but the mhde.crit
function in the R package can be used to retrieve the mc for any sample size
and desired α level.

The implementation in the mhde R package uses two steps for generating p-
values for the test for normality. First, a vector ofmc values for all 63 percentiles
is generated for the specific sample size. Second, the p-value is calculated using
linear interpolation among the 63 percentiles given the minimized distance for
a specific data set.

Large values of the minimized Hellinger distance indicate a poor match be-
tween the nonparametric data-based density estimate and the normal family of
densities. Thus, a one-tailed statistical test is appropriate.

2.3 Power of the test

A number of authors, (razali2011) for example, have studied the statistical
power of tests for normality against a wide range of alternative distributions.
Five of the most commonly used tests for normality are available in the nortest
R package (gross2015). The Shapiro-Wilks test (shapiro1965) generally has
the highest power of any of the common tests for normality, therefore, the
power of the mhde test is compared to the power of the Shapiro-Wilks test
for eight distributions. The power of the tests is provided in Table 1 for an
α = 0.05 significance level using 105 replications. The uniform and triangular
distributions are symmetric and shorter tailed than the normal distribution.
The Cauchy, Student’s t(2) and Student’s t(4) are symmetric and longer tailed
than the normal distribution. The Weibull (2), exponential and Chi-Square (1)
distributions are skewed. Results for the normal distribution are provided to
show the appropriateness of the critical values.

The mhde test is generally less powerful than the Shapiro-Wilks test. How-
ever, in some situations the mhde test is competitive with or more powerful
than the Shapiro-Wilks test. For example, neither test is very powerful for
the alternative triangular distribution for small sample sizes. The power of the
mhde test is compared with the power of the Shapiro-Wilks test for a symmetric
triangular distribution in Figure 1 for larger sample sizes.
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Distribution Test 10 20 30 40 50 60 80 100
Normal mhde 0.043 0.048 0.050 0.049 0.051 0.049 0.050 0.050

shapiro 0.047 0.050 0.051 0.049 0.051 0.049 0.049 0.049
Cauchy mhde 0.499 0.851 0.956 0.988 0.996 0.999 0.999 0.999

shapiro 0.591 0.866 0.958 0.988 0.996 0.999 1.000 1.000
Chi Square (1) mhde 0.552 0.920 0.991 1.000 1.000 1.000 1.000 1.000

shapiro 0.739 0.984 1.000 1.000 1.000 1.000 1.000 1.000
Exponential mhde 0.273 0.655 0.889 0.975 0.996 1.000 1.000 1.000

shapiro 0.446 0.836 0.968 0.995 0.999 1.000 1.000 1.000
Student’s t (2) mhde 0.222 0.480 0.651 0.767 0.842 0.896 0.954 0.980

shapiro 0.296 0.529 0.684 0.793 0.864 0.911 0.963 0.985
Student’s t (4) mhde 0.106 0.205 0.287 0.357 0.416 0.470 0.561 0.634

shapiro 0.138 0.240 0.326 0.403 0.467 0.526 0.627 0.708
Triangular mhde 0.014 0.012 0.013 0.016 0.022 0.030 0.057 0.101

shapiro 0.029 0.034 0.040 0.049 0.058 0.069 0.095 0.132
Uniform mhde 0.026 0.036 0.076 0.206 0.562 0.900 1.000 1.000

shapiro 0.131 0.453 0.816 0.979 0.999 1.000 1.000 1.000
Weibull (2) mhde 0.042 0.075 0.129 0.197 0.280 0.370 0.555 0.716

shapiro 0.074 0.147 0.234 0.325 0.419 0.509 0.671 0.796

Table 1: Statistical power of the mhde and Shapiro-Wilks tests for normality
for different sample sizes using eight distributions and an α = 0.05 significance
level.

Figure 1: Power of the mhde and Shapiro-Wilks tests for the alternative of a
symmetric triangular distribution using an α = 0.05 significance level.

3 Package architecture and implementation de-

tails

The mhde package for the R environment for statistical computing and graphics
(rcore2015) can be downloaded from the Comprehensive R Archive Network
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(CRAN) (cran). The package fits a minimum Hellinger distance model to sam-
ple data and performs a goodness-of-fit test for normality. The primary function
in the mhde package is mhde.test. Three utility functions are also provided.
The function mhde.cn returns the value of cn for a single sample size. The
function mhde.crit returns the critical value for a given sample size and de-
sired (lower-tail) probability level. The function mhde.plot generates a plot of
the kernel density and optimized normal density using output from the function
mhde.test.

3.1 Solution techniques

Calculating the Hellinger distance requires numerical evaluation of the integral
in Equation 2. The integral is evaluated using a composite Gauss-Legendre
6-point integration scheme (beyer1987). The implementation defaults to 100
subintervals, resulting in about 5 digits of accuracy in the location and scale
estimate. The user can specify 25 or more subintervals.

Maximization of the integral in Equation 2 is performed simultaneously for
location (µ) and scale (σ) using an iterative Gauss-Newton technique with an-
alytical derivatives. The default location starting value is the sample median
and the default scale starting value is the sample median absolute deviation. If
the procedure initially fails to converge, Hellinger distances are evaluated on a
21 by 21 grid of location and scale values spread across a range of reasonable
values for the specific data set. The (µ,σ) point on the grid with the associated
minimum Hellinger distance is used to restart the iterative technique. If the
iterative technique still does not converge, the returned solution is the best fit
in the grid search. The authors have not encountered any data sets where the
procedure failed to converge after invoking the grid search procedure.

3.2 Accuracy and limitations

Convergence of the iterative technique is declared when an update step results
in small changes in both the location and scale values. The user can specify
the epsilon (in data units) for convergence. Both location (EpsLoc) and scale
(EpsSca) epsilons should be set to give approximately 4 to 5 digits of accuracy
in the estimates. Default values of 0.0001 are used for both location and scale.
These values are appropriate if the data are normally distributed with a mean
near 0 and a scale of 1.

The critical values of the test were derived empirically. Values in the ex-
treme tails of the distribution are difficult to determine accurately. Therefore,
critical values for percentiles greater than 0.9999 are set to the critical value for
0.9999 and critical values for percentiles less than 0.0001 are set to the critical
value for 0.0001. Similarly, p-values are constrained to the 0.0001 to 0.9999
range. These limitations have no practical significance because statistical tests
are rarely performed for α levels outside 0.9 to 0.99.
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3.3 Example usage

The functionmhde.test returns a list of objects. The objects are the minimized
Hellinger distance, the p-value for the test, the initial location and scale for the
iterative solution, the final location and scale, the sample size, the value for
cn, and three vectors. The first vector contains the X values (in the sample
domain) used in the numerical integration. The final two vectors contain the
kernel density function and the best fit normal density at the X values.

The following example use of the function mhde.test uses a sample of 10
data values from a normal distribution. This example does not converge using
the initial values, but it does converge using the values from the internal grid
search. The p value of 0.148 does not lead to rejection of the null hypothesis
that the data came from a normal distribution.

> MyData <- c(0.70881649,0.56886754,0.85748977,0.77956422,

+ -0.40878175,-0.06055631,0.57249616,0.06287769,

+ 0.62590278,-0.26852515)

> Out <- mhde.test(MyData)

The following example uses a sample of 25 data values from a Student’s t(2)
distribution. This distribution has longer tails than the normal distribution and
the small p value of 0.0083 leads to rejection of the null hypothesis that the data
came from a normal distribution.

> MyData <- c(0.28278713,-0.43277345,-0.44767540,-0.81732116,

+ + -0.84096097,0.04163228,1.94541307,-1.09498962,0.96905752,

+ + -0.08427381,0.11302093,-9.35078076,0.01315122,0.39547341,

+ + -0.33285223,0.05248393,1.50556785,-1.22518816,0.80181014,

+ + -0.02247526,3.48830616,0.47796627,-0.21144776,-3.14836990,

+ + -1.74839250)

> Out <- mhde.test(MyData)

A simple plot of the normal and kernel densities can be generated using the
function mhde.plot with the list returned from the function mhde.test as the
argument. Example plots of the normal and kernel densities used in the two
example cases are provided in Figure 2. The nonparametric density for small
data sets with long tails can have multiple modes separated by regions where
the density is zero.
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Figure 2: Plot of the normal and kernel densities used in the example cases of
10 data points (left pane) and 25 data points (right pane).

The function mhde.test has the following arguments:
DataVec The data are supplied in the numeric vector DataVec. The length

of the vector determines the number of data values. There is no
default value.

NGauss The number of subintervals for the Gauss-Legendre integration
techniques is controlled by NGauss. A default value of 100 is
used. A minimum of 25 is enforced.

MaxIter The maximum number of iterations used for evaluating the
minimum Hellinger distance is controlled by MaxIter. A default
of 25 is used. A minimum of 1 is enforced.

InitLocation An optional initial location estimate can be defined using
InitLocation. The data median is the default value.

InitScale An optional initial scale estimate can be defined using InitScale.
The median absolute deviation of the data is the default value.

EpsLoc The epsilon (in data units) below which the iterative minimization
approach declares convergence in the location estimate is controlled
by EpsLoc. EpsLoc should be set to give approximately 5 digits
of accuracy in the location estimate. A default value of 0.0001 is
used.

EpsSca The epsilon (in data units) below which the iterative minimization
approach declares convergence in the scale estimate is controlled by
EpsSca. EpsSca should be set to give approximately 5 digits of
accuracy in the scale estimate. A default value of 0.0001 is used.

Silent By default mhde.test writes several results to the R console. Use
Silent=TRUE to eliminate the output.

Small By default mhde.test returns a list of 10 objects. Use
Small=TRUE to return a shorter list consisting only of the
minimized Hellinger distance and the p-value of the goodness-of-fit
test.

7



The function mhde.cn has the following arguments:
Nsize The sample size is defined using Nsize. No default value is set.

The function mhde.crit has the following arguments:
Nsize The sample size is defined using Nsize. No default value is set.
Plevel The probability level associated with the critical value is set using

Plevel. A default value of 0.95 is used. The α level of the test is
1-Plevel.

The function mhde.plot has the following arguments:
ListOut The list of objects returned by mhde.test is provided in ListOut.

The argument Small for mhde.test must have the value FALSE.

4 Discussion

In this article we present the mhde package for fitting a normal model to data
using a minimum Hellinger distance estimator and performing a goodness-of-
fit test for normality. The package improves previously published critical values
and makes the mhde estimator available to the statistical computing community.

8


