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Abstract

A slightly modified version of this introduction to the phtt package is published in the
Journal of Statistical Software (Bada and Liebl 2014).

The R-package phtt provides estimation procedures for panel data with large dimen-
sions n, T , and general forms of unobservable heterogeneous effects. Particularly, the
estimation procedures are those of Bai (2009) and Kneip, Sickles, and Song (2012), which
complement one another very well: both models assume the unobservable heterogeneous
effects to have a factor structure. Kneip et al. (2012) considers the case in which the
time varying common factors have relatively smooth patterns including strongly positive
auto-correlated stationary as well as non-stationary factors, whereas the method of Bai
(2009) focuses on stochastic bounded factors such as ARMA processes. Additionally, the
phtt package provides a wide range of dimensionality criteria in order to estimate the
number of the unobserved factors simultaneously with the remaining model parameters.

Keywords: Panel data, unobserved heterogeneity, principal component analysis, factor dimen-
sion.

1. Introduction

One of the main difficulties and at the same time appealing advantages of panel models is
their need to deal with the problem of the unobserved heterogeneity. Classical panel models,
such as fixed effects or random effects, try to model unobserved heterogeneity using dummy
variables or structural assumptions on the error term (see, e.g., Baltagi (2005)). In both
cases the unobserved heterogeneity is assumed to remain constant over time within each
cross-sectional unit—apart from an eventual common time trend. This assumption might be
reasonable for approximating panel data with fairly small temporal dimensions T ; however,
for panel data with large T this assumption becomes very often implausible.

Nowadays, the availability of panel data with large cross-sectional dimensions n and large
time dimensions T has triggered the development of a new class of panel data models. Recent
discussions by Ahn, Lee, and Schmidt (2013), Pesaran (2006), Bai (2009), Bai, Kao, and
Ng (2009), and Kneip et al. (2012) have focused on advanced panel models for which the
unobservable individual effects are allowed to have heterogeneous (i.e., individual specific)
time trends that can be approximated by a factor structure. The basic form of this new class
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of panel models can be presented as follows:

yit =
P∑
j=1

xitjβj + νit + εit for i ∈ {1, . . . , n} and t ∈ {1, . . . , T}, (1)

where yit is the dependent variable for each individual i at time t, xitj is the jth element
of the vector of explanatory variables xit ∈ RP , and εit is the idiosyncratic error term. The
time-varying individual effects νit ∈ R of individual i for the time points t ∈ {1, . . . , T} are
assumed to be generated by d common time-varying factors. The following two specifications
of the time-varying individual effects νit are implemented in our R package phtt:

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012).
(2)

Here, λil are unobserved individual loadings parameters, flt are unobserved common factors
for the model of Bai (2009), fl(t) are the unobserved common factors for the model of Kneip
et al. (2012), and d is the unknown factor dimension.

Note that the explicit consideration of an intercept in model (1) is not necessary but may
facilitate interpretation. If xit includes an intercept, the time-varying individual effects νit are
centered around zero. If xit does not include an intercept, the time-varying individual effects
νit are centered around the overall mean.

Model (1) includes the classical panel data models with additive time-invariant individual
effects and common time-specific effects. This model is obtained by choosing d = 2 with a
first common factor f1t = 1 for all t ∈ {1, . . . , T} that has individual loadings parameters
λi1, and a second common factor f2t that has the same loadings parameter λi2 = 1 for all
i ∈ {1, . . . , n}.
An intrinsic problem of factor models lies in the fact that the true factors are only identifi-
able up to rotation. In order to ensure the uniqueness of these parameters, a number of d2

restrictions are required. The usual normalization conditions are given by

(a) 1
T

∑T
t=1 f

2
lt = 1 for all l ∈ {1, . . . , d},

(b)
∑T

t=1 fltfkt = 0 for all l, k ∈ {1, . . . , d} with k 6= l, and

(c)
∑n

i=1 λilλik = 0 for all l, k ∈ {1, . . . , d} with k 6= l;

see, e.g., Bai (2009) and Kneip et al. (2012). For the model of Kneip et al. (2012), flt in
conditions (a) and (b) has to be replaced by fl(t). As usual in factor models, a certain degree
of indeterminacy remains, because the factors can only be determined up to sign changes and
different ordering schemes.

Kneip et al. (2012) consider the case in which the common factors fl(t) show relatively smooth
patterns over time. This includes strongly positive auto-correlated stationary as well as
non-stationary factors. The authors propose to approximate the time-varying individual
effects vi(t) by smooth nonparametric functions, say, ϑi(t). In this way (1) becomes a semi-
parametric model and its estimation is done using a two-step estimation procedure, which we
explain in more detail in Section 2. The asymptotic properties of this method rely, however,
on independent and identically distributed errors.
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Alternatively, Bai (2009) allows for weak forms of heteroskedasticity and dependency in both
time and cross-section dimensions and proposes an iterated least squares approach to esti-
mate (1) for stationary time-varying individual effects vit such as ARMA processes or non-
stationary deterministic trends. However, Bai (2009) rules out a large class of non-stationary
processes such as stochastic processes with integration.

Moreover, Bai (2009) assumes the factor dimension d to be a known parameter, which is
usually not the case. Therefore, the phtt package uses an algorithmic refinement of Bai’s
method proposed by Bada and Kneip (2014) in order to estimate the number of unobserved
common factors d jointly with the remaining model parameters; see Section 4 for more details.

Besides the implementations of the methods proposed by Kneip et al. (2012), Bai (2009), and
Bada and Kneip (2014) the R package phtt comes with a wide range of criteria (16 in total)
for estimating the factor dimension d. The main functions of the phtt package are given in
the following list:

• KSS(): Computes the estimators of the model parameters according to the method of
Kneip et al. (2012); see Section 2.

• Eup(): Computes the estimators of the model parameters according to the method of
Bai (2009) and Bada and Kneip (2014); see Section 4.

• OptDim(): Allows for a comparison of the estimated factor dimensions d̂ obtained from
many different (in total 16) criteria; see Section 3.

• checkSpecif(): Tests whether to use a classical fixed effects panel model or a panel
model with individual effects νit; see Section 5.1.

The functions are provided with the usual print()-, summary()-, plot()-, coef()- and
residuals()-methods.

Standard methods for estimating models for panel and longitudinal data are also implemented
in the R packages plm (Croissant and Millo 2008), nlme (Pinheiro, Bates, DebRoy, Sarkar,
and R Core team 2012), and lme4 (Bates, Maechler, and Bolker 2012); see Croissant and
Millo (2008) for an exhaustive comparison of these packages. Recently, Millo and Piras (2012)
published the R package splm for spatial panel data models. The phtt package further extends
the toolbox for statisticians and econometricians and provides the possibility of analyzing
panel data with large dimensions n and T and considers in the case when the unobserved
heterogeneity effects are time-varying.

To the best of our knowledge, our phtt package Bada and Liebl (2012) is the first software
package that offers the estimation methods of Bai (2009) and Kneip et al. (2012). Regarding
the different dimensionality criteria that can by accessed via the function OptDim() only those
of Bai and Ng (2002) are publicly available as MATLAB codes (The MathWorks Inc. 2012)
from the homepage of Serena Ng (http://www.columbia.edu/~sn2294/).

To demonstrate the use of our functions, we re-explore the well known Cigar dataset, which is
frequently used in the literature of panel models. The panel contains the per capita cigarette
consumptions of n = 46 American states from 1963 to 1992 (T = 30) as well as data about
the income per capita and cigarette prices (see, e.g., Baltagi and Levin (1986) for more details
on the dataset).

http://www.columbia.edu/~sn2294/
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We follow Baltagi and Li (2004), who estimate the following panel model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit. (3)

Here, Consumptionit presents the sales of cigarettes (packs of cigarettes per capita), Priceit
is the average real retail price of cigarettes, and Incomeit is the real disposable income per
capita. The index i ∈ {1, . . . , 46} denotes the single states and the index t ∈ {1, . . . , 30}
denotes the year.

We revisit this model, but allow for a multidimensional factor structure such that

eit =
d∑
l=1

λilflt + εit.

The Cigar dataset can be obtained from the phtt package using the function data("Cigar").
The panels of the variables ln(Consumptionit), ln(Priceit), and ln(Incomeit) are shown in
Figure 1.
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Figure 1: Plots of the dependent variable ln(Consumptionit) and regressor variables
ln(Priceit) and ln(Incomeit).

Section 2 is devoted to a short introduction of the method of Kneip et al. (2012), which is
appropriate for relatively smooth common factors fl(t). Section 3 presents the usage of the
function OptDim(), which provides access to a wide range of panel dimensionality criteria
recently discussed in the literature on factor models. Section 4 deals with the explanation as
well as application of the panel method proposed by Bai (2009), which is basically appropriate
for stationary and relatively unstructured common factors flt.

2. Panel models for heterogeneity in time trends
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The panel model proposed by Kneip et al. (2012) can be presented as follows:

yit =
P∑
j=1

xitjβj + vi(t) + εit, (4)

where the time-varying individual effects vi(t) are parametrized in terms of common non-
parametric basis functions f1(t), . . . , fd(t) such that

vi(t) =

d∑
l=1

λilfl(t). (5)

The asymptotic properties of this method rely on second order differences of vi(t), which apply
for continuous functions as well as for classical discrete stochastic time series processes such
as (S)AR(I)MA processes. Therefore, the functional notation of the time-varying individual
effects vi(t) and their underlying common factors f1(t), . . . , fd(t) does not restrict them to a
purely functional interpretation. The main idea of this approach is to approximate the time
series of individual effects vi(t) by smooth functions ϑi(t).

The estimation approach proposed by Kneip et al. (2012) relies on a two-step procedure: first,
estimates of the common slope parameters βj and the time-varying individual effects vi(t) are
obtained semi-parametrically. Second, functional principal component analysis is used to
estimate the common factors f1(t), . . . , fd(t), and to re-estimate the time-varying individual
effects vi(t) more efficiently. In the following we describe both steps in more detail.

Step 1: The unobserved parameters βj and vi(t) are estimated by the minimization of

n∑
i=1

1

T

T∑
t=1

yit − P∑
j=1

xitjβj − ϑi(t)

2

+
n∑
i=1

κ

∫ T

1

1

T

(
ϑ
(m)
i (s)

)2
ds, (6)

over all βj ∈ R and all m-times continuously differentiable functions ϑi(t), where ϑ
(m)
i (t)

denotes the mth derivative of the function ϑi(t). A first approximation of vi(t) is then given
by ṽi(t) := ϑ̂i(t). Spline theory implies that any solution ϑ̂i(t) possesses an expansion in terms
of a natural spline basis z1(t), . . . , zT (t) such that ϑ̂i(t) =

∑T
s=1 ζ̂iszs(t); see, e.g., De Boor

(2001). Using the latter expression, we can rewrite (6) to formalize the following objective
function:

S(β, ζ) =

n∑
i=1

(
||Yi −Xiβ − Zζi||2 + κζ>i Rζi

)
, (7)

where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, β = (β1, . . . , βP )>, ζi = (ζi1, . . . , ζiT )>, Z

and R are T × T matrices with elements {zs(t)}s,t=1,...,T and {
∫
z
(m)
s (t)z

(m)
k (t)dt}s,k=1,...,T

respectively. κ is a preselected smoothing parameter to control the smoothness of ϑ̂i(t). We
follow the usual choice of m = 2, which leads to cubic smoothing splines.

In contrast to Kneip et al. (2012), we do not specify a common time effect in model (4), but
the vector of explanatory variables is allowed to contain an intercept. This means that the
time-varying individual effects vi(t) are not centered around zero for each specific time point
t, but around a common intercept term. The separate estimation of the common time effect,
say θt, is also possible with our phtt package; we discuss this in detail in Section 5.
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The semi-parametric estimators β̂, ζ̂i = (ζ̂i1, . . . , ζ̂iT )>, and ṽi = (ṽi1, . . . , ṽiT )> can be ob-
tained by minimizing S(β, ζ) over all β ∈ RP and ζ ∈ RT×n.

The solutions are given by

β̂ =

(
n∑
i=1

X>i (I −Zκ)Xi

)−1( n∑
i=1

X>i (I −Zκ)Yi

)
, (8)

ζ̂i = (Z>Z + κR)−1Z>(Yi −Xiβ̂), and (9)

ṽi = Zκ
(
Yi −Xiβ̂

)
, where Zκ = Z

(
Z>Z + κR

)−1
Z>. (10)

Step 2: The common factors are obtained by the first d eigenvectors γ̂1, . . . , γ̂d that corre-
spond to the largest eigenvalues ρ̂1, . . . , ρ̂d of the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

ṽiṽ
>
i . (11)

The estimator of the common factor fl(t) is then defined by the lth scaled eigenvector

f̂l(t) =
√
T γ̂lt for all l ∈ {1, . . . , d}, (12)

where γ̂lt is the tth element of the eigenvector γ̂l. The scaling factor
√
T yields that f̂l(t)

satisfies the normalization condition 1
T

∑T
t=1 f̂l(t)

2 = 1 as listed above in Section 1. The
estimates of the individual loadings parameters λil are obtained by ordinary least squares

regressions of
(
Yi −Xiβ̂

)
on f̂l, where f̂l = (f̂l(1), . . . , f̂l(T ))>. Recall from conditions (a)

and (b) that λ̂il can be calculated as follows:

λ̂il =
1

T
f̂>l

(
Yi −Xiβ̂

)
. (13)

A crucial part of the estimation procedure of Kneip et al. (2012) is the re-estimation of the
time-varying individual effects vi(t) in Step 2 by v̂i(t) :=

∑d
l=1 λ̂ilf̂l(t), where the factor

dimension d can be determined, e.g., by the sequential testing procedure of Kneip et al.
(2012) or by any other dimensionality criterion; see also Section 3. This re-estimation leads
to more efficiently estimated time-varying individual effects.

Kneip et al. (2012) derive the consistency of the estimators as n, T → ∞ and show that the

asymptotic distribution of common slope estimators is given by Σ̂
−1/2
β (β̂ −Eε(β̂))

d→ N(0, I),
where

Σ̂β = σ2

(
n∑
i=1

X>i (I −Zκ)Xi

)−1( n∑
i=1

X>i (I −Zκ)2Xi

)(
n∑
i=1

X>i (I −Zκ)Xi

)−1
. (14)

A consistent estimator of σ2 can be obtained by

σ̂2 =
1

(n− 1)T

n∑
i=1

||Yi −Xiβ̂ −
d̂∑
l=1

λ̂i,lf̂l||2. (15)
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To determine the optimal smoothing parameter κopt, Kneip et al. (2012) propose the following
cross validation (CV) criterion:

CV (κ) =

n∑
i=1

||Yi −Xiβ̂−i −
d∑
l=1

λ̂−i,lf̂−i,l||2, (16)

where β̂−i, λ̂−i,l, and f̂−i,l are estimates of the parameters β, λ, and fl based on the dataset
without the ith observation. Unfortunately, this criterion is computationally very costly and
requires determining the factor dimension d in advance. To overcome this disadvantage,
we propose a plug-in smoothing parameter that is discussed in more detail in the following
Section 2.1.

2.1. Computational details

Theoretically, it is possible to determine κ by the CV criterion in (16); however, cross vali-
dation is computationally very costly. Moreover, Kneip et al. (2012) do not explain how the
factor dimension d is to be specified during the optimization process, which is critical since
the estimator d̂ is influenced by the choice of κ.

In order to get a quick and effective solution, we propose to determine the smoothing param-
eter κ by generalized cross validation (GCV). However, we cannot apply the classical GCV
formulas as proposed, e.g., in Craven and Wahba (1978) since we do not know the parameters
β and vi(t). Our computational algorithm for determining the GCV smoothing parameter
κGCV is based on the method of Cao and Ramsay (2010), who propose optimizing objective
functions of the form (7) by updating the parameters iteratively in a functional hierarchy.
Formally, the iteration algorithm can be described as follows:

1. For given κ and β, we optimize (7) with respect to ζi to get

ζ̂i = (Z>Z + κR)−1Z>(Yi −Xiβ). (17)

2. By using (17), we minimize (7) with respect to β to get

β̂ =

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i (Yi − Zζ̂i)

)
(18)

3. Once (17) and (18) are obtained, we optimize the following GCV criterion to calculate
κGCV :

κGCV = arg min
κ

1
n
T tr(I −Zκ)2

n∑
i=1

||Yi −Xiβ̂ −Zκ(Yi −Xiβ̂)||2. (19)

The program starts with initial estimates of β and κ and proceeds with steps 1, 2, and 3 in
recurrence until convergence of all parameters, where the initial value β̂start is defined in (50)
and the initial value κstart is the GCV-smoothing parameter of the residuals Yi −Xiβ̂start.

The advantage of this approach is that the inversion of the P × P matrix in (18) does not
have to be updated during the iteration process. Moreover, the determination of the GCV-
minimizer in (19) can be easily performed in R using the function smooth.spline(), which
calls on a rapid C-routine.
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But note that the GCV smoothing parameter κGCV in (19) does not explicitly account for
the factor structure of the time-varying individual effects vi(t) as formalized in (2). In fact,
given that the assumption of a factor structure is true, the goal shall not be to obtain optimal
estimates of vi(t) but rather to obtain optimal estimates of the common factors fl(t), which
implies that the optimal smoothing parameter κopt will be smaller than κGCV ; see Kneip et al.
(2012).

If the goal is to obtain optimal estimates of fl(t), κopt will be used as an upper bound when
minimizing the CV criterion (16) (via setting the argument CV = TRUE); which, however, can
take some time. Note that, this optimal smoothing parameter κopt depends on the unknown
factor dimension d. Therefore, we propose to, first, estimate the dimension based on the
smoothing parameter κGCV and, second, to use the estimated dimension d̂ (via explicitly
setting the dimension argument factor.dim= d̂) in order to determine the dimension-specific
smoothing parameter κopt (via setting the argument CV = TRUE).

2.2. Application

This section is devoted to the application of the method of Kneip et al. (2012) discussed
above. The computation of this method is accessible through the function KSS(), which has
the following arguments:

> args(KSS)

function (formula, additive.effects = c("none", "individual",

"time", "twoways"), consult.dim.crit = FALSE, d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, level = 0.01, spar = NULL,

CV = FALSE, convergence = 1e-06, restrict.mode = c("restrict.factors",

"restrict.loadings"), ...)

NULL

The argument formula is compatible with the usual R-specific symbolic designation of the
model. The unique specificity here is that the variables should be defined as T × n matrices,
where T is the temporal dimension and n is the number of the cross-section unites.1

The argument additive.effects makes it possible to extend the model (4) for additional
additive individual, time, or twoways effects as discussed in Section 5.

If the logical argument consult.dim.crit is set to TRUE all dimensionality criteria discussed
in Section 3 are computed and the user is asked to choose one of their results.

The arguments d.max and sig2.hat are required for the computation of some dimensionality
criteria discussed in Section 3. If their default values are maintained, the function internally

computes d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in (15), where bxc indicates the integer

part of x. The argument level allows to adjust the significance level for the dimensionality
testing procedure (21) of Kneip et al. (2012); see Section 3.

CV is a logical argument. If it is set to TRUE the cross validation criterion (16) of Kneip et al.
(2012) will be computed. In the default case, the function uses the GCV method discussed
above in Section 2.1.

1Note that phtt is written for balanced panels. Missing values have to be replaced in a pre-processing step
by appropriate imputation methods.
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The factor dimension d can be pre-specified by the argument factor.dim. Recall from re-
striction (a) that 1

T

∑T
t=1 f̂l(t)

2 = 1.

Alternatively, it is possible to standardize the individual loadings parameters such that
1
n

∑n
i=1 λ̂il = 1, which can be done by setting restrict.mode = "restrict.loadings".

As an illustration we estimate the Cigarettes model (3) introduced in Section 1:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + eit (20)

with eit =
d∑
l=1

λil fl(t) + εit,

In the following lines of code we load the Cigar dataset and take logarithms of the three
variables, Consumptionit, Priceit/cpit and Incomeit/cpit, where cpit is the consumer price
index. The variables are stored as T × n-matrices. This is necessary, because the formula

argument of the KSS()-function takes the panel variables as matrices in which the number
of rows has to be equal to the temporal dimension T and the number of columns has to be
equal to the individual dimension n.

> library("phtt")

> data("Cigar")

> N <- 46

> T <- 30

> l.Consumption <- log(matrix(Cigar$sales, T, N))

> cpi <- matrix(Cigar$cpi, T, N)

> l.Price <- log(matrix(Cigar$price, T, N)/cpi)

> l.Income <- log(matrix(Cigar$ndi, T, N)/cpi)

The model parameters β1, β2, the factors fl(t), the loadings parameters λil, and the factor
dimension d can be estimated by the KSS()-function with its default arguments. Inferences
about the slope parameters can be obtained by using the method summary().

> Cigar.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income)

> (Cigar.KSS.summary <- summary(Cigar.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income)

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)

(Intercept) 4.0600 0.1770 23.00 < 2.2e-16 ***

l.Price -0.2600 0.0223 -11.70 < 2.2e-16 ***

l.Income 0.1550 0.0382 4.05 5.17e-05 ***
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---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Additive Effects Type: none

Used Dimension of the Unobserved Factors: 6

Residual standard error: 0.000725 on 921 degrees of freedom

R-squared: 0.99

The effects of the log-real prices for cigarettes and the log-real incomes on the log-sales of
cigarettes are highly significant and in line with results in the literature. The summary output
reports an estimated factor dimension of d̂ = 6. In order to get a visual impression of the six
estimated common factors f̂1(t), . . . , f̂6(t) and the estimated time-varying individual effects
v̂1(t), . . . , v̂n(t), we provide a plot()-method for the KSS-summary object.

> plot(Cigar.KSS.summary)

111111111111111111111111111111

0 5 10 15 20 25 30

−2
−1

0
1

2

Estimated Factors
(Used Dimension = 6)

Time

2
2222

2
2
2222222

2
2
2
222

2
2
2
2
2

2

2

2
2
2

3
333

333
3

3

3

3

3

3

3
33

3
3
33

3

3
3
3

3

3

3
333

4

4

4

4
4
4

4

4

4

44

4

4

4

4

4

4

4
4
4444

4
4
4

4

4

4
4

5

5

5

5

5

5

5

5
5

5

5
5

5

5

5555

5
55

5

5

5

5
5
5

5

5

5

6

6

6

66

6
6

6

66

6

6

6

66

6

6

6

6

6

6
6
6

66

6

6

6

6

6

0 5 10 15 20 25 30

−0.
5

0.0
0.5

Estimated Factor−Structure

Time

Figure 2: Left panel: Estimated factors f̂1(t), . . . , f̂6(t). Right panel: Estimated time-
varying individual effects v̂1(t), . . . , v̂n(t).

The left panel of Figure 2 shows the six estimated common factors f̂1(t), . . . , f̂6(t) and the right
panel of Figure 2 shows the n = 46 estimated time-varying individual effects v̂1(t), . . . , v̂n(t).
The common factors are ordered correspondingly to the decreasing sequence of their eigenval-
ues. Obviously, the first common factor is nearly time-invariant; this suggests extending the
model (20) by additive individual (time-invariante) effects; see Section 5 for more details.

By setting the logical argument consult.dim.crit=TRUE, the user can choose from other
dimensionality criteria, which are discussed in Section 3. Note that the consideration of
different factor dimensions d would not alter the results for the slope parameters β since the
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estimation procedure of Kneip et al. (2012) for the slope parameters β does not depend on
the dimensionality parameter d.

3. Panel criteria for selecting the number of factors

In order to estimate the factor dimension d, Kneip et al. (2012) propose a sequential testing
procedure based on the following test statistic:

KSS(d) =
n
∑T

r=d+1 ρ̂r − (n− 1)σ̂2tr(ZκP̂dZκ)

σ̂2
√

2n · tr((ZκP̂dZκ)2)

a∼ N(0, 1), (21)

where P̂d = I − 1
T

∑d
l=1 flf

>
l with fl = (fl(1), . . . , fl(T ))>, and

σ̂2 =
1

(n− 1)tr((I −Zκ)2)

n∑
i=1

||(I −Zκ)(Yi −Xiβ̂)||2. (22)

The selection method can be described as follows: choose a significance level α (e.g., α = 1%)
and begin with H0 : d = 0. Test if KSS(0) ≤ z1−α, where z1−α is the (1− α)-quantile of the
standard normal distribution. If the null hypothesis can be rejected, go on with d = 1, 2, 3, . . .
until H0 cannot be rejected. Finally, the estimated dimension is then given by the smallest
dimension d, which leads a rejection of H0.

The dimensionality criterion of Kneip et al. (2012) can be used for stationary as well as non-
stationary factors. However, this selection procedure has a tendency to ignore factors that
are weakly auto-correlated. As a result, the number of factors can be underestimated.

More robust against this kind of underestimation are the criteria of Bai and Ng (2002). The
basic idea of their approach consists simply of finding a suitable penalty term gnT , which
countersteers the undesired variance reduction caused by an increasing number of factors d̂.
Formally, d̂ can be obtained by minimizing the following criterion:

PC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT (23)

for all l ∈ {1, 2, . . .}, where ŷit(l) is the fitted value for a given factor dimension l. To estimate
consistently the dimension of stationary factors Bai and Ng (2002) propose specifying gnT by
one of the following penalty terms:

g
(PC1)
nT = σ̂2

(n+ T )

nT
log

(
nT

n+ T

)
, (24)

g
(PC2)
nT = σ̂2

(n+ T )

nT
log(min{n, T}), (25)

g
(PC3)
nT = σ̂2

log(min{n, T})
min{n, T}

, and (26)

g
(BIC3)
nT = σ̂2

(n+ T − l)
nT

log(nT ), (27)

where σ̂2 is the sample variance estimator of the residuals ε̂it. The proposed criteria are
denoted by PC1, PC2, PC3, and BIC3 respectively. Note that only the first three crite-
ria satisfy the requirements of Theorem 2 in Bai and Ng (2002), i.e., (i) gnT → 0 and
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(ii) min{n, T}gnt → ∞, as n, T → ∞. These conditions ensure consistency of the selection
procedure without imposing additional restrictions on the proportional behavior of n and T .
The requirement (i) is not always fulfilled for BIC3, especially when n is too large relative to
T or T is too large relative to n (e.g., n = exp(T ) or T = exp(n)). In practice, BIC3 seems
to perform very well, especially when the idiosyncratic errors are cross-correlated.

The variance estimator σ̂2 can be obtained by

σ̂2(dmax) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(dmax))2, (28)

where dmax is an arbitrary maximal dimension that is larger than d. This kind of variance
estimation can, however, be inappropriate in some cases, especially when σ̂2(dmax) under-
estimates the true variance. To overcome this problem, Bai and Ng (2002) propose three
additional criteria (IC1, IC2, and IC3):

IC(l) = log

(
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2
)

+ lgnT (29)

with

g
(IC1)
nT =

(n+ T )

nT
log(

nT

n+ T
), (30)

g
(IC2)
nT =

(n+ T )

nT
log(min{n, T}), and (31)

g
(IC3)
nT =

log(min{n, T})
min{n, T}

. (32)

In order to improve the finite sample performance of IC1 and IC2, Alessi, Barigozzi, and

Capasso (2010) propose to multiply the penalties g
(IC1)
nT and g

(IC2)
nT with a positive con-

stant c and apply the calibration strategy of Hallin and Lǐska (2007). The choice of c is
based on the inspection of the criterion behavior through J-different tuples of n and T , i.e.,
(n1, T1), . . . , (nJ , TJ), and for different values of c in a pre-specified grid interval. We denote
the refined criteria in our package by ABC.IC1 and ABC.IC2 respectively. Note that such a
modification does not affect the asymptotic properties of the dimensionality estimator.

Under similar assumptions, Ahn and Horenstein (2013) propose selecting d by maximizing
the ratio of adjacent eigenvalues (or the ratio of their growth rate). The criteria are referred
to as Eigenvalue Ratio (ER) and Growth Ratio (GR) and defined as following:

ER =
ρ̂l
ρ̂l+1

(33)

(34)

GR =
log
(∑T

r=l ρ̂r/
∑T

r=l+1 ρ̂r

)
log
(∑T

r=l+1 ρ̂r/
∑T

r=l+2 ρ̂r

) . (35)

Note that the theory of the above dimensionality criteria PC1, PC2, PC3, BIC3, IC1, IC2, IC3,
IPC1,IPC2, IPC3, ABC.IC1, ABC.IC2, KSS.C, ER, and GR are developed for stochastically
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bounded factors. In order to estimate the number of unit root factors, Bai (2004) proposes
the following panel criteria:

IPC(l) =
1

nT

n∑
i=1

T∑
t=1

(yit − ŷit(l))2 + lgnT , (36)

where

g
(IPC1)
nT = σ̂2

log(log(T ))

T

(n+ T )

nT
log

(
nT

n+ T

)
, (37)

g
(IPC2)
nT = σ̂2

log(log(T ))

T

(n+ T )

nT
log(min{n, T}), and (38)

g
(IPC3)
nT = σ̂2

log(log(T ))

T

(n+ T − l)
nT

log(nT ). (39)

Alternatively, Onatski (2010) has introduced a threshold approach based on the empirical
distribution of the sample covariance eigenvalues, which can be used for both stationary and
non-stationary factors. The estimated dimension is obtained by

d̂ = max{l ≤ dmax : ρ̂l − ρ̂l−1 ≥ δ},

where δ is a positive threshold, estimated iteratively from the data. We refer to this criterion
as ED, which stands for Eigenvalue Differences.

3.1. Application

The dimensionality criteria introduced above are implemented in the function OptDim(),
which has the following arguments:

> args(OptDim)

function (Obj, criteria = c("PC1", "PC2", "PC3", "BIC3", "IC1",

"IC2", "IC3", "IPC1", "IPC2", "IPC3", "ABC.IC1", "ABC.IC2",

"KSS.C", "ED", "ER", "GR"), standardize = FALSE, d.max, sig2.hat,

spar, level = 0.01, c.grid = seq(0, 5, length.out = 128),

T.seq, n.seq)

NULL

The desired criteria can be selected by one or several of the following character variables:
"KSS.C", "PC1", "PC2", "PC3", "BIC2", "IC1", "IC2" , "IC3", "ABC.IC1", "ABC.IC2",
"ER", "GR", "IPC1", "IPC2", "IPC3", and "ED". The default significance level used for
the "KSS"-criterion is level = 0.01. The values of dmax and σ̂2 can be specified exter-
nally by the arguments d.max and sig2.hat. By default, d.max is computed internally

as d.max=
⌊
min{

√
n,
√
T}
⌋

and sig2.hat as in (22) and (28). The arguments "c.grid",

"T.seq", and "n.seq" are required for computing "ABC.IC1" and "ABC.IC2". The grid in-
terval of the calibration parameter can be externally specified with "c.grid". The J-Tuples,
(n1, T1), . . . , (nJ , TJ), can be specified by using appropriate vectors in "T.seq", and "n.seq".
If these two arguments are left unspecified, the function constructs internally the following
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sequences: T − C, T − C + 1, . . . , T , and n − C, n − C + 1, . . . , n, for C = min
√
n,
√
T , 30.

Alternatively, the user can specify only the length of the sequences by giving appropriate
integers to the arguments "T.seq", and "n.seq", to control for C.

The input variable can be standardized by choosing standardize = TRUE. In this case, the
calculation of the eigenvalues is based on the correlation matrix instead of the covariance
matrix for all criteria.

As an illustration, imagine that we are interested in the estimation of the factor dimension
of the variable ln(Consumptionit) with the dimensionality criterion "PC1". The function
OptDim() requires a T × n matrix as input variable.

> OptDim(Obj = l.Consumption, criteria = "PC1")

Call: OptDim.default(Obj = l.Consumption, criteria = "PC1")

---------

Criterion of Bai and Ng (2002):

PC1

5

OptDim() offers the possibility of comparing the result of different selection procedures by
giving the corresponding criteria to the argument criteria. If the argument criteria is left
unspecified, OptDim() automatically compares all 16 procedures.

> (OptDim.obj <- OptDim(Obj = l.Consumption, criteria = c("PC3", "ER",

+ "GR", "IPC1", "IPC2", "IPC3"), standardize = TRUE))

Call: OptDim.default(Obj = l.Consumption, criteria = c("PC3", "ER",

"GR", "IPC1", "IPC2", "IPC3"), standardize = TRUE)

---------

Criterion of Bai and Ng (2002):

PC3

5

--------

Criteria of Ahn and Horenstein (2013):

ER GR

3 3

---------

Criteria of Bai (2004):

IPC1 IPC2 IPC3

3 3 2
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In order to help users to choose the most appropriate dimensionality criterion for the data,
OptDim-objects are provided with a plot()-method. This method displays, in descending
order, the magnitude of the eigenvalues in percentage of the total variance and indicates
where the selected criteria detect the dimension; see Figure 3.

> plot(OptDim.obj)

Screeplot

Ordered eigenvalues

P
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81
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5
2IPC3

ER,    GR,    IPC1,    IPC2
PC3

Figure 3: Scree plot produced by the plot()-method for OptDim-objects. Most of the dimen-
sionality criteria (ER, GR, IPC1 and IPC2) suggest using the dimension d̂ = 3.

We, now, come back to the KSS- function, which offers an additional way to compare the results
of all dimensionality criteria and to select one of them: If the KSS()-argument consult.dim

= TRUE, the results of the dimensionality criteria are printed on the console of R and the user
is asked to choose one of the results.

> KSS(formula = l.Consumption ~ -1 + l.Price + l.Income, consult.dim = TRUE)

-----------------------------------------------------------

Results of Dimension-Estimations

-Bai and Ng (2002):

PC1 PC2 PC3 BIC3 IC1 IC2 IC3

5 5 5 4 5 5 5
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-Bai (2004):

IPC1 IPC2 IPC3

3 3 2

-Alessi et al. (2010):

ABC.IC1 ABC.IC2

3 3

-Kneip et al. (2012):

KSS.C

6

-Onatski (2009):

ED

3

-Ahn and Horenstein (2013):

ER GR

3 6

-----------------------------------------------------------

Please, choose one of the proposed integers:

After entering a number of factors, e.g., 6 we get the following feedback:

Used dimension of unobs. factor structure is: 6

-----------------------------------------------------------

Note that the maximum number of factors that can be given, cannot exceed the highest
estimated factor dimension (here maximal dimension would be 6). A higher dimension can
be chosen using the argument factor.dim.

4. Panel models with stochastically bounded factors

The panel model proposed by Bai (2009) can be presented as follows:

yit =

P∑
j=1

xitjβj + vit + εit, (40)

where

vit =

d∑
l=1

λilflt. (41)

Combining (40) with (41) and writing the model in matrix notation we get

Yi = Xiβ + FΛ>i + εi, (42)
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where Yi = (yi1, . . . , yiT )>, Xi = (x>i1, . . . , x
>
iT )>, εi = (εi1, . . . , εiT )>, Λi = (λ1, . . . , λn)> and

F = (f1, . . . , fT )> with λi = (λi1, . . . , λid), ft = (f1t, . . . , fdt), and εi = (εi1, . . . , εiT )>.

The asymptotic properties of Bai’s method rely, among others, on the following assumption:

1

T
F>F

p→ ΣF , as T →∞, (43)

where ΣF is a fixed positive definite d × d matrix. This allows for the factors to follow
a deterministic time trend such as ft = t/T or to be stationary dynamic processes such
that ft =

∑∞
j=1Cjet−j , where et are i.i.d. zero mean stochastic components. It is, however,

important to note that such an assumption rules out a large class of non-stationary factors
such as I(p) processes with p ≥ 1.

4.1. Model with known number of factors d

Bai (2009) proposes to estimate the model parameters β, F and Λi by minimizing the following
least squares objective function:

S(β, F,Λi) =
n∑
i

||Yi −Xiβ − FΛ>i ||2. (44)

For each given F , the OLS estimator of β can be obtained by

β̂(F ) =

(
n∑
i=1

X>i PdXi

)−1( n∑
i=1

X>i PdYi

)
(45)

where Pd = I−F (F>F )−1F> = I−FF>/T . If β is known, F can be estimated by using the
first d eigenvectors γ̂ = (γ̂1, . . . , γ̂d) corresponding to the first d eigenvalues of the empirical
covariance matrix Σ̂ = (nT )−1

∑n
i=1wiw

>
i , where wi = Yi −Xiβ. That is,

F̂ (β) =
√
T γ̂.

The idea of Bai (2009) is to start with initial values for β or F and calculate the estimators
iteratively. The method requires, however, the factor dimension d to be known, which is
usually not the case in empirical applications.

A feasible estimator of (45) can be obtained by using an arbitrary large dimension dmax
greater than d. The factor dimension can be estimated subsequently by using the criteria of
Bai and Ng (2002) to the remainder term Yi = Xiβ̂(F̂ (dmax)), as suggested by Bai (2009).
This strategy can lead, however, to inefficient estimation and spurious interpretation of β due
to over-parameterization.

4.2. Model with unknown number of factors d

In order to estimate d jointly with β, F , and Λi, Bada and Kneip (2014) propose to integrate
a penalty term into the objective function to be globally optimized. In this case, the opti-
mization criterion can be defined as a penalized least squares objective function of the form:

S(β, F,Λi, l) =

n∑
i

||Yi −Xiβ − FΛ>i ||2 + lgnT (46)
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The role of the additional term lgnT is to pick up the dimension d̂, of the unobserved factor
structure. The penalty gnT can be chosen according to Bai and Ng (2002). The estimation
algorithm is based on the parameter cascading strategy of Cao and Ramsay (2010), which in
this case can be described as follows:

1. Minimizing (46) with respect to Λi for each given β, F and d, we get

Λ̂>i (β, F, d) = F> (Yi −Xiβ) /T. (47)

2. Introducing (47) in (46) and minimizing with respect to F for each given β and d, we
get

F̂ (β, d) =
√
T γ̂(β, d), (48)

where γ̂(β, d) is a T × d matrix that contains the first d eigenvectors corresponding to
the first d eigenvalues ρ1, . . . , ρd of the covariance matrix Σ̂ = (nT )−1

∑n
i=1wiw

>
i with

wi = Yi −Xiβ.

3. Reintegrating (48) and (47) in (46) and minimizing with respect to β for each given d,
we get

β̂(d) =

(
n∑
i=1

X>i Xi

)−1( n∑
i=1

X>i

(
Yi − F̂ Λ̂>i (β̂, d)

))
. (49)

4. Optimizing (46) with respect to l given the results in (47), (48), and (49) allows us to
select d̂ as

d̂ = argminl

n∑
i

||Yi −Xiβ̂ − F̂ Λ̂>i ||2 + lgnT , for all l ∈ {0, 1, . . . , dmax}.

The final estimators are obtained by alternating between an inner iteration to optimize
β̂(d), F̂ (d), and Λ̂i(d) for each given d and an outer iteration to select the dimension d̂.
The updating process is repeated in its entirety till the convergence of all the parameters.
This is why the estimators are called entirely updated estimators (Eup). In order to avoid
over-estimation, Bada and Kneip (2014) propose to re-scale gnT in each iteration stage with
σ̂2 =

∑n
i ||Yi −Xiβ̂ − F̂ Λ̂>i ||2 in stead of σ̂2(dmax). Simulations show that such a calibration

can improve the finite sample properties of the estimation method.

It is notable that the objective functions (46) and (44) are not globally convex. There is
no guarantee that the iteration algorithm converges to the global optimum. Therefore, it is
important to choose reasonable starting values d̂start and β̂start. We propose to select a large
dimension dmax and to start the iteration with the following estimate of β:

β̂start =

(
n∑
i=1

X>i (I −GG>)Xi

)−1( n∑
i=1

X>i (I −GG>)Yi

)
, (50)

where G is the T ×dmax matrix of the eigenvectors corresponding to the first dmax eigenvalues
of the augmented covariance matrix

ΓAug =
1

nT

n∑
i=1

(Yi, Xi)(Y
>
i , X

>
i )>.
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The intuition behind these starting estimates relies on the fact that the unobserved factors
cannot escape from the space spanned by the eigenvectors G. The projection of Xi on the
orthogonal complement of G in (50) eliminates the effect of a possible correlation between
the observed regressors and unobserved factors, which can heavily distort the value of β0 if it
is neglected. Greenaway-McGrevy, Han, and Sul (2012) give conditions under which (50) is
a consistent estimator of β. In order to avoid miss-specifying the model through identifying
factors that only exist in Xi and not Yi, Bada and Kneip (2014) recommend to under-scale
the starting common factors Gl that are highly correlated with Xi.

According to Bai (2009), the asymptotic distribution of the slope estimator β̂(d) for known d
is given by √

nT (β̂(d)− β)
a∼ N(0, D−10 DZD

−1
0 ),

where D0 = plim 1
nT

∑n
i=1

∑T
t=1 Z

>
itZit with Zi = (Zi1, . . . , ZiT )> = PdXi − 1

n

∑n
k=1 PdXiaik

and aik = Λi(
1
n

∑n
i=1 Λ>i Λi)

−1Λ>k , and

Case 1. DZ = D−10 σ2 if the errors are i.i.d. with zero mean and variance σ2,

Case 2. DZ = plim 1
nT

∑n
i=1 σ

2
i

∑T
t=1 Z

>
itZit, where σ2i = E(ε2it) with E(εit) = 0, if cross-section

heteroskedasticity exists and n/T → 0,

Case 3. DZ = plim 1
nT

∑n
i=1

∑n
j=1 ωij

∑T
t=1 Z

>
itZjt, where ωij = E(εitεjt) with E(εit) = 0, if

cross-section correlation and heteroskedasticity exist and n/T → 0,

Case 4. DZ = plim 1
nT

∑T
t=1 σ

2
t

∑n
i=1 Z

>
itZit, where σ2t = E(ε2it) with E(εit) = 0, if heteroskedas-

ticity in the time dimension exists and T/n→ 0,

Case 5. DZ = plim 1
nT

∑T
t=1

∑T
s=1 ρ(t, s)

∑n
i=1 Z

>
itZis, where ρ(t, s) = E(εitεis) with E(εit) = 0 ,

if correlation and heteroskedasticity in the time dimension exist and T/n→ 0, and

Case 6. DZ = plim 1
nT

∑T
t=1

∑n
i=1 σ

2
itZ
>
itZis, where σ2it = E(ε2it) with E(εit) = 0, if heteroskedas-

ticity in both time and cross-section dimensions exists with T/n2 → 0 and n/T 2 → 0.

In presence of correlation and heteroskedasticity in panels with proportional dimensions n
and T , i.e., n/T → c > 0, the asymptotic distribution of β̂(d) will be not centered at zero.
This can lead to false inference when using the usual test statistics such as t- and χ2-statistic.
To overcome this problem, Bai (2009) propose to estimate the asymptotic bias and correct
the estimator as follows:

β̂∗(d) = β̂(d)− 1

n
B̂ − 1

T
Ĉ (51)

where B̂ and Ĉ are the estimators of

B = −
(

1
nT

∑n
i=1

∑T
t=1 Z

>
itZit

)−1
1
nT

∑n
i=1

∑n
k=1(Xi − Vi)>F

(
1
T F
>F
)−1

Wik

C = −
(

1
nT

∑n
i=1

∑T
t=1 Z

>
itZit

)−1
1
nT

∑n
i=1X

>
i MFΩF

(
1
T F
>F
)−1 ( 1

n

∑n
k=1 Λ>k Λk

)−1
Λ>i

respectively. Here, Vi = 1
n

∑n
j=1 aijXj , Wik =

(
1
n

∑n
j=1 Λ>j Λj

)−1
Λ>k

1
T

∑T
t=1E(εitεkt), and

Ω = 1
n

∑n
k=1 Ωk with

Case 7. Ωk is a T × T diagonal matrix with elements ωkt = E(ε2kt) if heteroskedasticity in both
time and cross-section dimensions exist and n/T → c > 0 and,
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Case 8. Ωk is a T×T matrix with elements Ωk,ts = E(εktεks) if correlation and heteroskedasticity
in both time and cross-section dimensions exist and n/T → c > 0.

In a similar context, Bada and Kneip (2014) prove that estimating d with the remaining model
parameters does not affect the asymptotic properties of β̂(d). The asymptotic distribution of
β̂ = β̂(d̂) is given by √

nT (β̂ − β)
a∼ N(0, D−10 DZD

−1
0 )

under Cases 1-6, and √
nT (β̂∗ − β)

a∼ N(0, D−10 DZD
−1
0 )

under Cases 7-8, where β̂∗ = β̂∗(d̂).

The asymptotic variance of β̂ and the bias terms B and C can be estimated by replacing F ,
Λi, Zit, and εit with F̂ , Λ̂i, Ẑit, and ε̂it respectively.

In presence of serial correlation (cases 5 and 8), consistent estimators for DZ and C can
be obtained by using the usual heteroskedasticity and autocorrelation (HAC) robust limit-
ing covariance. In presence of cross-section correlation (case 3), DZ is estimated by D̂Z =
1
mT

∑m
i=1

∑m
j=1

∑T
t=1 Ẑ

>
it Ẑjtε̂itε̂jt, where m =

√
n. If both cross-section and serial correlation

exist (case 8), we estimate the long-run covariance of 1√
m

∑m
j=1 Ẑitε̂it.

4.3. Application

The above described methods are implemented in the function Eup(), which takes the follow-
ing arguments:

> args(Eup)

function (formula, additive.effects = c("none", "individual",

"time", "twoways"), dim.criterion = c("PC1", "PC2", "PC3",

"BIC3", "IC1", "IC2", "IC3", "IPC1", "IPC2", "IPC3"), d.max = NULL,

sig2.hat = NULL, factor.dim = NULL, double.iteration = TRUE,

start.beta = NULL, max.iteration = 500, convergence = 1e-06,

restrict.mode = c("restrict.factors", "restrict.loadings"),

...)

NULL

The arguments additive.effects, d.max, sig2.hat, and restrict.mode have the same
roles as in KSS(); see Section 2.2. The argument dim.criterion specifies the dimensionality
criterion to be used if factor.dim is left unspecified and defaults to dim.criterion = "PC1".

Setting the argument double.iteration=FALSE may speed up computations, because the
updates of d̂ will be done simultaneously with F̂ without waiting for their inner convergences.
However, in this case, the convergence of the parameters is less stable than in the default
setting.

The argument start.beta allows us to give a vector of starting values for the slope parameters
βstart. The maximal number of iteration and the convergence condition can be controlled by
max.iteration and convergence.
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In our application, we take first-order differences of the observed time series. This is because
some factors show temporal trends, which can violate the stationarity condition (43); see
Figure 2. We consider the following modified cigarettes model:

4 ln(Consumptionit) = β14 ln(Priceit) + β24 ln(Incomeit) + eit,

with eit =

d∑
l=1

λilflt + εit,

where 4xt = xt − xt−1. In order to avoid notational mess, we use the same notation for
the unobserved time-varying individual effects vit =

∑d
l=1 λilflt as above in (20). The 4-

transformation can be easily performed in R using the standard diff()-function as follows:

> d.l.Consumption <- diff(l.Consumption)

> d.l.Price <- diff(l.Price)

> d.l.Income <- diff(l.Income)

As previously mentioned for the KSS()-function, the formula argument of the Eup()-function
takes balanced panel variables as T × n dimensional matrices, where the number of rows has
to be equal to the temporal dimension T and the number of columns has to be equal to the
individual dimension n.

> (Cigar.Eup <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ dim.criterion = "PC3"))

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

dim.criterion = "PC3")

Coeff(s) of the Observed Regressor(s) :

d.l.Price d.l.Income

-0.3140143 0.159392

Additive Effects Type: none

Dimension of the Unobserved Factors: 5

Number of iterations: 55

Inferences about the slope parameters can be obtained by using the method summary().
The type of correlation and heteroskedasticity in the idiosyncratic errors can be specified by
choosing one of the corresponding Cases 1-8 described above using the argument error.type
= c(1, 2, 3, 4, 5, 6, 7, 8).

In presence of serial correlations (cases 5 and 8), the kernel weights required for estimating the
long-run covariance can be externally specified by giving a vector of weights in the argument
kernel.weights. By default, the function uses internally the linearly decreasing weights

of Newey and West (1987) and a truncation at
⌊
min{

√
n,
√
T}
⌋
. If case 7 or 8 is chosen,
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the method summary() calculates the realization of the bias corrected estimators and gives
appropriate inferences. The bias corrected coefficients can be called by using the method
coef() to the object produced by summary().

> summary(Cigar.Eup)

Call:

Eup.default(formula = d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

dim.criterion = "PC3")

Residuals:

Min 1Q Median 3Q Max

-0.147000 -0.013700 0.000889 0.014100 0.093300

Slope-Coefficients:

Estimate Std.Err Z value Pr(>z)

d.l.Price -0.3140 0.0227 -13.90 < 2.2e-16 ***

d.l.Income 0.1590 0.0358 4.45 8.39e-06 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Additive Effects Type: none

Dimension of the Unobserved Factors: 5

Residual standard error: 0.02804 on 957 degrees of freedom,

R-squared: 0.7033

The summary output reports that "PC3" detects 5 common factors. The effect of the dif-
ferenced log-real prices for cigarettes on the differenced log-sales is negative and amounts to
−0.31. The estimated effect of the differenced real disposable log-income per capita is 0.16.

The estimated factors f̂tl as well as the individual effects v̂it can be plotted using the plot()-
method for summary.Eup-objects. The corresponding graphics are shown in Figure 4.

> plot(summary(Cigar.Eup))

5. Models with additive and interactive unobserved effects

Even though the classical additive "individual", "time", and "twoways" effects can be
absorbed by the factor structure, there are good reasons to model them explicitly. On the
one hand, if there are such effects in the true model, then neglecting them will result in non-
efficient estimators; see Bai (2009). On the other hand, additive effects can be very useful for
interpretation.
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Figure 4: Left Panel: Estimated factors f̂1t, . . . , f̂7t. Right panel: Estimated time-
varying individual effects v̂1t, . . . , v̂nt.

Consider now the following model:

yit = µ+ αi + θt + x>itβ + νit + εit (52)

with

νit =

{
vit =

∑d
l=1 λilflt, for the model of Bai (2009),

vi(t) =
∑d

l=1 λilfl(t), for the model of Kneip et al. (2012),

where αi are time-constant individual effects and θt is a common time-varying effect.

In order to ensure identification of the additional additive effects αi and θt, we need the
following further restrictions:

(d)
∑n

i=1 λil = 0 for all l ∈ {1, . . . , d}

(e)
∑T

t=1 flt = 0 for all l ∈ {1, . . . , d}

(f)
∑n

i=1 αi = 0

(g)
∑T

t=1 θt = 0

By using the classical within-transformations on the observed variables, we can eliminate the
additive effects αi and θt, such that

ẏit = ẋ>itβ + νit + ε̇it,

where ẏit = yit − 1
T

∑T
t=1 yit −

1
n

∑n
i=1 yit + 1

nT

∑T
t=1

∑n
i=1 yit, ẋit = xit − 1

T

∑T
t=1 xit −

1
n

∑n
i=1 xit + 1

nT

∑T
t=1

∑n
i=1 xit, and ε̇it = εit − 1

T

∑T
t=1 εit −

1
n

∑n
i=1 εit + 1

nT

∑T
t=1

∑n
i=1 εit.

Note that Restrictions (d) and (e) ensure that the transformation does not affect the time-
varying individual effects νit. The parameters µ, αi and θt can be easily estimated in a second
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step once an estimate of β is obtained. Because of Restrictions (d) and (e), the solution has
the same form as the classical fixed effects model.

The parameters β and νit can be estimated by the above introduced estimation procedures.
All possible variants of model (52) are implemented in the functions KSS() and Eup().
The appropriate model can be specified by the argument additive.effects = c("none",

"individual", "time", "twoways"):

"none" yit = µ+ x>itβ + νit + εit

"individual" yit = µ+ αi + x>itβ + νit + εit

"time" yit = µ+ θt + x>itβ + νit + εit

"twoways" yit = µ+ αi + θt + x>itβ + νit + εit.

The presence of µ can be controlled by -1 in the formula-object: a formula with -1 refers
to a model without intercept. However, for identification purposes, if a twoways model is
specified, the presence -1 in the formula will be ignored.

As an illustration, we continue with the application of the KSS()-function in Section 2. The
left panel of Figure 2 shows that the first common factor is nearly time-invariant. This
motivates us to augment the model (20) for a time-constant additive effects αi. In this case,
it is convenient to use an intercept µ, which yields the following model:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit, (53)

where vi(t) =

d∑
l=1

λil fl(t).

The estimation of the augmented model (53) can be done using the following lines of code.

> Cigar2.KSS <- KSS(formula = l.Consumption ~ l.Price + l.Income,

+ additive.effects = "individual")

> (Cigar2.KSS.summary <- summary(Cigar2.KSS))

Call:

KSS.default(formula = l.Consumption ~ l.Price + l.Income,

additive.effects = "individual")

Residuals:

Min 1Q Median 3Q Max

-0.11 -0.01 0.00 0.01 0.12

Slope-Coefficients:

Estimate StdErr z.value Pr(>z)

(Intercept) 4.0500 0.1760 23.10 < 2.2e-16 ***

l.Price -0.2600 0.0222 -11.70 < 2.2e-16 ***

l.Income 0.1570 0.0381 4.11 3.88e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Additive Effects Type: individual

Used Dimension of the Unobserved Factors: 5

Residual standard error: 0.000734 on 951 degrees of freedom

R-squared: 0.99

Again, the plot() method provides a useful visualization of the results.

> plot(Cigar2.KSS.summary)

The "individual"-transformation of the data does not affect the estimation of the slope
parameters, but reduces the estimated dimension from d̂ = 6 to d̂ = 5. The remaining five
common factors f̂1, . . . , f̂5 correspond to those of model (20); see the middle panel of Figure 5.
The estimated time-constant state-specific effects αi are shown in the left plot of Figure 5. The
extraction of the αi’s from the factor structure yields a denser set of time-varying individual
effects v̂i shown in the right panel of Figure 5.
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Figure 5: Left Panel: Estimated time-constant state-specific effects α̂1, . . . , α̂n. Middle
Panel: Estimated common factors f̂1(t), . . . , f̂5(t). Right Panel: Estimated time-varying
individual effects v̂1(t), . . . , v̂n(t).

5.1. Specification tests

Model specification is an important step for any empirical analysis. The phtt package is
equipped with two types of specification tests: the first is a Hausman-type test appropriate
for the model of Bai (2009). The second one examines the existence of a factor structure in
Bai’s model as well as in the model of Kneip et al. (2012).
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Testing the sufficiency of classical additive effects

For the case in which the estimated number of factors amounts to one or two (1 ≤ d̂ ≤ 2), it is
interesting to check whether or not these factors can be interpreted as classical "individual",
"time", or "twoways" effects. Bai (2009) considers the following testing problem:

H0: vit = αi + θt
H1: vit =

∑2
l=1 λilflt

The model with factor structure, as described in Section 4, is consistent under both hypothe-
ses. However, it is less efficient under H0 than the classical within estimator, while the latter is
inconsistent under H1 if xit and vit are correlated. These conditions are favorable for applying
the Hausman test:

JBai = nT
(
β̂ − β̂within

)
∆−1

(
β̂ − β̂within

)
a∼ χ2

P , (54)

where β̂within is the classical within least squares estimator, ∆ is the asymptotic variance

of
√
nT
(
β̂ − β̂within

)
, P is the vector-dimension of β, and χ2

P is the χ2-distribution with P

degrees of freedom.

The null hypothesis H0 can be rejected, if JBai > χ2
P,1−α, where χ2

P,1−α is the (1−α)-quantile

of the χ2 distribution with P degrees of freedom.

Under i.i.d. errors, JBai can be calculated by replacing ∆ with its consistent estimator

∆̂ =

( 1

nT

n∑
i=1

Z>i Zi

)−1
−

(
1

nT

n∑
i=1

T∑
t=1

ẋitẋ
>
it

)−1 σ̂2, (55)

where

σ̂2 =
1

nT − (n+ T )d̂− P + 1

n∑
i=1

T∑
t=1

(yit − x>it β̂ −
d̂∑
l=1

λ̂ilf̂lt)
2. (56)

The used residual variance estimator σ̂2 is chosen here, since it is supposed to be consistent
under the null as well as the alternative hypothesis. The idea behind this trick is to avoid
negative definiteness of ∆̂. But notice that even with using this construction, the possibility of
getting a negative definite variance estimator cannot be excluded. As an illustration, consider
the case in which the true number of factors is greater than the number of factors used under
the alternative hypothesis, i.e., the true d > 2. In such a case, the favorable conditions for
applying the test can be violated, since the iterated least squares estimator β̂ is computed
with d̂ ≤ 2 and can be inconsistent under both hypothesis. To avoid such a scenario, we
recommended to the user to calculate β̂ with a large dimension dmax instead of d̂ ≤ 2.

The test is implemented in the function checkSpecif(), which takes the following arguments:

> checkSpecif(obj1, obj2, level = 0.05)

The argument level is used to specify the significance level. The arguments obj1 and obj2

take both objects of class Eup produced by the function Eup():

obj1 Takes an Eup-object from an estimation with "individual", "time", or "twoways"

effects and a factor dimension equal to d = 0; specified as factor.dim = 0.
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obj2 Takes an Eup-object from an estimation with "none"-effects and a large factor dimen-
sion dmax; specified with the argument factor.dim.

If the test statistic is negative (due to the negative definiteness of ∆̂), the checkSpecif()

prints an error message.

> twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 0, additive.effects = "twoways")

> not.twoways.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ factor.dim = 2, additive.effects = "none")

> checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj, level = 0.01)

Error in checkSpecif(obj1 = twoways.obj, obj2 = not.twoways.obj,

level = 0.01):

The assumptions of the test are not fulfilled.

The (unobserved) true number of factors is probably greater than 2.

Notice that the Hausman test of Bai (2009) assumes the within estimator to be inconsistent
under the alternative hypothesis, which requires xit to be correlated with vit. If this assump-
tion is violated, the test can suffer from power to reject the null hypothesis, since the within
estimator becomes consistent under both hypothesis.

Bai (2009) discusses in his supplementary material another way to check whether a classical
panel data with fixed additive effects is sufficient to describe the data. His idea consists of
estimating the factor dimension after eliminating the additive effects as described in Section
5. If the obtained estimate of d is zero, the additive model can be considered as a reasonable
alternative for the model with factor structure. But note that this procedure can not be
considered as a formal testing procedure, since information about the significance level of the
decision are not provided.

An alternative test for the sufficiency of a classical additive effects model can be given by
manipulating the test proposed by Kneip et al. (2012) as described in the following section.

Testing the existence of common factors

This section is concerned with testing the existence of common factors. In contrast to the
Hausman type statistic discussed above, the goal of this test is not merely to decide which
model specification is more appropriate for the data, but rather to test in general the existence
of common factors beyond the possible presence of additional classical "individual", "time",
or "twoways" effects in the model.

This test relies on using the dimensionality criterion proposed by Kneip et al. (2012) to
test the following hypothesis after eliminating eventual additive "individual", "time", or
"twoways" effects:

H0: d = 0
H1: d > 0
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Under H0 the slope parameters β can be estimated by the classical within estimation method.
In this simple case, the dimensionality test of Kneip et al. (2012) can be reduced to the
following test statistic:

JKSS =
n tr(Σ̂w)− (n− 1)(T − 1)σ̂2√

2n(T − 1)σ̂2
a∼ N(0, 1),

where Σ̂w is the covariance matrix of the within residuals. The reason for this simplification
is that under H0 there is no need for smoothing, which allows us to set κ = 0.

We reject H0: d = 0 at a significance level α, if JKSS > z1−α, where z1−α is the (1 − α)-
quantile of the standard normal distribution. It is important to note that the performance of
the test depends heavily on the accuracy of the variance estimator σ̂2. We propose to use the
variance estimators (15) or (56), which are consistent under both hypotheses as long as d̂ is
greater than the unknown dimension d. Internally, the test procedure sets d̂ =d.max and σ2

as in (56).

This test can be performed for Eup- as well as for KSS-objects by using the function checkSpecif()

leaving the second argument obj2 unspecified. In the following, we apply the test for both
models:

For the model of Bai (2009):

> Eup.obj <- Eup(d.l.Consumption ~ -1 + d.l.Price + d.l.Income,

+ additive.effects = "twoways")

> checkSpecif(Eup.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

13.29 0.00 2.33 0.01

For the model of Kneip et al. (2012):

> KSS.obj <- KSS(l.Consumption ~ -1 + l.Price + l.Income,

+ additive.effects = "twoways")

> checkSpecif(KSS.obj, level = 0.01)

----------------------------------------------

Testing the Presence of Interactive Effects

Test of Kneip, Sickles, and Song (2012)

----------------------------------------------

H0: The factor dimension is equal to 0.

Test-Statistic p-value crit.-value sig.-level

104229.55 0.00 2.33 0.01



Oualid Bada, Dominik Liebl 29

The null hypothesis H0: d = 0 can be rejected for both models at a significance level α = 0.01.

6. Interpretation

This section is intended to outline an exemplary interpretation of the panel model (53), which
is estimated by the function KSS() in Section 5. The interpretation of models estimated by
the function Eup() can be done accordingly. For convenience sake, we re-write the model (53)
in the following:

ln(Consumptionit) = µ+ β1 ln(Priceit) + β2 ln(Incomeit) + αi + vi(t) + εit,

where vi(t) =

d∑
l=1

λil fl(t).

A researcher, who chooses the panel models proposed by Kneip et al. (2012) or Bai (2009),
will probably find them attractive due to their ability to control for very general forms of
unobserved heterogeneity. Beyond this, a further great advantage of these models is that
the time-varying individual effects vi(t) provide a valuable source of information about the
differences between the individuals i. These differences are often of particular interest as,
e.g., in the literature on stochastic frontier analysis.

The left panel of Figure 5 shows that the different states i have considerable different time-
constant levels α̂i of cigarette consumption. A classical further econometric analysis could
be to regress the additive individual effects α̂i on other time-constant variables, such as the
general populations compositions, the cigarette taxes, etc.

The right panel of Figure 5 shows the five estimated common factors f̂1(t), . . . , f̂5(t). It is a
good practice to start the interpretation of the single common factors with an overview about
their importance in describing the differences between the vi(t)’s, which is reflected in the
variances of the individual loadings parameters λ̂il. A convenient depiction is the quantity
of variance-shares of the individual loadings parameters on the total variance of the loadings
parameters

coef(Cigar2.KSS)$Var.shares.of.loadings.param[l] = V(λ̂il)/

d̂∑
k=1

V(λ̂ik),

which is shown for all common functions f̂1(t), . . . , f̂5(t) in the following table:

Common Factor Share of total variance of vi(t)

f̂1(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[1] = 66.32%

f̂2(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[2] = 24.28%

f̂3(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[3] = 5.98%

f̂4(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[4] = 1.92%

f̂5(t) coef(Cigar2.KSS)$Var.shares.of.loadings.param[5] = 1.50%

Table 1: List of the variance shares of the common factors f̂1(t), . . . , f̂5(t).

The values in Table 1 suggest to focus on the first two common factors, which explain together
about 90% of the total variance of the time-varying individual effects v̂i(t).
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The first two common factors

coef(Cigar2.KSS)$Common.factors[,1] = f̂1(t) and

coef(Cigar2.KSS)$Common.factors[,2] = f̂2(t)

are plotted as black and red lines in the middle panel of Figure 5. Figure 6 visualizes the
differences of the time-varying individual effects vi(t) in the direction of the first common
factor (i.e., λ̂i1f̂1(t)) and in the direction of the second common factor (i.e., λ̂i2f̂2(t)). As for
the time-constant individual effects α̂i a further econometric analysis could be to regress the
individual loadings parameters λ̂i1 and λ̂i2 on other explanatory time-constant variables.
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Figure 6: Left Panel: Visualization of the differences of the time-varying individual effects
vi(t) in the direction of the first factor f̂1(t) (i.e., λ̂i1f̂1(t)). Right Panel: Visualization of
the differences of the time-varying individual effects vi(t) in the direction of the second factor
f̂2(t) (i.e., λ̂i2f̂2(t)).

Generally, for both models proposed by Kneip et al. (2012) and Bai (2009) the time-vaying
individual effects

νit =

d∑
l=1

λilflt

can be interpreted as it is usually done in the literature on factor models. An important
topic that is not covered in this section is the rotation of the common factors. Often, the
common factors fl can be interpreted economically only after the application of an appropriate
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rotation scheme for the set of factors f̂1, . . . , f̂d̂. The latter can be done, e.g., using the
function varimax() from the stats package. Alternatively, many other rotation schemes can
be found in the GPArotation package (R Core Team (2014), Bernaards and I.Jennrich (2005)).
Sometimes, it is also preferable to standardize the individual loadings parameters instead of
the common factors as it is done, e.g., in Ahn, Hoon Lee, and Schmidt (2001). This can be
done by choosing restrict.mode = c("restrict.loadings") in the functions KSS() and
Eup() respectively.

7. Summary

This paper introduces the R package phtt for the new class of panel models proposed by Bai
(2009) and Kneip et al. (2012). The two main functions of the package are the Eup()-function
for the estimation procedure proposed in Bai (2009) and the KSS()-function for the estimation
procedure proposed in Kneip et al. (2012). Both of the main functions are supported by the
usual print()-, summary()-, plot()-, coef()- and residuals()-methods. While parts of
the method of Bai (2009) are available for commercially available software packages, the
estimation procedure proposed by Kneip et al. (2012) is not available elsewhere. A further
remarkable feature of our phtt package is the OptDim()-function, which provides an ease
access to many different dimensionality criteria proposed in the literature on factor models.
The usage of the functions is demonstrated by a real data application.
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