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Chapter 1: Introduction 
 

Contrary to what may seem the case when you first encounter ordinary differential 

equations (ODEs), the majority of ODE systems cannot be solved analytically. In this 

case, there is usually no option but to resort to numerical solution, often enlisting the 

help of a computer to do so. However, for certain classes of ODE systems it is possible 

to undertake a qualitative examination using phase plane methods, as introduced by 

Henry Poincare in the 19th Century amongst others. These methods allow the analyser 

to circumvent the need for explicit solutions, via a highly graphical approach. Indeed, 

this qualitative analysis can in fact be useful even when the system can be solved 

analytically. Specifically, it is usually possible to plot trajectories for various initial 

conditions, before obtaining information regarding stability and other motion 

patterns of the system. 

 

This package, phaseR, allows the user to perform such analyses for one and two 

dimensional autonomous ODE systems. Programs are available to determine and 

classify equilibrium points, plot the flow or vector field, and plot trajectories for 

multiple initial conditions. In the one variable case, a program is also available to plot 

the phase portrait. Whilst in the two variable case, additionally a program is available 

to plot nullclines. This accompanying guide has been written not only to provide 

further information on how to use phaseR, but as a teaching utility for phase plane 

methods. In this way, phaseR can hopefully serve as a package for both independent 

learning, and for group based teaching; assisting lecturers in explaining the herein 

techniques. 

 

Thus, since it is an important skill to be able to perform phase plane analysis by hand, 

and as a background to the package, this guide will proceed by introducing 

mathematically the systems that the package can examine and the techniques for 

analysis. The level of mathematics it most akin to a first year undergraduate 

mathematics course, however it should also be useful to those from natural science 

and engineering backgrounds as well. Following this, an explanation of the usage of 

the programs in phaseR will be given; for this good knowledge of R is useful, but the 

programs are not difficult to use. Examples will then be provided for both one and two 

dimensional systems. Further example systems available in the package will be 

described, before finally, exercises are provided for the user to undertake should they 

wish. Solutions to these exercises are provided in a separate pdf. Throughout to make 

things simpler, we will stick to using the letters 𝑥, 𝑦 and 𝑡 only as variables, as these 

are the variable names used by the programs. In practice however, it is not difficult to 

deal with cases where alternative notation is used. 

 

Acknowledgment goes to Professors Kaplan and Flath at Macalester College who 

completed some work on phase plane methods for two dimensional systems 



CHAPTER 1 

2 
 

(http://www.macalester.edu/~kaplan/math135/pplane.pdf), however the full 

possibility of such code was not explored, and at the time of writing this guide there 

was still no package commonly available for executing such techniques in R. 

Therefore, I decided to create one, and I hope that it will prove a valuable resource to 

the R community. I welcome any corrections or comments on both the programs and 

these notes. 
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Chapter 2: First Order Dynamical Systems in 

One Dimension 
 

2.1  Autonomous Ordinary Differential Equations in One Dimension 
 

A first order dynamical system of one variable, 𝑦(𝑡) say, can be written in the 

following form: 

 

                                                                      
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑡).                                                              (1) 

 

In many cases (usually the ones found in introductory calculus texts) this ODE can be 

solved analytically; with several techniques, such as integrating factors and 

separation of variables, at hand to help. However, more often than not, when a 

differential equation is written down to describe a real life system, it cannot be solved 

analytically. This is particularly true of non-linear ODEs, for which numerical solution 

would frequently have to be utilised. As a result, many computer packages are today 

available for numerical integration. 

 

However, an alternative approach to numerical integration is sometimes possible. 

This approach is usually termed the phase plane method, or phase plane analysis. This 

methodology is concerned with determining qualitative features of the solutions to 

ODEs, without the need for explicit solution. Whilst such analysis may be more 

germane to systems we cannot solve analytically, the methods are just as valid to 

systems we can. 

 

Although this qualitative analysis is indeed possible for ODEs of type (1), in this 

package we restrict ourselves slightly to the case of ‘autonomous ODEs’, for reasons 

that should hopefully become clear later. This class of first order ODEs can be written 

in the following form: 

 

                                                                       
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦),                                                                 (2) 

 

i.e. it is the case of no dependence upon the independent variable (𝑡) in the functional 

form of 𝑓. Moreover, technically, we also assume that 𝑓 is a continuous, differentiable 

function. However, this is rarely an important point in what follows. Whilst this may 

seem a strong restriction, many real life models can be written in this form. 
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Now, within this framework of qualitative analysis there are several important 

concepts that we will proceed to discuss. Namely; the flow field, equilibrium points, 

and the phase portrait. 

 

2.2  The Flow Field 
 

We begin with a discussion of the flow, or direction, field. Consider again the ODE of 

type (2), and imagine making a sketch in the 𝑡-𝑦 plane by drawing at every point (𝑡, 𝑦) 

a small line of slope 𝑓(𝑦). This resulting picture of many line segments is the flow field. 

The use of such a picture lies in that solution curves to the ODE must be tangent to the 

directions of the line segments. Thus we can construct approximate graphical 

solutions to (2) by beginning at any point (0, 𝑦0) (i.e. 𝑦(0) = 𝑦0) and sketching a curve 

that proceeds through the plane in the direction of the flow field. In this way, if we 

start at many different initial points, we can generate a family of solution curves that 

qualitatively describe the behaviour specified by the ODE (2). 

 

It is important to note however, that whilst the flow field method is incredibly useful 

for plotting trajectories by hand, it is an approximate method. Since we can only plot 

a finite number of line segments some approximation will always be introduced. 

Usually however, solutions accurate enough to gain a reasonable understanding of the 

ODE can be achieved, and in general, the more line segments we plot the more 

accurate our sketches will be. By hand this can be time consuming, utilising a 

computer however, it is not so difficult. 

 

Some texts on phase plane methods would here discuss the concept of isoclines, 

defined as lines across which 𝑑𝑦/𝑑𝑥 is constant, i.e.: 

 

𝑓(𝑦) = 𝛼, 

 

for different values of 𝛼. These lines are used in the same manner as the small line 

segments of the flow field, since we know the angle at which solution curves should 

cut them. They however are far more useful in the setting of non-autonomous ODEs, 

and thus we will make little further mention of them. 

 

Additionally, some texts advise to plot the line segments at lengths reflecting the rate 

of change of 𝑦. However, by hand this will almost always be a very laborious task, 

whilst even with a computer if 𝑓(𝑦) takes a large range of values the resulting plot can 

become somewhat uninformative with obscuring arrows of great length, and other 

arrows of length too short to be useful. Thus, it is usually best to plot all line segments 

at some small arbitrary length. 
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As is often the case in mathematics, concepts can be more easily understood through 

an example. As such, consider the ODE: 

 

                                                                    
𝑑𝑦

𝑑𝑡
= 4 − 𝑦2,                                                                (3) 

 

provided in the package as example1. More information will be provided later on 

how to utilise the programs in phaseR, as well as how to specify your own systems. 

For now though simply note the flow field produced below, and the multiple 

trajectories that follow it: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

2.3  Equilibrium Points and Stability 
 

We now turn our attention to the so-called equilibrium points of our ODE (2). These 

points are defined by the locations where: 

 

𝑓(𝑦) = 0. 

 

It is easy to understand why they are termed equilibrium points. Beginning at a point 

𝑦∗ where 𝑓(𝑦∗) = 0, the system if unperturbed will remain at 𝑦∗ throughout its 
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evolution. Their great importance lies in determining the long term behaviour of the 

ODE. 

 

Considering our example ODE (3) again, it is a simple matter to find its equilibrium 

points: 

 

𝑓(𝑦∗) = 0 ⟹ 4 − 𝑦∗
2 = 0 ⟹ (2 − 𝑦∗)(2 + 𝑦∗) = 0 ⟹ 𝑦∗ = −2, 2. 

 

For the equilibrium points however, just as much as we are interested in their 

location, we are interested in whether they are stable or unstable. Here, informally, 

being stable means that if the system is placed a small distance away from the 

equilibrium point, it will remain close to this equilibrium point. Whilst being unstable 

means a small perturbation away from the equilibrium point causes the solution to 

diverge large distances away. More precisely, the definition of stability can be stated 

as: 

 

if for every 𝜖 > 0, there exists 𝛿 > 0 such that whenever |𝑦(0) − 𝑦∗| < 𝛿 then 

|𝑦(𝑡) − 𝑦∗| < 𝜖 for all 𝑡 

 

Classically, to determine the stability of any located equilibrium points, we have two 

options. The first method is the phase portrait. Indeed, our earlier decision to restrict 

our attention to autonomous systems was motivated by the condition required for 

phase portrait analysis: when we remove time dependence from our systems 

evolution, it allows us to collapse our qualitative analysis from the 𝑡-𝑦 plane to simply 

considering how 𝑓(𝑦) varies with 𝑦. 

 

So, in phase portrait analysis, we first plot 𝑓(𝑦) against 𝑦. From (2) it should be easy 

to see that whenever 𝑓(𝑦) > 0, 𝑦 will increase. Whilst whenever 𝑓(𝑦) < 0, 𝑦 will 

decrease. Moreover, the locations where 𝑓(𝑦) cross the 𝑦-axis are exactly the 

equilibrium points (thus this plot can be useful for locating equilibrium points). 

Therefore, we can represent the evolution of 𝑦 in this plot by simply placing arrows 

along the 𝑦-axis indicating whether 𝑦 would be increasing or decreasing. Then, the 

cases where arrows either side of an equilibrium point towards each other denote 

stability, whilst when they point away they denote instability. 

 

Again, as an example we consider the system (3). Plotting 𝑓(𝑦) = 4 − 𝑦2 against 𝑦 and 

adding arrows as described we acquire the graph on the following page: 
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Thus, we can see that the equilibrium point 𝑦∗ = 2 is stable, whilst 𝑦∗ = −2 is unstable. 

Indeed, looking back at the trajectories we plotted in Section 2.2, we can observe that 

solutions do converge towards 𝑦 = 2, but away from 𝑦 = −2. 

 

Moreover, we now note an important consequence of requiring 𝑓 to be continuous 

and differentiable; that the solution curves cannot touch each other (except to 

converge at equilibrium points). This is because these conditions on 𝑓 guarentee 

solutions to (2) are unique. We can observe in our earlier plot of several trajectories 

of the system (3) that this is indeed the case. 

 

Our second option to perform such stability analysis, comes from utilising the Taylor 

Series expansion of 𝑓. We begin by supposing we are a small distance 𝛿(0) away from 

our fixed point 𝑦∗, i.e. 𝑦(0) = 𝑦∗ + 𝛿(0), and in general that 𝑦(𝑡) = 𝑦∗ + 𝛿(𝑡). Then we 

can write the Taylor Series of 𝑓 as: 

 

𝑓(𝑦∗ + 𝛿) = 𝑓(𝑦∗) + 𝛿
𝜕𝑓

𝜕𝑦
(𝑦∗) + 𝑜(𝛿), 

assuming higher order terms can be neglected. Recalling 𝑓(𝑦∗) = 0, our ODE (2) 

becomes: 
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𝑑

𝑑𝑡
(𝑦∗ + 𝛿) = 𝛿

𝜕𝑓

𝜕𝑦
(𝑦∗), 

                    ⟹
𝑑𝛿

𝑑𝑡
= 𝛿

𝜕𝑓

𝜕𝑦
(𝑦∗) = 𝑘𝛿. 

 

This ODE for 𝛿 can be solved easily to give 𝛿 = 𝛿(0)𝑒𝑘𝑡. Then stability can be found 

based upon whether 𝛿 grows or decays as 𝑡 increases, i.e. we have: 
 

𝑘 =
𝜕𝑓

𝜕𝑦
(𝑦∗) { 

> 0 ∶ Stable,     
< 0 ∶ Unstable.

 

 

𝑘 here is sometimes referred to as the discriminant, whilst this approach is also often 

referred to as Perturbation Analysis. 
 

Returning to our example ODE (3), we can perform such analysis easily: 
 

𝜕𝑓

𝜕𝑦
(𝑦∗) = −2𝑦∗ = { 

−4 ∶ 𝑦∗ = 2, ,,       
4 ∶ 𝑦∗ = −2.  ,

 

 

Thus we draw the same conclusion as before; 𝑦∗ = 2 is stable, and 𝑦∗ = −2 is unstable. 

We will see later how one of the programs in phaseR can perform this stability 

analysis for us. 
 

It should now be clear that we can clearly state if 𝑦(0) > 2 or 0 < 𝑦(0) < 2; the 

solution will eventually approach 𝑦 = 2. However, if 𝑦(0) < 0, 𝑦 ⟶ −∞ as 𝑡 ⟶ ∞. 

Such general statements can often be made as a result of the above analysis. 
 

It is worthwhile noting here that if we find: 
 

𝜕𝑓

𝜕𝑦
(𝑦∗) = 0, 

 

then to this order of the Taylor Series no conclusion can be drawn about stability.  

 

So, now we have observed all of the key components required to perform a qualitative 

analysis upon a one dimensional autonomous ODE. We being by plotting the flow 

field, and from this several trajectories. We then identify the equilibrium points and 

choose a method to determine their stability. All such techniques are available in this 

package, and we will later discuss how to implement them. First however, we will 

discuss how these methods can be generalised to coupled ODEs. 
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Chapter 3: First Order Dynamical Systems in 

Two Dimensions 
 

3.1  Autonomous Ordinary Differential Equations in Two Dimensions 
 

As may well be expected, things get substantially more complex in the world of 

coupled ODEs; very rarely can such systems be solved analytically. Unfortunately, the 

analysis of many real life systems does involve interacting variables, and so these 

systems are not uncommon. Here, the first restriction we make is to the case of two 

dimensional (or two variable) systems; a necessity for the following techniques to be 

possible (this is often considered a disadvantage of phase plane methods; that they 

cannot be generalised to more than two dimensions. Fortunately however, many 

systems can be approximated to two dimensions). These systems can be written in 

their most general form as: 

 

                                                  
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦, 𝑡) ,      

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦, 𝑡),                                          (4) 

 

for 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡). In this most general case given by (4) numerical solution 

would almost certainly be the only way forward. However, if we again make the 

restriction to autonomous systems, the phase plane methods from one dimension can 

be generalised to avoid the need for numerical integration. Following the same route 

as in the one dimensional case, an autonomous system can be written for two coupled 

ODEs as: 

 

                                                      
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦),      

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦).                                              (5) 

 

As before, the definition of the flow field (more commonly, and from here on out, 

referred to as the velocity field) and equilibrium points, as well as their stability will 

be important. Here however, we also meet the concept of a nullcline. Again, technically 

we require that 𝑓 and 𝑔 be continuous, (and now) partially differentiable functions. 

 

Before we proceed to discuss the generalisation of our earlier techniques to this two 

dimensional system, it is useful to note that certain second order ODEs can indeed be 

re-cast by variable substitution into a system of type (5). Indeed, consider the second 

order ODE given by: 

 

𝑎(𝑦)
𝑑2𝑦

𝑑𝑡
+ 𝑏(𝑦)

𝑑𝑦

𝑑𝑡
+ 𝑐(𝑦) = 0. 
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We make the substitution 𝑥 = 𝑑𝑦/𝑑𝑡 and re-write our system as: 

 
𝑑𝑦

𝑑𝑡
= 𝑥, 

𝑑𝑥

𝑑𝑡
=

1

𝑎(𝑦)
[−𝑏(𝑦)𝑥 − 𝑐(𝑦)]. 

 

In this way, it is actually possible to analyse the behaviour of certain second order 

ODEs using the methods for coupled first order ODEs. 

 

3.2  The Velocity Field 
 

We seen earlier how the restriction to autonomous ODEs in the one dimensional case 

allowed us to restrict attention to the phase portrait; the plot of 𝑓(𝑦) against 𝑦. In the 

two dimensional case, this restriction allows us to restrict attention to the plane 

produced by the two dependent variables. Using our notation in (5), this is the 𝑥-𝑦 

plane, and is often referred to in this context as the phase plane. Representation in 

this manner proves to be the most convenient way to visualise the system. 

 

In this plane, we can produce a plot analogous to the flow field of Section 2.2, by at 

many points (𝑥, 𝑦) plotting a small line segment (a vector) in the direction given by 

the rates of change of 𝑥 and 𝑦; provided by 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦). This plot is usually 

referred to as the velocity field, or sometimes the direction field, and perhaps 

confusingly, the phase portrait. We can then again for any point trace out the 

trajectory of a solution by using the fact that it must pass through our line segments 

in a parallel manner. Repeating this procedure for several points, we can again build 

up a family of solutions and a good picture of the behaviour of solutions to our system 

(5). As before however, it is important to understand that using this method is only 

an approximation to performing numerical integration, and things can here become 

very ambiguous around certain points (the equilibria). 

 

To illustrate the concept of the velocity field, we again turn to an example. This time 

consider the system given by: 

 

                                                      
𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑥𝑦,    

𝑑𝑦

𝑑𝑡
= 𝑥𝑦 − 𝑦.                                                (6) 

 

Using phaseR we can produce the following plot of the velocity field along with 

several trajectories, seen on the following page: 
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Analogous to the one dimensional analysis performed in Chapter 2, we observe how 

our restriction to continuous partially differentiable 𝑓 and 𝑔 ensures that trajectories 

cannot cross (though they can again converge at equilibria). 

 

What is more, as before, some texts advise to plot the vectors at lengths reflecting the 

magnitudes of the rates of change of 𝑥 and 𝑦. However, some small arbitrary length 

usually still remains the best option. 

 

Finally, as was the case in the one dimensional analysis, some texts here again refer 

to the method of isoclines for tracing out trajectories. Isoclines here are defined as 

curves in the 𝑥-𝑦 plane of constant gradient, i.e.: 

 

𝑑𝑦

𝑑𝑥
=
𝑔(𝑥, 𝑦)

𝑓(𝑥, 𝑦)
= 𝛼, 

 

for different values of 𝛼. Once more, trajectories would be produced by using the fact 

that we know the angle they should cut each isocline. We will make no further 

reference to isoclines in these notes; hopefully for reasons discussed below it should 

become clear why certain tricks make the need for plotting isoclines very rare. 
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3.3  Nullclines 
 

An important concept in the case of two dimensional systems, is that of nullclines. 

Here, 𝑥-nullclines are defined by the locations where 𝑓(𝑥, 𝑦) = 0, whilst the 𝑦-

nullclines are defined by the locations where 𝑔(𝑥, 𝑦) = 0. Thus, the 𝑥- and 𝑦-nullclines 

define the locations where 𝑥 and 𝑦 respectively, do not change with 𝑡. As a 

consequence, when plotting a vector field by hand it is usually wise to plot the 

nullclines first, as the line segments (or vectors) along them move parallel to the 𝑥- 

and 𝑦-axes. 

 

Returning to our example given by system (6), we can find its nullclines as follows: 

 

𝑥 ∶   𝑥 − 𝑥𝑦 = 0 ⟹ 𝑥(1 − 𝑦) = 0 ⟹ 𝑥 = 0 or 𝑦 = 1, 

𝑦 ∶   𝑥𝑦 − 𝑦 = 0 ⟹ 𝑦(𝑥 − 1) = 0 ⟹ 𝑥 = 1 or 𝑦 = 0. 

 

We can then plot these nullclines along with the velocity field: 
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3.4  Equilibrium Points and Stability 
 

Equilibrium points maintain their importance in two dimensions. Here, 

generalisation defines them to be the locations (𝑥∗, 𝑦∗) where: 

 

𝑓(𝑥∗, 𝑦∗) = 𝑔(𝑥∗, 𝑦∗) = 0. 

 

Thus, another utility of nullclines immediately becomes apparent; the locations where 

𝑥- and 𝑦-nullclines cross are the equilibria. However, it is important to note that 

locations where 𝑥-nullclines or 𝑦- nullclines cross each other, are not equilbria. For 

this reason it is usually useful to plot 𝑥- and 𝑦-nullclines in different colours. 

 

Revisiting the example system (6), it is easy to find either analytically, or from the 

nullcline plot, that two equilibria are present; the points (0,0) and (1,1). 

 

We now note a useful fact about equilibria and nullclines from the plot in Section 3.3. 

On opposite sides of an equilibria, along a nullcline, the orientation of the velocity 

arrows is reversed. This is a property shared by the majority of systems (with the 

exception being certain singular cases where the Jacobian that we meet later is zero). 

Because trajectories must be continuous, the direction vectors must vary 

continuously from one point to another on the nullclines everywhere else. So in most 

cases when seeking to plot the velocity field and trajectories, it suffices to determine 

direction vectors at a few select locations and deduce the rest by preserving 

continuity and switching orientation when an equilibrium is crossed. It is this trick 

that makes plotting many isoclines often unnecessary. 

 

Again, we must now turn our attention to the stability of the equilibrium points. In 

two dimensions the definition of stability remains the same, but as well as 

determining whether a point is stable or unstable, we can additionally classify the 

nature in which trajectories move away or towards it. Ultimately, as in the one 

dimensional case, we aim to identify the long term behaviour of solutions in different 

regions of the plane. 

 

In this case, we must make use of a mathematical argument; to gain a full 

understanding use of a graph is not enough (though it can be useful in certain singular 

cases). Here, many texts distinguish between the case of linear and non-linear 

systems, and so we will also make such a distinction, though ultimately we will treat 

these two types of system the same. 

 

The linear version of system (5) is given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦,   

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦, 
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or in matrix form: 

 

                                              
𝑑

𝑑𝑡
(
𝑥
𝑦) =

𝑑

𝑑𝑡
𝐱 = (

𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦) = 𝐀𝐱.                                             (7) 

 

Now, provided det 𝐀 ≠ 0, a unique solution exists to this system (we’ll return to 

discussing the case det 𝐀 = 0 later), and can be written in the form: 

 

𝐱 = 𝐶1𝑒
𝜆1𝑡𝐞1 + 𝐶2𝑒

𝜆2𝑡𝐞2, 

 

where 𝜆1 and 𝜆2 are the eigenvalues of 𝐀, 𝐞1 and 𝐞2 are their corresponding 

eigenvectors, and 𝐶1 and 𝐶2 are arbitrary constants. From here we can determine 

stability based on the values of the eigenvalues. However, the procedure here on out 

is the same as that for non-linear systems and so we will move to the analysis required 

for the more complex case of non-linearity. 

 

So, from the above it should be obvious that provided det 𝐀 ≠ 0, linear systems have 

only one equilibrium point; (0,0). Non-linear systems however, are much more 

complicated; they can have multiple equilibria and even display limit cycle behaviour 

(as defined later). However, close to an equilibrium point, behaviour can be usually 

understood by linearising the model about the equilibria. 

 

To do this we proceed in a similar fashion to the Taylor Series method of Section 2.3. 

We suppose we have an equilibrium point given by (𝑥∗, 𝑦∗) and that our system lies 

initially slightly away from this point at (𝑥∗ + 𝛿(0), 𝑦∗ + 𝜖(0)), and in general at 

(𝑥∗ + 𝛿(𝑡), 𝑦∗ + 𝜖(𝑡)). Then using the Taylor expansion for 𝑓, our differential equation 

for 𝑥 becomes: 

 
𝑑𝛿

𝑑𝑡
= 𝑓(𝑥∗ + 𝛿, 𝑦∗ + 𝜖), 

=  𝑓(𝑥∗, 𝑦∗) + 𝛿
𝜕𝑓

𝜕𝑥
(𝑥∗, 𝑦∗) + 𝜖

𝜕𝑓

𝜕𝑦
(𝑥∗, 𝑦∗) + 𝑜(𝛿) + 𝑜(𝜖), 

   , , = 𝛿
𝜕𝑓

𝜕𝑥
(𝑥∗, 𝑦∗) + 𝜖

𝜕𝑓

𝜕𝑦
(𝑥∗, 𝑦∗) + 𝑜(𝛿) + 𝑜(𝜖). 

 

Similarly, our differential equation for 𝑦 becomes: 

 
𝑑𝜖

𝑑𝑡
= 𝛿

𝜕𝑔

𝜕𝑥
(𝑥∗, 𝑦∗) + 𝜖

𝜕𝑔

𝜕𝑦
(𝑥∗, 𝑦∗) + 𝑜(𝛿) + 𝑜(𝜖).                      

 

Here we have again assumed terms of second order and higher are negligible.  
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If we write this system in matrix form we acquire: 

 

                                 
𝑑

𝑑𝑡
𝛅 =

(

 
 

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦)

 
 
|
|

(𝑥∗,𝑦∗)

𝛅 = (
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

)|
(𝑥∗,𝑦∗)

𝛿 = 𝐉𝛅,                      (8) 

 

Where 𝐉 is called the Jacobian of the system, and: 

 

𝛅 = (
𝛿
𝜖
). 

 

If we let the eigenvalues of 𝐉 be denoted 𝜆1 and 𝜆2, with corresponding eigenvectors 

𝐞1 and 𝐞2, then the general solution to (8) is: 

 

𝛅 = 𝐶1𝑒
𝜆1𝑡𝐞1 + 𝐶2𝑒

𝜆2𝑡𝐞2, 

 

where 𝐶1 and 𝐶2 are arbitrary constants.  

 

Considering the linear system (7) we find that 𝐉 = 𝐀. Thus stability of (0,0) in the 

linear case can be determined by the same classification rules as below for the non-

linear case. Specifically we have: 

 

 If 𝜆1 and 𝜆2 are both real and positive (𝜆1 > 𝜆2 > 0 say), the solution for 𝛅 moves 

outwards in both the 𝐞1 and 𝐞2 directions (to be precise, it moves more quickly in 

the 𝐞1 direction). Thus |𝛅| will increase exponentially with 𝑡 and so trajectories 

move away from the equilibrium point. This is the definition of an unstable node. 

 If 𝜆1 and 𝜆2 are both real and negative (𝜆1 < 𝜆2 < 0 say), |𝛅| will decrease 

exponentially and trajectories move towards the equilibrium point. This is the 

definition of a stable node. 

 If 𝜆1 and 𝜆2 are both real but have opposite sign (𝜆1 < 0, 𝜆2 > 0 say), trajectories 

move outwards along 𝐞2, but inwards along 𝐞1. Unless 𝛅 initially lies exactly 

parallel to 𝐞1, the solution will eventually move away from the equilibrium point; 

and thus it is unstable. This is the definition of a saddle point. 

 If 𝜆1 and 𝜆2 are complex (𝑎 ± 𝑖𝑏 say), then the solution for 𝛅 can be rewritten as: 

 

𝛿 = 𝑒𝑎𝑡[𝐶1(cos 𝑏𝑡 + 𝑖 sin 𝑏𝑡)𝐞1 + 𝐶2(cos 𝑏𝑡 − 𝑖 sin 𝑏𝑡)𝐞2], 

= 𝑒𝑎𝑡(𝐀 cos 𝑏𝑡 + 𝐁 sin 𝑏𝑡),                                                    

 

where 𝐀 = 𝐶1𝐞1 + 𝐶2𝐞2 and 𝐁 = 𝑖(𝐶1𝐞1 − 𝐶2𝐞2). Thus, from this form we can see 

that the solution will spiral around the equilibrium point. If 𝑎 > 0 then with each 

loop |𝛅| increases; this is the definition of an unstable focus. If 𝑎 < 0 then we have 
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the opposite situation; with each loop |𝛅| decreases; this is the definition of a 

stable focus. If 𝑎 = 0 then the solution continues in a closed loop; this is the 

definition of a centre. 

 

Fortunately for us, it is not actually necessary to find the exact values of the 

eigenvalues (though computationally this is not a difficult task, by hand it can be time 

consuming). We only require the signs of the eigenvalues, or of their real parts, to 

perform the classification. To this end, consider the characteristic equation of 𝐉: 

 

(𝑓𝑥 − 𝜆)(𝑔𝑦 − 𝜆) − 𝑓𝑦𝑔𝑥 = 0. 

 

However, observing that tr(𝐉) = 𝑓𝑥 + 𝑔𝑦 and det(𝐉) = Δ = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥, we can write 

the characteristic equation of J as: 

 

𝜆2 − 𝑇𝜆 + Δ = 0,                        

               ⟹ 𝜆 =
𝑇 ± √𝑇2 − 4Δ

2
. 

 

From this we can draw up the following table that allows us to classify the equilibria 

using the signs of 𝑇, Δ and 𝑇2 − 4Δ: 

 

𝚫 𝑻𝟐 − 𝟒𝚫 Eigenvalues of J 𝑻 Classification 

< 0 > 0 Real, opposite signs N/A Saddle 

> 0 > 0 Real, same signs 
< 0 Stable node 

> 0 Unstable node 

> 0 < 0 Complex conjugate pair 

< 0 Stable focus 

= 0 Centre 

> 0 Unstable focus 

= 0 N/A  N/A Indeterminate 

N/A = 0 Real, equal 
< 0 Stable node 

> 0 Unstable node 

        Note: Focus’ are often referred to as spirals. 

 

From here, we will always refer to 𝑇2 − 4Δ as the discriminant. 

 

To be more precise, for the case of Δ = 0; we would have to consider second-order 

terms in the Taylor Series approximation made earlier in order to determine stability. 

Alternatively, in this case, use of the velocity field and traced trajectories can allow us 

to identify if the point is stable or not. 
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Returning to our example system (6), taking partial derivatives we can compute the 

Jacobian at any equilibrium point (𝑥∗, 𝑦∗) from the general version: 
 

𝐉 = (
1 − 𝑦∗ −𝑥∗
𝑦∗ 𝑥∗ − 1

). 

 

Thus, at (0,0), we have: 
 

𝐉 = (
1 0
0 −1

)|
(0,0)

. 

 

So tr(𝐉) = 𝑇 = 0 and det(𝐉) = Δ = −1; which from our table above makes (0,0) a 

saddle point. For (1,1) however, we have: 
 

𝐉 = (
0 −1
1 0

)|
(1,1)

. 

 

Therefore, tr(𝐉) = 𝑇 = 0 and det(𝐉) = Δ = 1; which from our table above makes (1,1) 

a centre. Indeed, if we look back at our earlier plot, we can observe trajectories 

diverging away from (0,0), but traversing around (1,1). Again, we will see later how 

this analysis can be performed for us in phaseR. 
 

As a last point of interest, note that it is sometimes interesting to plot 𝑥 and 𝑦 

trajectories against 𝑡. For the case of (𝑥0, 𝑦0) = (3,4) in our example system (6) this 

results in the following plot where we can witness the oscillating nature of 𝑥 and 𝑦: 
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The utility of such plots becomes more apparent in cases where trajectories can be 

seen to converge upon an equilibrium point; indicating its stability and often whether 

it is a node or focus. 

 

So, we have now discussed all of the techniques required to a perform phase plane 

analysis of a two dimensional autonomous ODE system. We begin by locating and 

plotting nullclines, using these to create the velocity field. From this we can plot 

numerous trajectories. We then identify any equilibria and classify them according to 

the earlier table. 

 

3.5  Limit Cycles 
 

Non-linear systems can also exhibit a type of behaviour known as a limit cycle. In the 

phase plane, a limit cycle is defined as an isolated closed orbit. Closed here denotes 

the periodic nature of the motion and isolated denotes the limiting nature of the cycle; 

with nearby trajectories converging to, or diverging away from, it. Limit cycles have a 

complex mathematical theory behind them, which we will not go into here. We will 

however observe an example of limit cycle behaviour later on. 
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Chapter 4: phaseR Usage 
 

To perform all of the above techniques, the package contains six key functions. Below 

is a description of each ones utility, as well as the user specifiable input variables. The 

description of inputs is repetitive on purpose to reflect how many are common across 

programs, and most part equal to the description seen in R. In addition, we will 

continue to use 𝑥, 𝑦 and 𝑡 as our variables. 

 

4.1  flowField 
 

This function allows the user to plot the flow or velocity field for a one or two 

dimensional autonomous ODE system. The following inputs can be set: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 

 x.lim: In the case of a two dimensional system, this sets the limits of the first 

dependent variable in which gradient reflecting line segments should be plotted. 

In the case of a one dimensional system, this sets the limits of the independent 

variable in which these line segments should be plotted. Should be a vector of 

length two. 

  y.lim: In the case of a two dimensional system this sets the limits of the second 

dependent variable in which gradient reflecting line segments should be plotted. 

In the case of a one variable system, this sets the limits of the dependent variable 

in which these line segments should be plotted. Should be a vector of length two. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 points: Sets the density of the line segments to be plotted. points segments 

will be plotted in the 𝑥 and 𝑦 directions. Fine tuning here, by shifting points up and 

down, allows for the creation of more aesthetically pleasing plots. Defaults to 11. 

 system: Set to either "one.dim" or "two.dim" to indicate the type of system 

being analysed. Defaults to "two.dim". 

 colour: Sets the colour of the plotted line segments. Should be a vector of length 

one. Will be reset accordingly if it is a vector of the wrong length. Defaults to 

"gray". 

 arrow.type: Sets the type of line segments plotted. If set to "proportional" 

the length of the line segments reflects the magnitude of the derivative. If set to 

"equal" the line segments take equal lengths, simply reflecting the gradient of 

the derivative(s). Defaults to "equal". 
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 arrow.head: Sets the length of the arrow heads. Passed to arrows. Defaults to 

0.05. 

 frac: Sets the fraction of the theoretical maximum length line segments can take 

without overlapping, that they can actually attain. In practice, frac can be set to 

greater than 1 without line segments overlapping. Fine tuning here assists the 

creation of aesthetically pleasing plots. Defaults to 1. 

 add: Logical. If TRUE, the flow field is added to an existing plot. If FALSE, a new 

plot is created. Defaults to TRUE. 

 xlab: Label for the 𝑥-axis of the resulting plot. Defaults to "x". 

 ylab: Label for the 𝑦-axis of the resulting plot. Defaults to "y". 

 …: Additional arguments to be passed to either plot or arrows. 

 

Returned by flowField is a list object containing all of the input variables as well as 

following components (the exact the exact make up is dependent upon the value of 

system): 

 

 dx: A matrix. In the case of a two dimensional system, the values of the derivative 

of the first dependent derivative at all evaluated points. 

 dy: A matrix. In the case of a two dimensional system, the values of the derivative 

of the second dependent variable at all evaluated points. In the case of a one 

dimensional system, the values of the derivative of the dependent variable at all 

evaluated points. 

 x: A vector. In the case of a two dimensional system, the values of the first 

dependent variable at which the derivatives were computed. In the case of a one 

dimensional system, the values of the independent variable at which the 

derivatives were computed. 

 y: A vector. In the case of a two dimensional system, the values of the second 

dependent variable at which the derivatives were computed. In the case of a one 

dimensional system, the values of the dependent variable at which the derivatives 

were computed. 

 

4.2  nullclines 

 

This function allows the user to plot nullclines for two dimensional autonomous ODE 

systems. Or it can be used to plot horizontal lines at equilibrium points for one 

dimensional autonomous ODE systems. The following inputs can be set: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 
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 x.lim: In the case of a two dimensional system, this sets the limits of the first 

dependent variable in which gradient reflecting line segments should be plotted. 

In the case of a one dimensional system, this sets the limits of the independent 

variable in which these line segments should be plotted. Should be a vector of 

length two.   

 y.lim: In the case of a two dimensional system this sets the limits of the second 

dependent variable in which gradient reflecting line segments should be plotted. 

In the case of a dimensional system, this sets the limits of the dependent variable 

in which these line segments should be plotted. Should be a vector of length two. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 points: Sets the density at which derivatives are computed. points × points 

derivatives will be computed. Levels of zero gradient are identified using these 

computations and the function contour. Increasing the value of points improves 

identification of nullclines, but increases computation time. Defaults to 101. 

 system: Set to either "one.dim" or "two.dim" to indicate the type of system 

being analysed. Defaults to "two.dim". 

 colour: In the case of a two dimensional system, sets the colours used for the 𝑥- 

and 𝑦-nullclines. In the case of a one dimensional system, sets the colour of the 

lines plotted horizontally along the equilibria. Will be reset accordingly if it is a 

vector of the wrong length. Defaults to c("red", "blue"). 

 add: Logical. If TRUE, the nullclines are added to an existing plot. If FALSE, a new 

plot is created. Defaults to TRUE. 

 …: Additional arguments to be passed to either plot or contour. 

 

Returned by nullclines is a list object containing all of the input variables as well 

as following components (the exact the exact make up is dependent upon the value of 

system): 

 

 dx: A matrix. In the case of a two dimensional system, the values of the derivative 

of the first dependent derivative at all evaluated points. 

 dy: A matrix. In the case of a two dimensional system, the values of the derivative 

of the second dependent variable at all evaluated points. In the case of a one 

dimensional system, the values of the derivative of the dependent variable at all 

evaluated points. 

 x: A vector. In the case of a two dimensional system, the values of the first 

dependent variable at which the derivatives were computed. In the case of a one 

dimensional system, the values of the independent variable at which the 

derivatives were computed. 
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 y: A vector. In the case of a two dimensional system, the values of the second 

dependent variable at which the derivatives were computed. In the case of a one 

dimensional system, the values of the dependent variable at which the derivatives 

were computed. 

 

4.3  numericalSolution 

 

Used for two dimensional systems, this function numerically solves the autonomous 

ODE system for a given initial condition. It then plots the dependent variables against 

the independent variable. The following inputs can be set: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 

 y0: The initial condition. Should be a vector of length two reflecting the location 

of the two dependent variables initially. 

 t.start: The value of the independent variable to begin the numerical 

integration at. Defaults to 0. 

 t.end: The value of the independent variable to end numerical integration at. 

 t.step: The step length of the independent variable, used in numerical 

integration. Decreasing t.step theoretically makes the numerical integration 

more accurate, but increases computation time. Defaults to 0.01. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 type: If set to "one" the trajectories are plotted on the same graph. If set to 

"two" they are plotted on separate graphs. Defaults to "two". 

 colour: Sets the colours of the trajectories of the two dependent variables. Will 

be reset accordingly if it is not a vector of length two. Defaults to rep("black", 

2). 

 grid: If set to TRUE grids are added to the plots. If set to FALSE, grids are not 

added. Defaults to TRUE. 

 …: Additional arguments to be passed to plot. 

 

Here, the numerical integration is performed by the function ode of the package 

deSolve. 

 

Returned by numericalSolution is a list object containing all of the input 

variables as well as following: 

 



CHAPTER 5 

23 
 

 t: A vector containing the values of the independent variable at each integration 

step. 

 x: A vector containing the numerically computed values of the first dependent 

variable at each integration step. 

 y: A vector containing the numerically computed values of the second dependent 

variable at each integration step. 

 

4.4  phasePortrait 

 

For a one dimensional autonomous ODE, it plots the phase portrait i.e. the derivative 

against the dependent variable. In addition, along the dependent variable axis it plots 

arrows pointing in the direction of dependent variable change with increasing value 

of the independent variable. From this stability of equilibrium points (i.e. locations 

where the horizontal axis is crossed) can be determined.}: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 

 y.lim: Sets the limits of the dependent variable for which the derivative should 
be computed and plotted. Should be a vector of length two. 

 y.step: Sets the step length of the dependent variable vector for which 
derivatives are computed and plotted. Decreasing y.step makes the resulting 
plot more accurate, but comes at a small cost to computation time. Defaults to 0.01. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 points: Sets the density at which arrows are plotted along the horizontal axis. 
points arrows will be plotted. Fine tuning here, by shifting points up and 
down, allows for the creation of more aesthetically pleasing plots. Defaults to 10. 

 frac: Sets the fraction of the theoretical maximum length line segments can take 
without overlapping, that they actually attain. Fine tuning here assists the creation 
of aesthetically pleasing plots. Defaults to 0.5. 

 arrow.head: Sets the length of the arrow heads. Passed to arrows. Defaults to 

0.075. 

 colour: Sets the colour of the line in the plot, as well as the arrows. Will be reset 

accordingly if it is not a vector of length one. Defaults to "black". 

 xlab: Label for the 𝑥-axis of the resulting plot. Defaults to "y". 

 ylab: Label for the 𝑦-axis of the resulting plot. Defaults to "f(y)". 

 …: Additional arguments to be passed to either plot or arrows. 

 

Returned by phasePortrait is a list object containing all of the input variables as 

well as following: 
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 dy: A vector containing the value of the derivative at each evaluated point. 

 y: A vector containing the values of the dependent variable for which the 

derivative was evaluated. 

 

4.5  stability 

 

Uses stability analysis to classify equilibrium points. Uses the Taylor Series approach 

(also known as Perturbation Analysis) to classify equilibrium points of a one 

dimensional autonomous ODE system, or the Jacobian approach to classify 

equilibrium points of a two dimensional autonomous ODE system. The following 

inputs can be set: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 

 y.star: The point at which to perform stability analysis. For a one variable 

system this should be a single number, for a two variable system this should be a 

vector of length two (i.e. presently only one equilibrium points stability can be 

evaluated at a time). Alternatively this can be left blank and the user can use 

locator to choose a point to perform the analysis. However, given you are unlikely 

to locate exactly the equilibrium point, if possible enter y.star yourself. Defaults 

to NULL. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 system: et to either "one.dim" or "two.dim" to indicate the type of system 

being analysed. Defaults to "two.dim". 

 h: Step length used to approximate the derivative(s). Defaults to 1e-7. 

 

Returned by stability is a list object containing all of the input variables as well as 

following components (the exact the exact make up is dependent upon the value of 

system): 

 

 Delta: In the two dimensional system case, Value of the Jacobians determinant 

at y.star. 

 discriminant: In the one dimensional system case, the value of the 

discriminant used in Perturbation Analysis to assess stability. In the two 

dimensional system case, the value of 𝑇2  −  4Δ. 

 eigenvalues: In the two dimensional system case, the value of the Jacobians 

eigenvalues at y.star. 
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 eigenvectors: In the two dimensional system case, the value of the Jacobians 

eigenvectors at y0. 

 Jacobian: In the two dimensional system case, the Jacobian at y.star. 

 tr: In the two dimensional system case, the value of the Jacobians trace at 

y.star. 

 

4.6  trajectory 
 

This function allows the user to plot trajectories by performing numerical integration 

of the chosen ODE system, for a user specifiable range of initial conditions. The 

following inputs can be set: 

 

 deriv: A function computing the derivative at a point for the ODE system to be 

analysed. More discussion of the required structure of these functions is supplied 

at the end of this Chapter. 

 y0: The initial condition(s). In the case of a one dimensional system, this can either 
be a single number indicating the location of the dependent variable initially, or a 
vector indicating multiple initial locations of the independent variable. In the case 
of a two dimensional system, this can either be a vector of length two reflecting 
the location of the two dependent variables initially. Or it can be matrix where 
each row reflects a different initial condition. Alternatively this can be left blank 
and the user can use locator to specify initial condition(s) on a plot. In this case, 
for one dimensional systems, all initial conditions are taken at t.start, even if 
not selected so on the graph. Defaults to NULL. 

 n: If y0 is left NULL so initial conditions can be specified using locator, n sets 

the number of initial conditions to be chosen. Defaults to NULL. 

 t.start: The value of the independent variable to begin the numerical 

integration at. Defaults to 0. 

 t.end: The value of the independent variable to end numerical integration at. 

 t.step: The value of the independent variable to end numerical integration at. 

Decreasing t.step theoretically makes the numerical integration more accurate, 

but increases computation time. Defaults to 0.01. 

 parameters: Parameters of the ODE system, to be passed to deriv. Supplied as 

a vector; the order of the parameters can be found from the deriv file. Defaults 

to NULL. 

 system: Set to either "one.dim" or "two.dim" to indicate the type of system 

being analysed. Defaults to "two.dim". 

 colour: The colour(s) to plot the trajectories in. Will be reset accordingly if it is 

a vector not of the length of the number of initial conditions. Defaults to "black". 

 add: Logical. If TRUE, the trajectories added to an existing plot. If FALSE, a new 

plot is created. Defaults to TRUE. 

 …: Additional arguments to be passed to plot. 
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Here, the numerical integration is performed by the function ode of the package 

deSolve. 

 

Returned by trajectory is a list object containing all of the input variables as well as 

following components (the exact the exact make up is dependent upon the value of 

system): 

 

 t: A vector containing the values of the independent variable at each integration 

step. 

 x: A vector containing the numerically computed values of the first dependent 

variable at each integration step. 

 y: A vector containing the numerically computed values of the second dependent 

variable at each integration step. 

 

4.7  Derivative Specification 
 

In addition to the above functions, phaseR contains multiple example one and two 

dimensional autonomous ODE systems; these are the focus of Chapters 5 to 7. Here 

however, we discuss how the user can create their own system. 

 

In order to be compatible with phaseR, systems need to be coded as a list returning 

function, taking three inputs; t, y, and parameters. Thus the basic skeleton for a 

one or two dimensional system (with the function named derivative) is as follows: 

 

derivative <- function(t, y, parameters){ 

  # Enter derivative computation here 

  list(dy) 

} 

 

All that needs to be done is to set the named parameters, and the value of dy, with 

initialisation made where required. However, the approach must change slightly 

depending upon whether you are setting up a one or two dimensional system. The 

packages key programs require for points of a two variable system to be presentable 

as a vector of length 2 (because there are two dependent variables). 

 

Thus, for a system such as: 

 
𝑑𝑥

𝑑𝑡
= 3𝑦,     

𝑑𝑦

𝑑𝑡
= 2𝑥, 

 

we would use the following code: 
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derivative <- function(t, y, parameters){ 

  x <- y[1] 

  y <- y[2] 

  dy    <- numeric(2) 

  dy[1] <- 3*y 

  dy[2] <- 2*x 

  list(dy) 

} 

 

As a more complex example, consider instead changing the system above to: 

 
𝑑𝑥

𝑑𝑡
= 𝛼𝑦,     

𝑑𝑦

𝑑𝑡
= 𝛽𝑥, 

 

with 𝛼 and 𝛽 parameters. The code would then proceed as follows: 

 

derivative <- function(t, y, parameters){ 

  alpha <- parameters[1] 

  beta  <- parameters[2] 

  x <- y[1] 

  y <- y[2] 

  dy    <- numeric(2) 

  dy[1] <- alpha*y 

  dy[2] <- beta*x 

  list(dy) 

} 

 

Things are slightly simpler for one dimensional systems, where no such vector 

considerations need to be made. We would for example create a derivative function 

for the system: 

 
𝑑𝑦

𝑑𝑥
= 𝑎(𝑏 − 3 − 𝑦)2, 

 

using the following code: 

 

derivative <- function(t, y, parameters){ 

  a  <- parameters[1] 

  b  <- parameters[2] 

  dy <- a*((b – 3 - y)^2) 

  list(dy) 

} 
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Chapter 5: Examples 
 

Within phaseR numerous example systems are available. Here we will analyse some 

of them, as an indication of how to perform phase plane analysis by hand, and with 

the help of phaseR. The language is again at times deliberatively repetitive; here to 

indicate how a general procedure can be used when performing analysis. It is not a 

useful exercise for me to provide inferior hand drawn plots, only ones produced by 

phaseR are shown. It is in addition useful to note that the small circles on the 

trajectory plots indicate initial conditions specified by the user. 

 

Example 1: We begin with the one dimensional autonomous ODE: 

 
𝑑𝑦

𝑑𝑡
= 𝑦(1 − 𝑦)(2 − 𝑦), 

 

provided in the package as example2. We begin by plotting the flow field and several 

trajectories using the following code, adding horizontal lines at any equilibrium 

points to indicate their presence as well: 

 

> example2.flowField <- flowField(example2, x.lim = c(0, 4), 

+ y.lim = c(-1, 3), points = 21, system = "one.dim", add =  

+ FALSE, xlab = "t") 

> grid() 

> example2.nullclines <- nullclines(example2, x.lim = c(0,  

+ 4), y.lim = c(-1, 3), system = "one.dim") 

> example2.trajectory <- trajectory(example2, y0 = c(-0.5,  

+ 0.5, 1.5, 2.5), t.end = 4, system = "one.dim") 

 

The plot produced is as appears on the following page: 
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Thus three equilibrium points have been identified; appearing to be 𝑦∗ = 0, 1 and 2. 

Indeed if we set the RHS of our ODE to zero we can identify these three points as the 

equilibrium points analytically: 

 

𝑦∗(1 − 𝑦∗)(2 − 𝑦∗) = 0, 

                               ,⟹ 𝑦∗ = 0, 1, 2. 

 

Plotting the phase portrait we find that 𝑦∗ = 0 and 𝑦∗ = 2 are unstable, whilst 𝑦∗ = 1 

is stable; as is also apparent from the flow field and trajectories above: 

 

> example2.phasePortrait <- phasePortrait(example2, y.lim = 

+ c(-0.5, 2.5), points = 10) 

> grid() 

 

 

 

 

 

 

 

 



CHAPTER 5 

30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Alternatively, using the Taylor Series approach to determine stability we have: 

 

𝑑

𝑑𝑦
(
𝑑𝑦

𝑑𝑡
)|
𝑦=𝑦∗

= 3𝑦∗
2 − 6𝑦∗ + 2 = {

2 ∶   𝑦∗ = 0,
−1 ∶   𝑦∗ = 1, , ,
2 ∶   𝑦∗ = 2.

 

 

Thus we draw the same conclusion as from the phase portrait.  

 

Finally, we can confirm our Taylor analysis using stability and the following code: 

 

> example2.stability.1 <- stability(example2, y.star = 0, 

+ system = "one.dim") 

> example2.stability.2 <- stability(example2, y.star = 1, 

+ system = "one.dim") 

> example2.stability.3 <- stability(example2, y.star = 2, 

+ system = "one.dim") 

> example2.stability.1$discriminant 

 

Discriminant: -4   Classification: Stable 

 

Example 2: The logistic growth model is frequently used in Biology to model the 

growth of a population under density dependence. It is given by: 
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𝑑𝑦

𝑑𝑡
= 𝛽𝑦 (1 −

𝑦

𝐾
). 

 

With the following code, we can plot the flow field and several trajectories (for the 

case 𝛽 = 1 and 𝐾 = 2), as well as adding horizontal lines at any equilibrium points to 

indicate their presence: 

 

> logistic.flowField <- flowField(logistic, x.lim = c(0, 5), 

+ y.lim = c(-1, 3), parameters = c(1, 2), points = 21,  

+ system = "one.dim", add = FALSE, xlab = "t) 

> grid() 

> logistic.nullclines <- nullclines(logistic, x.lim = c(0,  

+ 5), y.lim = c(-1, 3), parameters = c(1, 2), system =  

+ "one.dim") 

> logistic.trajectory <- trajectory(logistic, y0 = c(-0.5,  

+ 0.5, 1.5, 2.5), t.end = 5, parameters = c(1, 2), system = 

+ "one.dim") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Again, two equilibrium points have been identified. We can confirm their location in 

the general case analytically by setting the RHS of the ODE to zero: 
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𝛽𝑦∗ (1 −
𝑦∗
𝐾
) = 0 ⟹ 𝑦∗ = 0,𝐾. 

 

Plotting the phase portrait we can observe that 𝑦∗ = 0 is unstable and 𝑦∗ = 𝐾 stable, 

for the case 𝛽 = 1 and 𝐾 = 2: 

 

> logistic.phasePortrait <- phasePortrait(logistic, y.lim = 

+ c(-0.5, 2.5), parameters = c(1, 2), points = 10) 

> grid() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Finally, if we use our Taylor Series method we can draw this same conclusion: 

 
𝑑

𝑑𝑦
(
𝑑𝑦

𝑑𝑡
)|
𝑦=𝑦∗

= 𝛽 −
2𝛽𝑦∗
𝐾

= {
𝛽 ∶ 𝑦∗ = 0,   

−𝛽 ∶ 𝑦∗ = 𝐾.      
 

 

So for 𝛽 = 1 and 𝐾 = 2, we have a stable point at 𝑦 = 2. Moreover, from this we can 

see that the point 𝑦 = 𝐾 will in general be stable provided 𝛽 > 0. 

The following code verifies our findings for the specific case studied above: 

 

> logistic.stability.1 <- stability(logistic, y.star = 0,  
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+ parameters = c(1, 2), system = "one.dim") 

 

Discriminant: 1   Classification: Unstable 

> logistic.stability.2 <- stability(logistic, y.star = 2,  

+ parameters = c(1, 2), system = "one.dim") 

 

Discriminant: -1   Classification: Stable 

 

Example 3: We now turn our attention to linear two dimensional autonomous ODE 

systems. Here we consider the coupled system given by: 

 
𝑑𝑥

𝑑𝑡
= −𝑥,    

𝑑𝑦

𝑑𝑡
= 4𝑥. 

 

This is provided in the package as example4. We can find the 𝑥- and 𝑦- nullclines by 

setting the derivatives to zero as follows: 

 

𝑥 ∶  −𝑥 = 0 ⟹ 𝑥 = 0, 

𝑦 ∶   4𝑥 = 0 ⟹ 𝑥 = 0. 

 

Thus the nullclines are the same. This means we have a line of equilibrium points 

given by 𝑥 = 0. To see why this is the case, and there is no unique solution, we 

examine the Jacobian of our system: 

 

𝐉 = (
−1 0
4 0

). 

 

Thus the determinant of 𝐉 is zero, and we have a singular case of the general linear 

two dimensional system; the Taylor approach cannot be used to classify (0,0). 

 

Thus here, in order to determine whether the points along the line 𝑥 = 0 are stable or 

not, we plot the nullclines, the velocity field, and add several trajectories: 

 

> example4.flowField <- flowField(example4, x.lim = c(-3,  

+ 3), y.lim = c(-5, 5), points = 19, add = FALSE) 

> grid() 

> example4.nullclines <- nullclines(example4, x.lim = c(-3, 

+ 3), y.lim = c(-5, 5)) 

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 3, -4, -3, -4),  

+ ncol = 2, nrow = 6, byrow = TRUE) 

> example4.trajectory <- trajectory(example4, y0 = y0, 

+ t.end = 10, xlab = "x", ylab = "y") 
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Thus we observe the trajectories moving towards the line 𝑥 = 0; indicative of 

stability. This example illustrates that plotting trajectories can be useful when the 

Taylor approach fails. 

 

Example 4: We will now examine a further example of a linear two dimensional 

system, given by: 

 
𝑑𝑥

𝑑𝑡
= 2𝑥 + 𝑦,    

𝑑𝑦

𝑑𝑡
= 2𝑥 − 𝑦. 

 

It is provided in the package as example5. Again we begin by setting the derivatives 

to zero to identify the nullclines: 

 

𝑥 ∶ 2𝑥 + 𝑦 = 0 ⟹ 𝑦 = −2𝑥, 

𝑦 ∶ 2𝑥 − 𝑦 = 0 ⟹ 𝑦 = 2𝑥.     

 

From these two equations it is easy to see that the only equilibrium point is at (0,0). 

We begin by plotting the nullclines, velocity field and several trajectories: 

 

> example5.flowField <- flowField(example5, x.lim = c(-3,  

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 
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> grid() 

> example5.nullclines <- nullclines(example5, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, -1, 0, 2, 2, -2, 2, 0, 3, 0, -3),  

+ ncol = 2, nrow = 6, byrow = TRUE) 

> example5.trajectory <- trajectory(example5, y0 = y0, 

+ t.end = 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

From the trajectories it appears that (0,0) is a saddle point. To verify this we compute 

the Jacobian of the system: 

 

𝐉 = (
2 1
2 −1

). 

 

Thus we have 𝑇 = 1, Δ = −4 and 𝑇2 − 4Δ = 17. From our classification rules this 

confirms that (0,0) is indeed a saddle. Finally, we verify this analysis using 

stability and the following code: 

 

> example5.stability <- stability(example5, y0 = c(0, 0)) 

 

T: 1   Delta: 1   Discriminant: 17   Classification: Saddle 
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Example 5: As a final example of a linear two dimensional system, we will examine: 

 
𝑑𝑥

𝑑𝑡
= 𝑦,   

𝑑𝑦

𝑑𝑡
= −𝑥 − 𝑦, 

 

available in the package as example8. Setting the derivatives to zero, we first locate 

the nullclines: 

 

𝑥 ∶ 𝑦 = 0,                               , ,, 

𝑦 ∶  −𝑥 − 𝑦 = 0 ⟹ 𝑦 = −𝑥. 

 

From this, again we can identify the one equilibrium is at (0,0). We now plot the 

nullclines and velocity field, along with several trajectories: 

 

> example8.flowField <- flowField(example8, x.lim = c(-3,  

+ 3), y.lim = c(-3, 3), points = 19, add = FALSE) 

> grid() 

> example8.nullclines <- nullclines(example8, x.lim = c(-3, 

+ 3), y.lim = c(-3, 3)) 

> y0 <- matrix(c(1, 0, 0, 0.5, 2, -2, -2, -2), ncol = 2,  

+ nrow = 4, byrow = TRUE) 

> example8.trajectory <- trajectory(example8, y0 = y0, 

+ t.end = 10) 
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It appears from the plot that (0,0) is a stable focus, but we can verify that this is the 

case using the Jacobian: 

 

𝐉 = (
0 1
−1 −1

). 

 

Thus we have 𝑇 = −1, Δ = 1 and 𝑇2 − 4Δ = −3; indeed (0,0) is a stable focus. Finally, 

we confirm our stability analysis using phaseR: 

 

> example8.stability <- stability(example8, y0 = c(0, 0)) 

 

T: -1   Delta: 1   Discriminant: -3   Classification: Stable 

Focus 

 

Example 6: We now advance to a non-linear example of a two dimensional system, 

given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑥(3 − 𝑥 − 2𝑦),    

𝑑𝑦

𝑑𝑡
= 𝑦(2 − 𝑥 − 𝑦), 

 

and provided in the package as example11. As always, we begin by setting the 

derivatives to zero to locate the nullclines. First, for 𝑥: 

 

𝑥(3 − 𝑥 − 2𝑦) = 0 ⟹ 𝑥 = 0 or 𝑦 =
1

2
(3 − 𝑥). 

 

Then for 𝑦: 

 

𝑦(2 − 𝑥 − 𝑦) = 0 ⟹ 𝑦 = 0 or 𝑦 = 2 − 𝑥. 

 

Here, is often the case for non-linear systems, there are here multiple equilibria, which 

we find via the intersections of the above nullclines. Easily, we can identify (0,0) and 

(0,2) and (3,0). The final equilibrium point comes from the intersection of the two 

more complex nullclines: 

 
1

2
(3 − 𝑥∗) = 2 − 𝑥∗ ⟹ 𝑥∗ = 1 ⟹ 𝑦∗ = 1, 

 

i.e. the point (1,1). We will determine the stability of these four equilibria from the 

general case Jacobian of the system: 

 

𝐉 = (
3 − 2𝑥∗ − 2𝑦∗ −2𝑥∗

−𝑦∗ 2 − 𝑥∗ − 2𝑦∗
). 
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In the case of multiple equilibria, it is then often a good idea to present the 

classification in a table: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(0,0) 6 1 5 Unstable node 

(0,2) 8 4 −6 Stable node 

(1,1) −1 8 −2 Saddle 

(3,0) 3 4 −4 Stable node 

 

To summarise all of the above analysis we produce a plot of the nullclines, velocity 

field and trajectories using phaseR: 

 

> example11.flowField <- flowField(example11, x.lim = c(-5, 

+ 5), y.lim = c(-5, 5), points = 21, add = FALSE) 

> grid() 

> example11.nullclines <- nullclines(example11, x.lim = 

+ c(-5, 5), y.lim = c(-5, 5), points = 200) 

> y0 <- matrix(c(4, 4, -1, -1, -2, 1, 1, -1), ncol = 2, 

+ nrow = 4, byrow = TRUE) 

> example11.trajectory <- trajectory(example11, y0 = y0, 

+ t.end = 10) 
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In addition, we verify the stability results using stability: 

 

> example11.stability.1 <- stability(example11, 

+ y.star = c(0, 0)) 

 

T: 5   Delta: 6   Discriminant: 1   Classification: Unstable 

node 

> example11.stability.2 <- stability(example11, 

+ y.star = c(0, 2)) 

 

T: -3   Delta: 2   Discriminant: 1   Classification: Stable 

node 

> example11.stability.3 <- stability(example11, 

+ y.star = c(1, 1), h = 1e-8) 

 

T: -2   Delta: -1   Discriminant: 8   Classification: Saddle 

> example11.stability.4 <- stability(example11, 

+ y.star = c(3, 0)) 

 

T: -4   Delta: 3   Discriminant: 4   Classification: Stable 

node 

 

Example 7: Moving on, we now consider a further non-linear example of a two 

dimensional system: 

 
𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑦,   

𝑑𝑦

𝑑𝑡
= 𝑥2 + 𝑦2 − 2. 

 

Provided in phaseR as example12. As usual, we first locate the nullclines: 

 

𝑥 ∶ 𝑥 − 𝑦 = 0 ⟹ 𝑦 = 𝑥,                          

𝑦 ∶  𝑥2 + 𝑦2 − 2 = 0 ⟹ 𝑥2 + 𝑦2 = 2. 

 

From this, we substitute one condition into another to locate the equilibria: 

 

𝑥∗
2 + 𝑥∗

2 = 2 ⟹ 𝑥∗
2 = 1 ⟹ 𝑥∗ = ±1 = 𝑦∗, 

 

therefore we have two equilibria at (1,1) and (−1,−1). 

 

Continue by plotting the nullclines, velocity field and several trajectories: 

 

> example12.flowField <- flowField(example12, x.lim = c(-4, 

+ 4), y.lim = c(-4, 4), points = 17, add = FALSE) 

> grid() 
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> example12.nullclines <- nullclines(example12, x.lim = 

+ c(-4, 4), y.lim = c(-4, 4), points = 200) 

> y0 <- matrix(c(2, 2, -3, 0, 0, 2, 0, -3), ncol = 2, nrow = 

+ 4, byrow = TRUE) 

> example12.trajectory <- trajectory(example12, y0 = y0,  

+ t.end = 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It appears that both of the equilibria are unstable, but to classify them accurately we 

will use the Jacobian: 

 

𝐉 = (
1 −1
2𝑥∗ 2𝑦∗

). 

 

Therefore, we have: 

 

Equilibrium Point 𝚫 𝑻𝟐 − 𝟒𝚫 𝑻 Classification 

(1,1) 4 −7 3 Unstable Focus 

(−1,−1) −3 13 −1 Saddle 

 

Indeed it was the case that both points were unstable. Finally, we verify this analysis 

using stability: 



CHAPTER 5 

41 
 

> example12.stability.1 <- stability(example12, 

+ y.star = c(1, 1)) 

 

T: 3   Delta: 4   Discriminant: -7   Classification: Unstable 

focus 

> example12.stability.2 <- stability(example12, 

+ y.star = c(-1, -1), h = 1e-8) 

 

T: -1   Delta: -4   Discriminant: 17   Classification: Saddle 

 

Example 8: This next example comes from a real life modelling scenario; the equation 

for a simple pendulum (i.e. no damping force) acting under gravity can be written in 

the form: 

 
𝑑𝑥

𝑑𝑡
= 𝑦,   

𝑑𝑦

𝑑𝑡
= −

𝑔

𝑙
sin 𝑥. 

 

It is provided in the model as simplePendulum. We first set the gradients to zero to 

locate the nullclines: 

 

𝑥 ∶ 𝑦 = 0,                          

                             𝑦 ∶  −
𝑔

𝑙
sin 𝑥 = 0 ⟹ 𝑥 = 𝑛𝜋   ∀𝑛 ∈ ℕ. 

 

From this we can identify that equilibria will be present at all points (0, 𝑛𝜋), where 𝑛 

is an integer. Using this we produce our familiar plot, choosing the case 𝑙 = 5: 

 

> simplePendulum.flowField <- flowField(simplePendulum,  

+ x.lim = c(-7, 7), y.lim = c(-7, 7), parameters = 5, 

+ points = 19, add = FALSE) 

> grid() 

> simplePendulum.nullclines <- nullclines(simplePendulum,  

+ x.lim = c(-7, 7), y.lim = c(-7, 7), parameters = 5, 

+ points = 500) 

> y0 <- matrix(c(0, 1, 0, 4, -6, 1, 5, 0.5, 0, -3), ncol =  

+ 2, nrow = 5, byrow = TRUE) 

> simplePendulum.trajectory <- trajectory(simplePendulum, 

+ y0 = y0, t.end = 10, parameters = 5) 
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We then turn to the Jacobian in order to determine the stability of the equilibria: 

 

𝐉 = (
0 1

−
𝑔

𝑙
cos 𝑥∗ 0). 

                             , ,      ⟹ 𝑇 = 0, , Δ =
𝑔

𝑙
cos 𝑥∗ , , 𝑇

2 − 4Δ = −
4𝑔

𝑙
cos 𝑥∗. 

 

Therefore, for 𝑥∗ = 2𝑛𝜋, Δ is positive and the equilibria is a centre. However, for 𝑥∗ =

(2𝑛 + 1)𝜋, Δ is negative and the equilibria is a saddle. We can confirm this for the 

points (0,0) and (𝜋, 0) using phaseR: 

 

> simplePendulum.stability.1 <- stability(simplePendulum, 

+ y.star = c(0, 0), parameters = 5, summary = FALSE) 

> simplePendulum.stability.2 <- stability(simplePendulum, 

+ y.star = c(pi, 0), parameters = 5, summary = FALSE) 

> simplePendulum.stability.1$Delta 

[1] 1.962 

> simplePendulum.stability.1$classification 

[1] "Centre" 

> simplePendulum.stability.2$Delta 

[1] -1.962 
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> simplePendulum.stability.2$classification 

[1] "Saddle" 

 

Example 9: As a final example, we again turn to a real physical system. The van Der 

Pol oscillator is a classic example in physics, describing a non-conservative oscillator 

with non-linear damping. It can be written in the form: 

 
𝑑𝑥

𝑑𝑡
= 𝑦,    

𝑑𝑦

𝑑𝑡
= 𝜇(1 − 𝑥2)𝑦 − 𝑥. 

 

It is provided in the package as vanDerPol. We consider only the case of 𝜇 > 0, i.e. 

when the oscillator is damped. The nullclines can then be computed as: 

 

𝑥 ∶ 𝑦 = 0,                            

                                   𝑦 ∶ 𝜇(1 − 𝑥2)𝑦 − 𝑥 = 0 ⟹ 𝑦 =
𝑥

𝜇(1 − 𝑥2)
. 

 

The form of these nullclines indicates that the only equilibrium point is (0,0). The 

stability of this, we again find from the Jacobian: 

 

𝐉 = (
0 1

−2𝜇𝑥∗𝑦∗ − 1 𝜇(1 − 𝑥∗
2)) = (

0 1
−1 𝜇

)|
(0,0)

, 

⟹ 𝑇 = 𝜇, , Δ = 1, , 𝑇2 − 4Δ = 𝜇2 − 4.                                    ,, 

 

Thus if 𝜇 > 2 then we will have an unstable node, whereas for 𝜇 < 2 we will have an 

unstable focus. We take the cases 𝜇 = 1 and 𝜇 = 3 as examples to indicate this using 

phaseR: 

 

> vanDerPol.stability.1 <- stability(vanDerPol, y.star = c(0, 

+ 0), parameters = 3) 

 

T: 3   Delta: 1   Discriminant: 5   Classification: Unstable 

node 

> vanDerPol.stability.2 <- stability(vanDerPol, y.star = c(0, 

+ 0), parameters = 1) 

 

T: 1   Delta: 1   Discriminant: -3   Classification: Unstable 

focus 

 

However, when we plot trajectories along with the nullclines and velocity field we 

find: 

 

> vanDerPol.flowField.1 <- flowField(vanDerPol, x.lim = 

+ c(-5, 5), y.lim = c(-5, 5), parameters = 3, points = 15,  
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+ add = FALSE) 

> grid() 

> vanDerPol.nullclines.1 <- nullclines(vanDerPol, x.lim =  

+ c(-5, 5), y.lim = c(-5, 5), parameters = 3, points = 500) 

> y0 <- matrix(c(2, 0, 0, 2, 0.5, 0.5), ncol = 2, nrow = 3, 

+ byrow = TRUE) 

> vanDerPol.trajectory.1 <- trajectory(vanDerPol, y0 = y0,  

+ t.end = 10, parameters = 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

It appears that the solutions are bounded, and indeed oscillate as the name 

suggestions. This oscillating behaviour is an example of a limit cycle. This 

characterisation; where trajectories are pushed away near the equilibria (hence the 

classification as unstable), but move towards it far away, is typical of limit cycles.
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Chapter 6: Additional Available Systems 
 

As well as those studied in Chapter 5, numerous other derivative functions for one 

and two dimensional systems are available in phaseR. This chapter provides a list of 

them. In some instances further explanation of the models is provided in their 

respective exercises in Chapter 7. Again, parameters are specified in the order they 

appear in the model; for ultimate clarify see the help page for the function with R. 

 

System 1: The exponential growth model, often used in Biology and Chemistry to 

model growth and decay of biological or chemical species, is given by: 

 
𝑑𝑦

𝑑𝑡
= 𝛽𝑦. 

 

It is provided in the package as the function exponential. 

 

System 2: The monomolecular growth model, often used to model the heating and 

cooling of objects, or to model physiological processes, is given by: 

 
𝑑𝑦

𝑑𝑡
= 𝛽(𝐾 − 𝑦). 

 

It is provided in the package as the function monomolecular. 

 

System 3: The von Bertalanffy model, often used in Biology to model the growth of 

organisms, is given by: 

 
𝑑𝑦

𝑑𝑡
= 𝛼𝑦2/3 − 𝛽𝑦. 

 

It is provided in the package as the function vonBertalanffy. 

 

System 4: Function example3 is a linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= −𝑥,    

𝑑𝑦

𝑑𝑡
= −4𝑥. 

 

System 5: Function example6 is a linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑥 + 2𝑦,    

𝑑𝑦

𝑑𝑡
= −2𝑥 + 𝑦. 
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System 6: Function example7 is a linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= −𝑥 − 𝑦,    

𝑑𝑦

𝑑𝑡
= 4𝑥 + 𝑦. 

 

System 7: Function example9 is a linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= −2𝑥 + 3𝑦,    

𝑑𝑦

𝑑𝑡
= 7𝑥 + 6𝑦. 

 

System 8: Function example10 is a non-linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= −𝑥 + 𝑥3 ,    

𝑑𝑦

𝑑𝑡
= −2𝑦. 

 

System 9: Function example13 is a non-linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= 2 − 𝑥2 − 𝑦2 ,    

𝑑𝑦

𝑑𝑡
= 𝑥2 − 𝑦2. 

 

System 10: Function example14 is a non-linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑥2 − 𝑦 − 10,    

𝑑𝑦

𝑑𝑡
= −3𝑥2 + 𝑥𝑦. 

 

 

System 11: Function example15 is a non-linear two dimensional system given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑥2 − 3𝑥𝑦 + 2𝑥,    

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑦 − 1. 

 

System 12: The non-dimensional version of the Lindemann Mechanism, used for gas-

phase unimolecular reaction modelling, can be written in the form: 

 
𝑑𝑥

𝑑𝑡
= −𝑥2 + 𝛼𝑥𝑦,    

𝑑𝑦

𝑑𝑡
= 𝑥2 − 𝛼𝑥𝑦 − 𝑦. 

 

It is provided in the package as the function lindemannMechanism. 

 

System 13: The SIR model for the spread of an infectious disease can be written in the 

form: 

 
𝑑𝑥

𝑑𝑡
= −𝛽𝑥𝑦,    

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑦 − 𝜈𝑦. 
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It is provided in the package as the function SIR. 

 

System 14: The Lotka-Volterra model, used to model interacting species of predator 

and prey in Biology, is given by: 

 
𝑑𝑥

𝑑𝑡
= 𝜆𝑥 − 𝜖𝑥𝑦,    

𝑑𝑦

𝑑𝑡
= −𝛿𝑦 + 𝜂𝑥𝑦. 

 

It is provided in the package as the function lotkaVolterra, 

 

System 15: A simple two species competition model, used in Ecology, is given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (

𝐾1 − 𝑥 − 𝛼12𝑦

𝐾1
),    

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (

𝐾2 − 𝑦 − 𝛼21𝑥

𝐾2
). 

 

It is provided in the package as the function competition. 
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Chapter 7: Exercises 
 

Finally, this chapter contains numerous exercises that can be undertaken by the user 

to practice phase plane analysis themselves, both by hand and/or with help from 

phaseR. As such, parts of each exercise can be chosen so as to practice either 

performing the analysis yourself or computationally. Accompanying solutions can be 

found in the doc/ directory of the packages install. 

 

Exercise 1: Reproduce the plots and stability analysis of Section 2.2 for example1 

using the programs available in phaseR. 

 

Exercise 2: In Biology, the exponential growth model is used, for example, to model 

the growth or decline of a population. Qualitatively analyse it using the function 

exponential. Restrict attention to the case 𝑦(0) > 0 and take 𝛽 = 1. Where is the 

equilibrium point? What happens as you change the sign of 𝛽? What conclusions can 

we draw in general about this model? How does the sign of 𝛽 reflect the biological 

system we may be modelling? Perform the analysis both yourself, and provide code 

for checking your results using phaseR. 

 

Exercise 3: The monomolecular growth model assumes that the rate of change of a 

function, is proportional to the difference between its current value and some 

hypothetical value 𝐾, i.e.: 

 
𝑑𝑦

𝑑𝑡
= 𝛽(𝐾 − 𝑦). 

 

Qualitatively analyse this model using the derivative function monomolecular. 

Restrict attention to the case 𝑦(0) > 0, and begin with the values 𝛽 = 1, 𝐾 = 3. Where 

is the equilibrium point? What happens when you change the sign of 𝛽? How does the 

sign of 𝛽 reflect the biological system we may be modelling? Perform the analysis both 

yourself, and provide code for checking your results using phaseR. 

 

Exercise 4: von Bertalanffy assumed that an organism would gain material by anabolic 

processes, proportional to surface area. In addition, material would be lost by 

catabolic processes, proportional to weight. Since weight is related to surface area by 

a 2/3 power, his ODE for rate of change of weight 𝑦 therefore was: 

 
𝑑𝑦

𝑑𝑡
= 𝛼𝑦2/3 − 𝛽𝑦. 

 

Qualitatively analyse this model using the derivative function vonBertanalffy. 

Restrict attention to the case 𝑦(0) > 0, and begin with the values 𝛼 = 2, 𝛽 = 1. Where 



CHAPTER 7 

49 
 

are the equilibrium points? Are they stable? Perform the analysis both yourself, and 

provide code for checking your results using phaseR. 

 

Exercise 5: Create your own derivative function, as explained earlier, for the ODE 

given by: 

 
𝑑𝑦

𝑑𝑡
= sin 𝑦. 

 

Focusing on the range 𝑦 ∈ [−2𝜋, 2𝜋], perform a qualitative analysis yourself and 

provide code for checking your results using phaseR. Specifically, identify the 

location of the equilibria and classify them. 

 

Exercise 6: Repeat the example analysis of Sections 3.2 to 3.4, using the 

lotkaVolterra function and the parameter values 𝜆 = 𝜖 = 𝛿 = 𝜂 = 1, using the 

programs available in phaseR. 

 

Exercise 7: For each of the following linear two dimensional systems, perform a phase 

plane analysis. Ensure to identify and plot the nullclines, and then plot the velocity 

field. From this add trajectories for several initial conditions. Then locate the 

equilibrium point(s) and determine their classification. Perform this analysis first by 

hand and then also provide code to check your results using phaseR. 

a) example3 

b) example6 

c) example7 

d) example9 

 

Exercise 8: For each of the following non-linear two dimensional systems, perform a 

phase plane analysis. Ensure to identify and plot the nullclines, and then plot the 

velocity field. From this add trajectories for several initial conditions. Then locate the 

equilibrium point(s) and determine their classification. Perform this analysis first by 

hand and then also provide code to check your results using phaseR. 

a) example10 

b) example13 

c) example14 

d) example15 

e) example16 
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Exercise 9: Create your own derivative function, as explained earlier, for the ODE 

system given by: 

 
𝑑𝑥

𝑑𝑡
= 6𝑥 − 3𝑦,   

𝑑𝑦

𝑑𝑡
= 2𝑥 − 𝑦. 

 

Then perform a phase plane analysis; identifying and plotting nullclines, the velocity 

field, trajectories, and locating the equilibrium point and classifying it. Perform this 

analysis first by hand and then also provide code to check your results using phaseR. 

 

Exercise 10: Create your own derivative function, as explained earlier, for the ODE 

system given by: 

 
𝑑𝑥

𝑑𝑡
= 𝑥2 + 𝑦2 − 13,   

𝑑𝑦

𝑑𝑡
= 𝑥𝑦 − 2𝑥 − 2𝑦 + 4. 

 

Then perform a phase plane analysis; identifying and plotting nullclines, the velocity 

field, trajectories, and locating the equilibria and classifying them. Perform this 

analysis first by hand and also provide code to check your results using phaseR. 

 

Exercise 11: Perform a phase plane analysis of the Lindemann Mechanism first by 

hand and then using the function lindemannMechanism in phaseR. Where is the 

equilibrium point? Is it stable? How does thing depend on the value of the parameter 

𝛼? 

 

Exercise 12: Perform a phase plane analysis of the SIR epidemic model first by hand 

and then using the function SIR in phaseR. Where are the equilibrium points and 

what is there stability? What does this mean biologically? 

 

Exercise 13: Perform a phase plane analysis of the Lotka Volterra model first by hand 

and then using the function lotkaVolterra in phaseR. Restrict your attention to 

the case where all four parameters are positive. Where are the equilibrium points? 

Are they stable? What does thing mean biologically? 

 

Exercise 14: Perform a phase plane analysis of the Species Competition model first by 

hand and then using the function competition in phaseR. Restrict your attention 

to the case where all four parameters are positive. Identify the four possible cases 

depending upon the parameter values. Where are the equilibrium points? Are they 

stable? What does thing mean biologically? 


