
Picasso: A Sparse Learning Library for High
Dimensional Data Analysis in R and Python

J. Ge, X. Li, H. Jiang, H. Liu, T. Zhang, M. Wang and T. Zhao*

Abstract

We describe a new library named picasso, which implements a unified framework of
pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear
regression, sparse logistic regression, sparse Poisson regression and sparse square root loss linear
regression), combined with efficient active set selection strategies. Besides, the library allows
users to choose different sparsity-inducing regularizers, including the convex `1, nonvoncex MCP
and SCAD regularizers. The library is coded in C, has user-friendly R and Python wrappers, and
can scale up to large problems efficiently with the memory optimized using sparse matrix output.

1 Introduction

The pathwise coordinate optimization is undoubtedly one the of the most popular solvers for a
large variety of sparse learning problems. By leveraging the solution sparsity through a simple
but elegant algorithmic structure, it significantly boosts the computational performance in prac-
tice (Friedman et al., 2007). Some recent progresses in (Zhao et al., 2017; Li et al., 2016) establish
theoretical guarantees to further justify its computational and statistical superiority for both con-
vex and nonvoncex sparse learning, which makes it even more attractive to practitioners.

We recently developed a new library named picasso, which implements a unified toolkit of
pathwise coordinate optimization for solving a large class of convex and nonconvex regularized
sparse learning problems. Efficient active set selection strategies are provided to guarantee supe-
rior statistical and computational preference. Specifically, we implement sparse linear regression,
sparse logistic regression, sparse Poisson regression, scaled sparse linear regression, and undi-
rected graphical model estimation (Tibshirani, 1996; Belloni et al., 2011; Sun and Zhang, 2012;
Ravikumar et al., 2010; Liu and Wang, 2012; Sun and Zhang, 2013). The options of regularizers

*Xingguo Li is affiliated with Department of Electrical and Computer Engineering at University of Minnesota; Tong
Zhang is affiliated with Tencent AI Lab; Jason Ge, Mengdi Wang, and Han Liu are affiliated with Department of Op-
erations Research and Financial Engineering at Princeton University; Haoming Jiang and Tuo Zhao are affiliated with
Schools of Industrial & Systems Engineering and Computational Science & Engineering at Georgia Institute of Tech-
nology, Atlanta, GA 30332; Emails: lixx1661@umn.edu, jiange@princeton.edu, tourzhao@gatech.edu; Xingguo Li
and Jason Ge contributed equally; Tuo Zhao is the corresponding author.

1



Initialize Regularization 
Parameter, Active Set 

and Solution

Strong Rule for 
Coordinate Preselection

Coordinate Minimization
(+ Proximal Newton)

Active Set Update

Output 
Solution

Warm Start: Initialize the Next 
Regularization Parameter

Convergence

Convergence

New Active Set

Initial
Active Set

Initial Solution and New 
Regularization Parameter

Inner Loop

Middle Loop

Outer Loop

Initial Regularization 
Parameter

Initial Active Set: Empty 
Initial Solution: Zero

Initial Solution: Output Solution for 
Previous Regularization Parameter

Figure 1: The pathwise coordinate optimization framework with 3 nested loops : (1) Warm start
initialization; (2) Active set selection, and strong rule for coordinate preselection; (3) Active coor-
dinate minimization.

include the `1, MCP, and SCAD regularizers (Fan and Li, 2001; Zhang, 2010). Unlike existing
packages implementing heuristic optimization algorithms such as ncvreg or glmnet (Breheny,
2013; Friedman et al., 2010), our implemented algorithm picasso have strong theoretical guar-
antees that it attains a global linear convergence to a unique sparse local optimum with optimal
statistical properties (e.g. minimax optimality and oracle properties). See more technical details
in Zhao et al. (2017); Li et al. (2016).

2 Algorithm Design and Implementation

The algorithm implemented in picasso is mostly based on the generic pathwise coordinate opti-
mization framework proposed by Zhao et al. (2017); Li et al. (2016), which integrates the warm
start initialization, active set selection strategy, and strong rule for coordinate preselection into
the classical coordinate optimization. The algorithm contains three structurally nested loops as
shown in Figure 1:

(1) Outer loop: The warm start initialization, also referred to as the pathwise optimization
scheme, is applied to minimize the objective function in a multistage manner using a se-
quence of decreasing regularization parameters, which yields a sequence of solutions from
sparse to dense. At each stage, the algorithm uses the solution from the previous stage as
initialization.

(2) Middle loop: The algorithm first divides all coordinates into active ones (active set) and inac-
tive ones (inactive set) by a so-called strong rule based on coordinate gradient thresholding
(Tibshirani et al., 2012). Then the algorithm calls an inner loop to optimize the objective,
and update the active set based on efficient active set selection strategies. Such a routine is
repeated until the active set no longer changes

2



(3) Inner loop: The algorithm conducts coordinate optimization (for sparse linear regression) or
proximal Newton optimization combined with coordinate optimization (for sparse logistic
regression, Possion regression, scaled sparse linear regression, sparse undirected graph esti-
mation) only over active coordinates until convergence, with all inactive coordinates staying
zero values. The active coordinates are updated efficiently using an efficient “naive update”
rule that only operates on the non-zero coefficients. Better efficiency is achieved by the “co-
variance update” rule. See more details in (Friedman et al., 2010). The inner loop terminates
when the successive descent is within a predefined numerical precision.

The warm start initialization, active set selection strategies, and strong rule for coordinate
preselection significantly boost the computational performance, making pathwise coordinate op-
timization one of the most important computational frameworks for sparse learning. The library
is implemented in C with the memory optimized using sparse matrix output, and called from R

and Python by user-friendly interfaces. The numerical evaluations show that picasso is efficient
and can scale to large problems.

3 Examples of R User Interface

We illustrate the user interface by analyzing the eye disease data set in picasso.

> # Load the data set

> library(picasso); data(eyedata)

> # Lasso

> out1 = picasso(x,y,method="l1",type.gaussian="naive",nlambda=20,

+ lambda.min.ratio=0.2)

> # MCP regularization

> out2 = picasso(x,y,method="mcp", gamma = 1.25, prec=1e-4)

> # Plot solution paths

> plot(out1); plot(out2)

The program automatically generates a sequence of regularization parameters and estimate the
corresponding solution paths based on the `1 and MCP regularizers respectively. For the `1 reg-
ularizer, the number of regularization parameters as 20, and the minimum regularization pa-
rameter as 0.2*lambda.max. Here lambda.max is the smallest regularization parameter yield-
ing an all zero solution (automatically calculated by the library). For the MCP regularizer, we
set the concavity parameter as γ = 1.25, and the pre-defined accuracy as 10−4. Here nlambda

and lambda.min.ratio are omitted, and therefore set by the default values (nlambda=100 and
lambda.min.ratio=0.01). We further plot two solution paths in Figure 4.

3



(a) `1 (b) MCP

Figure 2: The solution paths of the `1-regularized and MCP-regularized sparse linear regression.

4 Examples of Python User Interface

We illustrate the usage of Python interface under the same setting as the above section 1.

> # Load the library and the data set

> from pycasso import core

> import numpy as np

> data = np.load("eyedata.npy").item()

> x = data["data"]

> y = data["label"]

> #Lasso

> s1 = core.Solver(x,y,penalty="l1",type_gaussian="naive",nlambda=20,\

> lambda_min_ratio=0.2)

> # MCP regularization

> s2 = core.Solver(x,y,penalty="mcp", gamma = 1.25, prec=1e-4)

> # Plot solution paths

> s1.plot(); s2.plot()

The results are stored in out1 and out2. We further plot two solution paths and see the same
result in Figure 4.

1The library is named ”Pycasso” for Python to avoid the conflict with https://pypi.python.org/pypi/Picasso/

0.0.2.

4

https://pypi.python.org/pypi/Picasso/0.0.2.
https://pypi.python.org/pypi/Picasso/0.0.2.


5 Numerical Simulation

To demonstrate the superior efficiency of our package, we compare picasso with a popular R

package ncvreg for nonconvex regularized sparse regression, and with the most popular R pack-
age glmnet for convex regularized sparse regression. All experiments are evaluated on an Intel
Xeon CPU E5-2667 v4 3.20GHz and under R version 3.4.3. Timings of the CPU execution are
recored in seconds and averaged over 10 replications on a sequence of 100 regularization parame-
ters. All algorithms are compared on the same regularization path and the convergence threshold
are adjusted so that similar objective function gaps are achieved.

We first compare the timing performance and the optimization performance for sparse linear
regression objective function. We choose the (n,d) pairs as (500,5000) and (1000,10000) respec-
tively, where n is the number of observation in the response vector y ∈ Rn and d is the dimension
of the parameter vector θ ∈ R

d . For the design matrix X ∈ R
n×d , we generate each row inde-

pendently from a d-dimensional normal distribution N (0,Σ). For the well-conditioned case, we
choose Σij = 0.25 for i , j and Σii = 1. For the ill-conditioned case, we choose Σij = 0.75 for i , j
and Σii = 1. Then we have y = Xθ + ε, where θ has all 0 entries except that the first 20 entries are
drawn from [0,1] uniform distribution. We also compare the timing performance for sparse lo-
gistic regression. The generations of X and θ follow from the settings for sparse linear regression.

The response vector y has independent Bernoulli
(

exp(X>i∗θ)
1+exp(X>i∗θ)

)
entries.

From the summary in Table 1 and Table 2, we see that while achieving almost identical opti-
mization objective function, picasso is as fast as glmnet and ncvreg for L1 regularization, and
out-performs ncvreg for SCAD/MCP regularization (especially for sparse logistic regression).
Moreover, we remark that picasso performs stably for various settings and tuning parameters
compared with ncvreg. Especially when the tuning parameters are relatively small (correspond-
ing to denser estimators), ncvreg may converge very slow or fail to converge, which we did not
show here. To avoid such a scenario, we choose the sequence of tuning parameters under the cri-
teria that ncvreg attains the optimal performance in terms of the parameter estimation, while the
estimators are not too dense so that it fails to converge.

We also compare square-root lasso solver scalreg and flare. The simulation is the same as
the sparse linear regression setup but here we’re minimizing the L1 penalized square root mean
squared error (square-root lasso problem). From Table 3 we see that picasso significantly out-
performs the alternatives for square-root lasso problems. picasso is the best square root lasso
solver we have seen so far in R.

6 Conclusion

The picasso library demonstrates significantly improved computational and statistical perfor-
mance over existing libraries such as ncvreg for nonconvex regularized sparse learning. Besides,
picasso also shows improvement over the popular libraries such as glmnet for sparse linear re-

5



Table 1: Average timing performance (in seconds) and optimal objective function values with
standard errors in the parentheses on sparse linear regression.

Sparse Linear Regression (Well-Conditioned)

Method Package
n = 500,d = 5000 n = 1000,d = 10000

Time Obj. Value Time Obj.Value

`1 norm
picasso 0.176(0.068) 21.072 0.466(0.003) 24.030
glmnet 0.190(0.082) 21.112 0.438(0.003) 24.013
ncvreg 0.220(0.079) 21.113 0.548(0.006) 24.012

MCP
picasso 0.290(0.088) 17.676 0.470(0.020) 22.067
ncvreg 0.342(0.015) 17.620 0.594(0.014) 22.066

SCAD
picasso 0.252(0.045) 20.641 0.650(0.008) 23.773
ncvreg 0.302(0.071) 20.610 0.746(0.014) 23.809

Sparse Linear Regression (Ill-Conditioned)

`1 norm
picasso 0.128(0.021) 29.655 0.492(0.011) 30.256
glmnet 0.232(0.024) 29.658 0.900(0.017) 30.259
ncvreg 0.188(0.031) 29.654 0.692(0.011) 30.257

MCP
picasso 0.064(0.008) 29.915 0.262(0.003) 30.348
ncvreg 0.080(0.007) 30.609 0.272(0.040) 30.349

SCAD
picasso 0.124(0.015) 29.655 0.508(0.006) 30.256
ncvreg 0.188(0.009) 29.654 0.680(0.034) 30.257

gression under ill-conditioned settings. Moreover, the algorithm implemented in picasso, which
guarantees a global linear convergence to a unique sparse local optimum with optimal statistical
properties. Overall, the picasso library has the potential to serve as a powerful toolbox for high
dimensional sparse learning. We will continue to maintain and support this library.

6



Table 2: Average timing performance (in seconds) and optimal objective function values with
standard errors in the parentheseson for solving square root lasso problem.

Sparse Logistic Regression (Well-Conditioned)

Method Package
n = 500,d = 5000 n = 1000,d = 10000

Time Obj. Value Time Obj.Value

`1 norm
picasso 0.138(0.093) 0.346 0.324(0.006) 0.363
glmnet 0.186(0.088) 0.346 0.600(0.011) 0.363
ncvreg 0.168(0.051) 0.346 0.276(0.006) 0.363

MCP
picasso 0.098(0.093) 0.242 0.102(0.003) 0.215
ncvreg 0.112(0.085) 0.292 0.126(0.003) 0.244

SCAD
picasso 0.100(0.079) 0.248 0.098(0.003) 0.221
ncvreg 0.114(0.076) 0.314 0.162(0.003) 0.271

Sparse Logistic Regression (Ill-Conditioned)

`1 norm
picasso 0.086(0.003) 0.325 0.438(0.037) 0.335
glmnet 0.208(0.013) 0.325 1.236(0.153) 0.335
ncvreg 0.156(0.031) 0.325 1.104(0.096) 0.335

MCP
picasso 0.026(0.003) 0.175 0.100(0.021) 0.170
ncvreg 0.052(0.012) 0.222 0.264(0.006) 0.228

SCAD
picasso 0.028(0.009) 0.183 0.106(0.003) 0.181
ncvreg 0.104(0.007) 0.253 1.028(0.019) 0.275

Table 3: Average timing performance (in seconds) and optimal objective function values with
standard errors in the parentheses on square root lasso problem.

Square Root Lasso Problem (Well-Conditioned)

Package
n = 500,d = 5000 n = 1000,d = 10000

Time Obj. Value Time Obj.Value

picasso 0.368(0.045) 2.677 0.360(0.000) 4.454

flare 1.512(0.040) 3.336 5.324(0.062) 5.188

scalreg 1.680(0.034) 2.867 40.202(0.608) 4.492

Square Root Lasso Problem (Ill-Conditioned)

picasso 0.040(0.002) 5.388 0.146(0.003) 5.495

flare 13.092(0.113) 5.979 297.356(2.772) 5.959

scalreg 3.354(0.427) 5.395 49.120(10.986) 5.507

References

Belloni, A., Chernozhukov, V. and Wang, L. (2011). Square-root lasso: pivotal recovery of sparse
signals via conic programming. Biometrika 98 791–806.

7



Breheny, P. (2013). ncvreg: Regularization paths for scad-and mcp-penalized regression models.
R package version 2–6.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association 96 1348–1360.

Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization.
The Annals of Applied Statistics 1 302–332.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software 33 1–13.

Li, X., Ge, J., Jiang, H., Wang, M., Hong, M. and Zhao, T. (2016). Boosting pathwise coordi-
nate optimization in high dimensions: Sequential screening and proximal sub-sampled newton
algorithm. Tech. rep., Georgia Tech.

Liu, H. and Wang, L. (2012). Tiger: A tuning-insensitive approach for optimally estimating gaus-
sian graphical models. Tech. rep., Massachusett Institute of Technology.

Ravikumar, P., Wainwright, M. J., Lafferty, J. D. et al. (2010). High-dimensional ising model
selection using 1-regularized logistic regression. The Annals of Statistics 38 1287–1319.

Sun, T. and Zhang, C. (2012). Scaled sparse linear regression. Biometrika To appear.

Sun, T. and Zhang, C.-H. (2013). Sparse matrix inversion with scaled lasso. Journal of Machine
Learning Research 14 3385–3418.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society, Series B 58 267–288.

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. (2012).
Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 74 245–266.

Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals
of Statistics 38 894–942.

Zhao, T., Liu, H. and Zhang, T. (2017). Pathwise coordinate optimization for nonconvex sparse
learning: Algorithm and theory. Annals of Statistics .

8


	Introduction
	Algorithm Design and Implementation
	Examples of R User Interface
	Examples of Python User Interface
	Numerical Simulation
	Conclusion

