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Abstract

The mme package for R (R Development Core Team 2010) implements three multi-
nomial area level mixed models for small area estimation. The first model is the area
level multinomial mixed model with independent random effects for each category of the
response variable (López-Vizcáıno, Lombard́ıa, and Morales 2013a). The second model
takes advantage from the availability of survey data from different time periods and uses
a multinomial model with independent random effects for each category of the response
variable and with independent time and domain random effects. The third model is similar
to the second one, but with correlated time and domain random effects (López-Vizcáıno,
Lombard́ıa, and Morales 2013b). In all the models the package uses two approaches to
estimate the mean square error (MSE), first through an analytical expression and second
by bootstrap techniques.
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1. Overview

Small area estimation problems appear when the domain simple sizes are small and direct
estimates are not precise. In the small area estimation context, an estimator of a parameter
in a given domain is direct if it is based only on the sample data of the specific domain.
A drawback of these estimators is that they cannot be calculated when there is no sample
observations in an area of interest.

Generally small area estimation techniques can be divided into design-based methods and
model-based methods. The model-based methods make inference by taking into account the
underlying model.The estimators based on these methods are useful because they give to
practitioners an idea of how the data generation process is and how the different sources
of information are incorporated. Mixed models are suitable for small area estimation due
to its flexibility to make an effective combination of different sources of information and to
its capacity to describe the various sources of error. These models incorporate random area
effects that explain the additional variability that is not explained by the fixed part of the
model.

The objective of this manuscript is to present a R package that implements three multinomial
area level mixed models for small area estimation. The first model is the area level multinomial
mixed model with independent random effects for each category of the response variable
(López-Vizcáıno et al. 2013a). The second model takes advantage from the availability of
survey data from different time periods and uses a multinomial model with independent
random effects for each category of the response variable and with independent time and
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domain random effects. The third model is similar to the second one, but with correlated
time and domain random effects (López-Vizcáıno et al. 2013b). In all the models the package
use two approaches to estimate the mean square error (MSE), first through an analytical
expression and second by bootstrap techniques.

2. Models

Let us start by giving some notation and assumptions. Let us use indexes k = 1, . . . , q − 1,
d = 1, . . . , D and t = 1, . . . , T for the categories of the target variable, for the D domains and
for the T time periods respectively. Let u1,dk and u2,dkt be the random effects associated to
the domain d and the category k and to the domain d, the category k and the time instant t
respectively. In the third model (Model 3) we write the random effects in the form

u1 = col
1≤d≤D

(u1,d), u1,d = col
1≤k≤q−1

(u1,dk), u2 = col
1≤d≤D

(u2,d)

u2,d = col
1≤k≤q−1

(u2,dk), u2,dk = col
1≤t≤T

(u2,dkt), u2,dt = col
1≤k≤q−1

(u2,dkt),

and we suppose that

1. u1 and u2 are independent,

2. u1 ∼ N(0,V u1), where V u1 = diag
1≤d≤D

( diag
1≤k≤q−1

(ϕ1k)), k = 1, . . . , q − 1.

3. u2,dk ∼ N(0,V u2,dk
), d = 1, . . . , D, k = 1, . . . , q − 1, are independent with covariance

matrix AR(1), i.e. V u2,dk
= ϕ2kΩd(φk) and

Ωd(φk) = Ωd,k =
1

1− φ2k



1 φk . . . φT−2k φT−1k

φk 1
. . . φT−2k

...
. . .

. . .
. . .

...

φT−2k

. . . 1 φk
φT−1k φT−2k . . . φk 1


T×T

.

It holds that V u = var(u) = diag(V u1 ,V u2), where V u2 = var(u2) = diag
1≤d≤D

( diag
1≤k≤q−1

(V u2,dk
)).

We also assume that the response vectors ydt = col
1≤k≤q−1

(ydkt), conditioned to u1,d and u2,dt,

are independent with multinomial distributions

ydt|u1,d,u2,dt
∼ M(νdt, pd1t, . . . , pdq−1t), d = 1, . . . , D, t = 1, . . . , T. (1)

where the νdt’s are known integer numbers. The covariance matrix of ydt conditioned to u1,d

and u2,dt is var(ydt|u1,d,u2,dt) = W dt = νdt[diag(pdt) − pdtp′dt], where pdt = col
1≤k≤q−1

(pdkt)

and diag(pdt) = diag
1≤k≤q−1

(pdkt). For the natural parameters ηdkt = log pdkt
pdqt

, we assume the

model

ηdkt = xdktβk + u1,dk + u2,dkt, d = 1, . . . , D, k = 1, . . . , q − 1, t = 1, . . . , T, (2)
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where xdkt = col′
1≤r≤pr

(xdktr), βk = col
1≤r≤pk

(βkr) and p =
∑q−1

k=1 pk.

We also consider two simpler models. Model 2 is the restriction of Model 3 to φ1 = . . . =
φq−1 = 0. Model 1 is obtained by restricting Model 2 to one time period (T = 1) and by
considering only the random effect u1. This is the model studied by López-Vizcáıno et al.
(2013a). For the sake of brevity we skip formulas for Models 1-2. In matrix notation, Model
3 is

η = Xβ +Z1u1 +Z2u2 = Xβ +Zu,

whereZ = (Z ′1,Z
′
2)
′, η = col

1≤d≤D
(ηd),X = col

1≤d≤D
(Xd), Z1 = diag

1≤d≤D
(Z1d), Z2 = diag

1≤d≤D
(Z2d),

ηd = col
1≤k≤q−1

( col
1≤t≤T

(ηdkt)), Xd = diag
1≤k≤q−1

( col
1≤t≤T

(xdkt)), β = col
1≤k≤q−1

(βk),

Z1d = diag
1≤k≤q−1

(1T ), Z2d = diag
1≤k≤q−1

( diag
1≤t≤T

(1)) = IT (q−1), 1T = col
1≤t≤T

(1).

To fit the model we combine the PQL method, introduced by Breslow and Clayton (1996)
for estimating and predicting the βkr’s, the u1,dk’s and the u2,dkt’s, with the REML method
for estimating the variance components ϕ1k, ϕ2k and φk, k = 1, . . . , q − 1. The presented
method is based on a normal approximation to the joint probability distribution of the vector
(y,u). The combined algorithm was first introduced by Schall (1991) and later used by Saei
and Chambers (2003), Molina, Saei, and Lombard́ıa (2007) and Herrador, Morales, Esteban,
Sánchez, Santamaŕıa, Marhuenda, Pérez, and Molina (2009) in applications of generalized
linear mixed models to small area estimation problems. We adapt the combined algorithm to
Model 3. The algorithm has two parts. In the first part the algorithm updates the values of
β, u1 and u2. In the second part it updates the variance components.

For the estimation of the mean squared error (MSE) of model-based small area estimators
we adapt the resampling approaches appearing in González-Manteiga, Lombard́ıa, Molina,
Morales, and Santamaŕıa (2008) to introduce a parametric bootstrap procedure. We also
give an approximation to the MSE based on a Taylor linearization. By applying the ideas of
(Prasad and Rao 1990) to the linearized model, the MSE is approximated and an estimator
of the given approximation is derived.

3. The package mme

In the mme package we introduced a range of new functions that may be of interest to those
conducting applied research. The nine principal new functions are summarized in Table 1.

In what follows we provide illustrative examples of the use of the functions describe in Table 1.
Many of these functions rely on numerical integration and can be computationally demanding.

4. Example to fit model 1

The following code provides and example to fit the model 1. It is necessary to use a data
frame with this variables: area indicator, time indicator, sample, population, categories of
the response variable and covariates of each category of the response variable. The package
requires two imput parameters: pp is a vector with the number of auxiliary variables in each
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Function Description Reference
data.mme Based on the input data this function gener-

ates some matrices that are required in sub-
sequent calculations and the initial values for
the fitting algorithm

López-Vizcáıno et al. (2013a)

fitmodel1 This function fits the multinomial mixed
model with one independent random effect per
category of the response variable (Model 1)

López-Vizcáıno et al. (2013a)

fitmodel2 This function fits the multinomial mixed
model with two independent random effects
for each category of the response variable: one
domain random effect and another indepen-
dent time and domain random effect (Model
2)

López-Vizcáıno et al. (2013b)

fitmodel3 This function fits the multinomial mixed
model with two independent random effects
for each category of the response variable: one
domain random effect and another correlated
time and domain random effect (Model 3)

López-Vizcáıno et al. (2013b)

model This function chooses one of the three models López-Vizcáıno et al. (2013a) and
López-Vizcáıno et al. (2013b)

msef This function calculates the analytic MSE for
Model 1

López-Vizcáıno et al. (2013a)

msef.it This function calculates the analytic MSE for
Model 2

López-Vizcáıno et al. (2013a)

msef.ct This function calculates the analytic MSE for
Model 3

López-Vizcáıno et al. (2013b)

mseb This function calculates the bias and the MSE
for the multinomial mixed effects models using
parametric bootstrap

López-Vizcáıno et al. (2013a) and
López-Vizcáıno et al. (2013b)

Table 1: New mme functions.

category and k is the number of categories of the response variable. The example uses a data
frame with 50 small areas and with 10 periods. However, this example only works with the
last period. The response variable has three categories (k = 3), and we use one covariate for
each category, then pp = c(1, 1). The last three columns of the data frame contain the direct
estimators of the categories of the response variable.

R> library(mme)

R> datos=as.data.frame(datos)

R> names(datos)

[1] "area" "time" "sample" "population" "y1"

[6] "y2" "y3" "x1" "x2" "y11"

[11] "y22" "y33"

R> datos1=subset(datos,datos$time==10)

R> dat=datos1[,1:9]

R> k=3 #number of categories of the response variable
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R> pp=c(1,1) #vector with the number of auxiliary variables in each category

R> mod=1 #Model 1

R> #Needed matrix and initial values

R> datar=data.mme(dat,k,pp,mod)

R> #Model fit

R> result=model(datar$d,datar$t,pp,datar$Xk,datar$X,datar$Z,datar$initial,

+ datar$y[,1:(k-1)],datar$n,datar$N,mod)

R> result

Multinomial mixed effects model

Call:

Coefficients

Estimate Std.Error p.value

Intercept 1.817 2.17 0.401

x1 -1.388 1.61 0.387

Intercept -0.927 2.99 0.756

x2 0.600 1.73 0.729

Random effects

Estimate Std.Error p.value

[1,] 0.975 0.226 0

[2,] 2.541 0.550 0

R> #Fixed effects

R> result$beta.Stddev.p.value

Estimate Std.Error p.value

Intercept 1.817 2.17 0.401

x1 -1.388 1.61 0.387

Intercept -0.927 2.99 0.756

x2 0.600 1.73 0.729

R> #Random effects

R> result$phi.Stddev.p.value

Estimate Std.Error p.value

[1,] 0.975 0.226 1.56e-05

[2,] 2.541 0.550 3.83e-06

R> #Direct estimators

R> dir1=datos1$y11

R> dir2=datos1$y22

R>

The following code will generate Figure 1 that plots direct estimators versus model estimators.
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R> #Plot direct estimator versus model estimator

R> dos.ver<-matrix(1:2,1,2)

R> layout(dos.ver)

R> plot(log(dir1),log(result$mean[,1]),main="Small area estimator Y1",

+ xlab="Direct estimate", ylab="model estimate",font.main=2,cex.main=1.5,

+ cex.lab=1.3)

R> abline(a=0,b=1)

R> plot(log(dir2),log(result$mean[,2]),main="Small area estimator Y2",

+ xlab="Direct estimate", ylab="model estimate",font.main=2,cex.main=1.5,

+ cex.lab=1.3)

R> abline(a=0,b=1)

R>
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Figure 1: Model estimates versus direct estimates.

R> #Model estimator

R> datos1$yest1=result$mean[,1]

R> datos1$yest2=result$mean[,2]

The following code generates Figure 2 that plots direct estimators and model estimators sorted
by sample size.

R> #Plot direct estimators and model estimators sorted by sample size

R> dos.ver<-matrix(1:2,1,2)

R> layout(dos.ver)

R> a=datos1[order(datos1[,3]),]

R> g_range <- range(0,45)

R> plot(a$y11/1000,type="b", col="blue",axes=FALSE, ann=FALSE)

R> lines(a$yest1/1000,type="b",pch=4, lty=2, col="red")

R> title(xlab="Sample size")

R> axis(1,at=c(1,10,20,30,40,50),lab=c(a$sample[1],a$sample[10],
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+ a$sample[20],a$sample[30],a$sample[40],a$sample[50]))

R> axis(2, las=1, at=1*0:g_range[2])

R> legend("topleft", c("Direct","Model"), cex=1, col=c("blue","red"),

+ lty=1:2,pch=c(1,4), bty="n")

R> title(main="Small area estimator Y1", font.main=1.2,cex.main=1)

R> plot(a$y22/1000,type="b",col="blue",axes=FALSE, ann=FALSE)

R> lines(a$yest2/1000,type="b",pch=4, lty=2, col="red")

R> title(xlab="Sample size")

R> axis(1,at=c(1,10,20,30,40,50),lab=c(a$sample[1],a$sample[10],

+ a$sample[20],a$sample[30],a$sample[40],a$sample[50]))

R> axis(2, las=1, at=1*0:g_range[2])

R> legend("topleft", c("Direct","Model"), cex=1, col=c("blue","red"),

+ lty=1:2,pch=c(1,4), bty="n")

R> title(main="Small area estimator Y2", font.main=1.2,cex.main=1)
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Figure 2: Model estimator and direct estimator sorted by sample size.

The following code calculates the parametric bootstrap BIAS and MSE for the model-based
estimators.

R> ##Bootstrap parametric BIAS and MSE

R>

R> B=10 #Bootstrap iterations

R> ss=12345 #SEED

R> set.seed(ss)

R> mse.pboot=mseb(pp,datar$Xk,datar$X,datar$Z,datar$n,datar$N,result,B,mod)

R> cv=mse.pboot[[3]]

R>

The following code generates Figure 3 that plots the root mean squared error (RMSE) of the
model-based estimates.
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R> dos.ver<-matrix(1:2,1,2)

R> layout(dos.ver)

R> g_range <- range(0,45)

R> plot(cv[,1],type="b", col="blue",axes=FALSE, ann=FALSE)

R> title(xlab="Sample size")

R> axis(1,at=c(1,10,20,30,40,50),lab=c(a$sample[1],a$sample[10],

+ a$sample[20],a$sample[30],a$sample[40],a$sample[50]))

R> axis(2, las=1, at=10*0:g_range[2])

R> title(main="RMSE for the estimator of Y1", font.main=1.2,cex.main=1)

R> g_range <- range(0,45)

R> plot(cv[,2],type="b",col="blue",axes=FALSE, ann=FALSE)

R> title(xlab="Sample size")

R> axis(1,at=c(1,10,20,30,40,50),lab=c(a$sample[1],a$sample[10],

+ a$sample[20],a$sample[30],a$sample[40],a$sample[50]))

R> axis(2, las=1, at=10*0:g_range[2])

R> title(main="RMSE for the estimator of Y2", font.main=1.2,cex.main=1)

R>
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Figure 3: RMSE of model-based estimates
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