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1 Preamble

You can install pez by typing install.packages("pez"), and get a listing of the
functions in the package by typing library(help=pez). If you find any bugs, or
have any feature requests for the package, please use the online tracker. Indeed,
please contribute to the package using at its GitHub site—help is always welcome!
If you need help, please email the user mailing list, not one of the developers.

While pez contains much novel code, it relies heavily on the R ecosystem. Much
of the community phylogenetic metric functions are wrappers around existing code
(detailed in the help files for each function); notably caper (Orme et al., 2013) and
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picante (Kembel et al., 2010) but many others as well. Please cite the authors of
these packages in your publications so that their hard-work is rewarded!

The functions within pez are grouped into families; thus, while there is no
pez.metric function, there is a help-file with this title that describes over thirty
different functions. Looking for the help file for each of these functions will take you
to combined, ‘overview’ help-file.

Often, pez functions will return warnings (and sometimes error messages!) be-
cause certain metrics or methods are not appropriate for the kinds of data you are
working with. Indeed, you will see such warnings in this vignette. These are not
bugs ; one simply cannot calculate some metrics without fully resolved phylogenies,
and some models do not make sense without certain kinds of data.

2 Data formats in pez

pez functions work with comparative.comm objects (comparative community ecol-
ogy). These are designed to help keep phylogenies, community data matrices, species
trait data, and environmental data all in the same place in a format that makes it
easy to work with them. They’re much less scary than they sound!

Below we load pez, some example data that comes with it, and then make a
comparative.comm object. You can examine the phylogeny (tree), community data
(comm), and trait data (data) that went into making dataset for yourself, although
all the data types are explained in more detail below. A phylogeny and a community
matrix are all you need to make a comparative.comm object; everything else is
optional. Below we use the Helmus et al. (2014) dataset to show pez ’s features.

library(pez)

data(laja)

data <- comparative.comm(invert.tree, river.sites,

invert.traits, river.env)

pez is conservative; if you give it trait data for only half of the species in your com-
munity data, the comparative.comm object will only contain data on those species
that have both trait data and community data. The same goes for the phylogeny, and
for sites with environmental data. pez will warn you about the loss of species or traits
when you print the object to screen, and while it’s making the comparative.comm
object (unless you set the argument warn=FALSE).

You can also subset your comparative.comm object to exclude certain species or
sites, in much the same way you can a data.frame. Dropping a site that contained
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the only instance of a species will remove it from dataset, and pez will not warn you
about this unless you specify [,,warn=TRUE].

site.subset <- data[1:5, ]

spp.subset <- data[, 1:3]

pez makes it easier to work with and manipulate datasets. The functions species
and sites are safe ways of manipulating all the parts of your data at the same time.
For example:

species(data)[1:2]

## [1] "Acari" "Erpetogomphus"

species(data)[1:2] <- c("new", "names")

sites(data)[1:2] <- c("newer", "names")

data <- data[, colSums(data$comm) > 5]

traits(data)$new.trait <- rep("nonsense",

nrow(traits(data)))

traits(data)$new.trait <- NULL

The final example above showed you can work with the internal components of a
comparative.comm to get things done quicker, in this case removing all species that
were only recorded five times or fewer in the dataset. The help entry for cc.manip

contains more examples, and plot.comparative.comm is a quick plotting tool. We
have also provided the comm, phy(/tree), traits, and env wrappers to examine
and manipulate the community matrix, phylogeny, trait data, and environmental
data, slots in your comparative.comm objects (e.g., phy(data) would return your
phylogeny). We give some examples above, and you can find more in the help file
for cc.manip. By using these wrappers, as opposed to interacting directly with the
slots in your comparative.comm object, you ensure your species and sites remain
consistent across your data, and make your code a little easier to read. Internally,
your trait data are stored in the data slot; this means that comparative.comm

is compatible with the caper package. Anything you can do in that (e.g., PGLS
regression, comparative modelling and simulation) can be done using you data in pez
without modification.
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3 Community phylogenetic metrics

pez splits community phylogenetic metrics into four functions according to the scheme
outlined by Pearse et al. (2014): pez.shape, pez.evenness, pez.dispersion, and
pez.dissimilarity. Shape metrics measure the structure of a community phy-
logeny, while evenness metrics additionally incorporate species abundances. Disper-
sion metrics examine whether phylogenetic biodiversity in an assemblage differs from
the expectation of random assembly from a given set of species. Finally, dissimilarity
measures the pairwise difference in phylogenetic biodiversity between assemblages.

You can calculate all metrics within a class at the same time (which is what we
recommend), or you can pick a particular one. The intention is to make it easy to
work with different community phylogenetic metrics, since each captures a different
part of the structure of your data. Working with shape, evenness, and dispersion

metrics is exactly the same, so below we only show shape.

shape.output <- pez.shape(data)

## Warning in pez.shape(data): Cannot compute Colless’ index with non-binary

tree

dim(shape.output)

## [1] 11 15

shape.output[1:3, 1:3]

## psv psr mpd

## CA 0.6618014 11.912425 970.2009

## FC 0.7201516 7.201516 1055.7422

## LA 0.6660466 7.992559 976.4242

Both shape and evenness metrics, by default, only calculate the all-quick met-
rics; specifying metric=’all’ will calculate slower metrics such as Pagel’s λ. These
can take a very long time to calculate for large datasets! You can also calculate
these metrics using functional traits, a square-rooted phylogeny (following Letten &
Cornwell, 2014), or any kind of distance matrix you can put together. The argument
traitgram can be used to set a distance matrix that mixes explanatory power from
phylogeny and traits, following Cadotte et al. (2013) (see below), and you can com-
pare the output of different traitgram values. Not all metrics can meaningfully be
calculated using external distance matrices, traitgrams, or square-rooted phylogenies,
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however, and such metrics will not be calculated (and no errors will be displayed).

sqrt <- pez.shape(data, sqrt.phy = TRUE)

traits <- pez.shape(data, traitgram = 1) #traits alone

traits <- pez.shape(data, traitgram = c(0,

0.5)) #phylogeny and both

traits <- pez.shape(data, ext.dist = as.dist(cophenetic(phy(data))))

dissimilarity works slightly differently, because it returns a list of distance
matrices that describe your community data. phylosor (Bryant et al., 2008) is re-
ported as a dissimilarity in pez : it’s not the fraction of shared branch lengths, but
1- the fraction of shared branch length. This is not how it is in other packages, but
remember: the function is called dissimilarity!

dist <- pez.dissimilarity(data, "phylosor")

plot(hclust(dist$phylosor))
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It is possible to calculate any arbitrary combination of metrics using generic.metrics,
and compare those metrics with values derived from null distributions (generic.null).
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You can get a list of the metrics you can calculate by looking at ?pez.metrics; there
are many, but they all follow the same naming (.name) and argument conventions.
Note that you can also pass arguments (external distance matrices, etc.) to all the
metrics you calculate.

metrics <- generic.metrics(data, c(.mpd,

.pse, .ses.mpd))

# null.comparisons <- generic.null(data,

# c(.mpd,.pse))

metrics <- generic.metrics(data, c(.mpd,

.mntd), dist = as.dist(cophenetic(phy(data))))

4 Eco-evolutionary regression

Calculating metric values is useful, but often we want to make statistical models. pez
features a set of regression techniques, based on Cavender-Bares & Wilczek (2003),
Cavender-Bares et al. (2004), and Cavender-Bares et al. (2006), which are described
in the helpfiles for eco.xxx.regression and fingerprint.regression.

The functions described in eco.xxx.regression focus on relating the co-occurrence
of species to species’ phylogenetic (phy), trait (trait), and environmental tolerances
(env). The environmental tolerances are based on Pianka’s distance and derived
from your $env data, while the trait distances can be based on any distance metric
you can define. These are useful to explore your data, but also because the trait
results are used in the fingerprint regression described below.

phy <- eco.phy.regression(data, permute = 10)

trait <- eco.trait.regression(data, permute = 10,

method = "quantile", tau = c(0.25, 0.5,

0.7))

trait <- eco.trait.regression(data, altogether = FALSE)

In the last line above, we calculated separate regressions for each trait in our
dataset (returning a eco.xxx.regression.list object). While this isn’t particu-
larly thrilling in this dataset where we only have two traits, such a regression forms
the basis of the fingerprint.regression. In this, we will regress the association
between species co-occurrence and trait similarity for each trait against the phylo-
genetic conservatism of each trait. Which is a mouthful, but the papers describing
it (Cavender-Bares et al., 2004, 2006) go into more detail. pez does things slightly
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differently to these original papers, in that it uses measures of phylogenetic ‘sig-
nal’ instead of Mantel tests (phy.signal), and provides more distance matrix and
regression model options for the link between co-occurrence and trait similarity.

Figure 1 may make things clearer. On the horizontal axis we move from where
there is a positive correlation between co-occurrence and each trait’s similarity (left)
to a negative correlation (right). On the vertical axis, traits are arranged according
to whether they show trait conservation (top) or lability/lack of phylogenetic inertia
(bottom). Remember: each of your traits makes up one data-point in this space, but
in figure 1 we have made a cartoon of a single trait in different quadrants of the graph
to make things clearer. If communities are not just assembled but have also evolved
under limiting similarity, traits should tend to lie in the blue circle. Above the blue
circle, traits have evolved under niche conservatism and habitat filtering is taking
place across those traits. By creating a regression such as this with your data, you
are directly relating the present-day ecology of species to their evolutionary history.

model <- fingerprint.regression(data, eco.permute = 10)

Once you’ve performed a fingerprint regression (the name is new to pez ), you
can examine the coefficients of each of the $eco and $evo slots in your model, which
correspond to the two axes in figure 1. Make sure you check which traits are where
in your graph; not all traits are independent, either ecologically or evolutionarily,
which could lead to bias. Examine the $eco and $evo slots in your output to see
what it plotted where; you can plot these names by provide these two values and
traits(data) to the function text. In our example here the results are not partic-
ularly interesting as we have only two traits!

It is worth pausing to consider the interpretation of various outcomes. A positive
relationship would indicate a combination of environmental filtering on functional
traits with multiple independent origins and limiting similarity of phylogenetically
conserved functional traits. Note that a non-significant fingerprint regression does
not indicate that the data are not interpretable. For example, traits concentrated
in the top left quadrant (red circle) could most likely be interpreted in terms of
niche conservatism because species with phylogenetically and functionally similar
traits are found in the same habitats or communities. A negative relationship, in
contrast, would be difficult to interpret because it would indicate a combination of
niche conservatism (environmental filtering on conserved functional traits) and trait
patterns of dissimilar labile traits within communities that could be generated any
number of ways or result from stochastic processes. A further complication, of course,
is that different measures of phylogenetic signal mean very different things; ensure
that you understand how to interpret the metric you are using!
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Figure 1: Overview of a fingerprint regression. A hypothetical trait is shown in each
quadrant; the size of the circles represents the numerical value of the trait, and colour
of the circles represents hypothetical communities. Areas of interest on the diagram
are coloured to mirror the discussion in the text. The quadrants are based on the
framework of (Webb2002), although the axes are continuous following the approach
used by (Cavender-Bares2004). Trait patterns in the bottom left quadrant can be in-
terpreted as environmental filtering on labile (or phylogenetically convergent) traits.
Trait patterns in the top right quadrant may be interpreted as indicative of limiting
similarity of phylogenetically conserved traits: these patterns emerge when function-
ally and phylogenetically similar species co-occur less than expected. Finally, trait
patterns in the bottom right quadrant indicate that functionally similar but phy-
logenetically distantly related species co-occur less than expected. Such a pattern
may indicate limiting similarity of distantly related species but may be difficult to
interpret.
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An important caveat is that multiple processes may contribute to observed pat-
terns making interpretation difficult (Cavender-Bares et al., 2009). However, exam-
ination of which traits fall out in different quadrants can help provide functional
interpretations of community patterns. For example, if disease resistance traits are
highly conserved and occur in the top right quadrant where close relatives do not
co-occur in communities, this would help implicate Janzen-Connell mechanisms as
contributing to the community structure; testing such a hypothesis with experimental
methods would be an important next step. Alternatively, if fire tolerance traits were
found in the bottom left quadrant, a plausible interpretation would be that there
had been repeated evolutionary origins of fire tolerance traits, and environmental
filtering (by fire) operated on these phylogenetically convergent traits. Both of these
scenarios could occur simultaneously and both would help explain an overdispersed
(or even) pattern of community phylogenetic structure. In contrast, if fire tolerance
traits appeared in the top left quadrant, one would implicate niche conservatism for
fire-tolerance traits, and it would be reasonable to assume that fire acted as an envi-
ronmental filter causing fire tolerant species to assemble in fire-dominated habitats
and fire-intolerant species to assemble in habitats lacking fire.

5 Functional phylogenetic distances and traitgrams

Taxa differ both functionally and phylogenetically, a fact that is clearly illustrated us-
ing traitgrams (Ackerly, 2009; Evans et al., 2009). A traitgram of a comparative.comm
object can be made using the traitgram.cc (a wrapper for the traitgram function
in picante). Here is a traitgram for a particular assemblage of species against the
length trait,

assemblage <- c("Nerophilus", "Hydroptila", "Psorophora",

"Simuliidae", "Psychodidae", "Ceratopogon",

"Nectopsyche", "Pedomoecus", "Ceratopsyche")

dataAssemblage <- data[, species(data) %in% assemblage]

traitgram.cc(dataAssemblage, "length")

9



8 10 12 14

S
im

ul
iid

ae

P
sy

ch
od

id
ae

C
er

at
op

og
on

N
ec

to
ps

yc
he

P
ed

om
oe

cu
s

C
er

at
op

sy
ch

e

The traitgram plots the phylogenetic time on the y-axis and length on the x-axis.
Note that some taxa are very distantly related but nevertheless have converged to
very similar trait values (e.g. Psorophora and Simuliidae), whereas others are closely
related but functionally very dissimilar (e.g. Nerophilus and Nectopsyche).

Cadotte et al. (2013) argued that distances in this ‘traitgram space’ might provide
a better indication of ecological differences between taxa, than if either function
or phylogenetic data were used in isolation. If FDij and PDij are functional and
phylogenetic distances between species i and j, the functional-phylogenetic distance
between i and j is (Cadotte et al., 2013),(

(1 − a)FDp
ij + aPDp

ij

)1/p
(1)

where a is the phylogenetic weighting parameter and p is the exponent for the p-norm
combination of phylogenetic and functional distances (e.g. p = 2 gives a Euclidean
combination). This distance matrix can be computed using the funct.phylo.dist
function. For example, for a = 0.5, and p = 2, we have,
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fpd.data <- funct.phylo.dist(data, phyloWeight = 0.5, p = 2)

One use of these distance matrices is in community randomisation tests (Cadotte
et al., 2013), an example of which can be computed using the following code:

ses.mfpd.data <- .ses.mpd(data, dist=fpd.data)

head(ses.mfpd.data)[,c("ntaxa", "mpd.obs", "mpd.obs.p")]

## ntaxa mpd.obs mpd.obs.p

## CA 18 0.5553092 0.1718282

## FC 10 0.5802422 0.4745255

## LA 12 0.5525134 0.2427572

## LC 11 0.6463215 0.8831169

## LQ 20 0.5535377 0.1188811

## names 7 0.6683667 0.8531469

6 Phylogenetic Generalised Linear Mixed Models

Phylogenetic Generalised Linear Models (PGLMMs) are powerful tools that permit
detailed tests of what structures ecological communities. They were originally in-
tended to examine phylogenetic patterns in community composition, sensitivity to
environmental gradients (and variation in species’ sensitivity based on trait data),
and species co-occurrence (Ives & Helmus, 2011). They were later extended to model
interaction networks (Rafferty & Ives, 2013), and both of these methods are flexi-
bly implemented in pez such that they can take any kind of correlation structure,
whether it be among species or among sites (e.g., spatial auto-correlation). Both
species occurrence and abundance can be modelled, depending on the error family

specified.
What follows is a simple example of how to simulate, and then analyse, the most

basic kind of PGLMM. The help file for PGLMM is quite thorough; the first section
provides a helpful reference for how to quickly fit different kinds of models once you
are familiar with the approach. What follows is a greatly condensed version of the
second section; the help file contains much more information of why and how each
step of the simulation works.

# Basic parameters

nspp <- 15
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nsite <- 10

# Fixed effects

beta0 <- beta1 <- 0

# Random effects’ magnitudes

sd.B0 <- sd.B1 <- 1

# Generate environmental site variable

X <- matrix(1:nsite, nrow = 1, ncol = nsite)

X <- (X - mean(X))/sd(X)

# Simulate phylogeny

phy <- compute.brlen(rtree(nspp), method = "Grafen",

power = 0.5)

# Standardise phy. covariance matrix

Vphy <- vcv(phy)

Vphy <- Vphy/(det(Vphy)^(1/nspp))

# Generate phylogenetic signal in

# parameters

iD <- t(chol(Vphy))

b0 <- beta0 + iD %*% rnorm(nspp, sd = sd.B0)

b1 <- beta1 + iD %*% rnorm(nspp, sd = sd.B1)

# Simulate presences

y <- matrix(outer(b0, array(1, dim = c(1,

nsite))), nrow = nspp, ncol = nsite) +

matrix(outer(b1, X), nrow = nspp, ncol = nsite)

e <- rnorm(nspp * nsite, sd = 0)

y <- y + matrix(e, nrow = nspp, ncol = nsite)

y <- matrix(y, nrow = nspp * nsite, ncol = 1)

Y <- rbinom(n = length(y), size = 1, prob = exp(y)/(1 +

exp(y)))

Y <- matrix(Y, nrow = nspp, ncol = nsite)

# Neat up the data to show structure

rownames(Y) <- 1:nspp

colnames(Y) <- 1:nsite

Arguably the most important thing for you to understand about the above is
what Y represents: it is a matrix where each species has its own row, and each site
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its own column (see the final line). When we take the transpose of it, we have what
we need to create a comparative.comm object.

We will now transform that data such that it is in a ‘long format’—each element
in the community matrix will become a row in a data.frame and we will perform a
regression (a PGLMM, to be precise!) on that data. This long format is important
because PGLMM is sufficiently flexible that it can be fitted to data that don’t fit into
the comparative.comm format. An example is interaction-network data, of which
there is an example in the help file. Calling as.data.frame on a comparative.comm

object will convert your data into this long-format structure for you.

# Transform data into ’long’ format -

# Occurrence data

YY <- matrix(Y, nrow = nspp * nsite, ncol = 1)

# - Environmental (site) data

XX <- matrix(kronecker(X, matrix(1, nrow = nspp,

ncol = 1)), nrow = nspp * nsite, ncol = 1)

site <- matrix(kronecker(1:nsite, matrix(1,

nrow = nspp, ncol = 1)), nrow = nspp *

nsite, ncol = 1)

sp <- matrix(kronecker(matrix(1, nrow = nsite,

ncol = 1), 1:nspp), nrow = nspp * nsite,

ncol = 1)

# - Make data.frame with all data

dat <- data.frame(Y = YY, X = XX, site = as.factor(site),

sp = as.factor(sp))

# Setup random effects - 1: random

# intercept - species independent

re.1 <- list(1, sp = dat$sp, covar = diag(nspp))

# - 2: random intercept - species

# phylogenetically covary

re.2 <- list(1, sp = dat$sp, covar = Vphy)

# - 3: random slope - species independent

re.3 <- list(dat$X, sp = dat$sp, covar = diag(nspp))

# - 4: random intercept - species covary

re.4 <- list(dat$X, sp = dat$sp, covar = Vphy)

# (Random effect for site)

re.site <- list(1, site = dat$site, covar = diag(nsite))

# Fit model!
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model <- communityPGLMM(Y ~ X, data = dat,

family = "binomial", sp = dat$sp, site = dat$site,

random.effects = list(re.1, re.2, re.3,

re.4), REML = TRUE, verbose = FALSE)

There are three steps: transforming the data (as discussed above), setting up the
random effects, and finally fitting the model. Fitting the model is comparatively easy;
make sure you specify your random effects, and if you’re modelling presence/absence
data set the family to binomial as you might in any GLM.

The random effects describe how likely species are to occur in the sites based
on a regression of the environmental variable we simulated in the first step. There
are random effects for the intercept of the regression (split into independent and
phylogenetically shared variance for each species) and the slope of their relationship
(also with phylogenetic and non-phylogenetic components). There is also a random
effect for site-level variation. The first section of the help file (?pglmm) gives examples
of how to set up other kinds of hypotheses involving species traits. These map onto
the original Ives & Helmus (2011) paper that describes PGLMMs.

Your choice of random effects determines the hypotheses you are testing with your
data—PGLMMs are attractive mostly because of this flexibility. If you are confused
over what random effects to fit, go back to the original papers (Ives & Helmus, 2011;
Rafferty & Ives, 2013), and maybe check a more recent (but basic) overview (Pearse
et al., 2014). Powerful methods mean you get to make powerful choices about what
you analyse: this is a good thing!

7 Simulation

A good simulation is one that does exactly what you want it to do, and pez provides a
number of simulation functions that may be useful to you as (1) tools, or (2) starting
points for your own simulations.

scape allows you to repeat the analysis of Helmus & Ives (2012), simulating the
assembly of species across a landscape given phylogenetically structured assembly.
The parameters are complex, but they can generate some useful expected distribu-
tions, and give you a feel for regional assembly.

Alternatively, you can model the evolution of species and, at the same time, their
assembly through a community. The only problem here is that the models are much
simpler, but hopefully they are tune-able to your liking! Explore the sim.meta and
sim.phy functions to find out more.
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Finally, you can also simulate sets of communities under phylogenetic and/or trait
repulsion, using sim.trait.asm. These communities are excellent for use as null
models to compare with your own data, and as such they take a comparative.comm

object as an argument to generate communities that match your own data.
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