
Guidelines for S3 Regression Models

Stephen Milborrow

February 26, 2018

Abstract

This document is intended for authors of R functions that build S3 regression
models. It describes how these functions should interface to the rest of the
world. The intention is to summarize current good practice. Models that
follow the guidelines summarized in this document will be compatible with
tools that further process the model, such as functions like plotmo that plot
the regression surface.

1 Introduction

Once an R regression model has been built we usually want to use it for further process-
ing. For example, we may want make predictions from the model. Or we may want to
plot the model’s residuals (which is what plotres does), or plot the model’s response

as the predictors are varied (which is what plotmo does1).

For an S3 model to be amenable to such further processing it should follow some
commonly accepted interface standards. These are obvious to experienced developers,
but there are many packages on CRAN that don’t follow them. This is possibly because
there seems to be no summary of the standards.

What are the standards? This document attempts to give a convenient summary, by
way of a checklist and an example. The intention is merely to make explicit de facto
good practice.

More generally, the S programming book by Venables and Ripley [4] still seems to
be the best place for advice on writing S3 model code, although a little dated. (For
R programming in general there are of course more modern books, but here we are
talking specificially about S3 regression models.) The ultimate reference is the R core
code itself, and examples in Venables and Ripley should be checked against that code
for current practice.

1Both those functions are in the plotmo package [3], but this document isn’t really about those
functions. They are just examples.

1

http://www.milbo.org/doc/plotres-notes.pdf
http://www.milbo.org/doc/plotmo-notes.pdf

2 Checklist for S3 regression models

S3 regression models should adhere to the following guidelines. Some of these may be
disregarded in certain situations. This isn’t a comprehensive list, but enough for most
applications.

1. Give the model a unique class. In particular, class(model) shouldn’t return
"list". In the model-building function, do something like
class(model) <- "foo".

In general, the class name should be the name of the model-building function.
This means, for example, that if the model-building function is foo, the summary

and plot methods will be summary.foo and plot.foo, as expected.

2. Save the call with the model. In the model-building function, do something like
model$call <- match.call(). This expands any argument names that the user
abbreviated to their full names.

3. Provide both formula and x,y model-building functions. Name the formula method
modelclass.formula and the x,y method modelclass.default. Typically both
of these call an underlying workhouse function modelclass.fit.

4. For model functions with a formula interface, save the terms with the model. (A
terms object is a model formula with additional attributes, as described on the
help page for terms.object. Additional background is given in Chambers and
Hastie [1] and Venables and Ripley Section 4.2 [4].)

5. For model functions with an x,y interface:

i. Use x and y as the first two arguments to the model-building function, in
that order. Don’t call these arguments anything but x and y, unless that
isn’t meaningful for your model.

ii. The x,y interface should be as similar as possible to the formula interface.
Where possible, summary, predict, and friends should work in the same way
for models built with the x,y interface and the formula interface.

One acceptable difference between the formula and x,y functions is as follows:
The formula interface should convert factors in x to indicator columns before
doing the regression; the x,y interface should reject factors with an error
message.

In the formula interface, conversion of factors comes with the standard use
of model.matrix (Section 3). In the x,y interface, using as.matrix as de-
scribed below will correctly reject factors and other unsuitable data.

iii. Be kind to the user and allow x and y to be data.frames, vectors (if
one-dimensional), or matrices. That is, automatically convert to a matrix

internally in the model function; don’t force the user to pre-convert the data.
Issue a clear error message when this conversion can’t be made.

We suggest as.matrix is used for the conversion to matrix. Note that
as.matrix converts all columns to strings if there are any factors or strings
in the input. So to check that the input was converted correctly, you need
only check that the first element is numeric, because either all or none of the

2

converted matrix elements will be numeric. Note that as.matrix is efficient
in that it will simply return x if x is already a matrix (it doesn’t make a
copy of x).

Alternatively you can use data.matrix to make the conversion. This will
convert factors in a data.frame to their internal numeric representation.
This conversion implicitly assumes that any factors are ordered with equally
spaced levels, which isn’t true in general. Therefore for most models geared
towards continuous data, it’s better to issue an error message than to silently
make such conversions, i.e., use as.matrix rather than data.matrix unless
you have a special reason not to.

iv. Consider saving x and y with the model. If you do, save them in fields named
x and y. Don’t use those names for anything else saved with the model.

We recommend y is saved as a one-column matrix (not as a vector), with
the response name as the column name of the matrix. This allows functions
that process the model to easily access the response name for use in plot
labels etc.

If subset is supported, save x and y before taking the subset, and also save
subset. Likewise for weights.

A word of explanation. If the data or environment isn’t saved with the
model, functions like plotmo can’t unambiguously access the data used to
build the model. Saving just the call isn’t sufficient in general, although it
works in the common scenario where the user is working from the command
line. (Note that we are talking here about models with an x,y interface. For
formula-based models, the call and terms fields suffice.)

If memory use is a concern, give the user an option such as keep=TRUE to save
x and y. (There isn’t a standard name for this argument — different func-
tions uses different names. In our opinion, please don’t follow the precedent
set by lm and name the argument x or y; that can cause confusion.2)

Note that saving x and y doesn’t use as much memory as one might expect,
because R will merely create references to x and y, not make copies of them.
On the other hand, R’s automatic garbage collection won’t be able to release
the memory used by x and y until the model is deleted.

6. Provide a predict method for the model. The first two arguments for the predict
method should be object and newdata.

The default newdata should be NULL and this should be treated as if the user
specified the data used to build the model. If that isn’t possible unless keep (or
similar) was set when building the model, issue an error message to that effect.

The third argument for the predict method should be type, unless that isn’t mean-
ingful for your model. Make "response" one of the options for type, possibly
the default, unless that isn’t meaningful for the model. Apply the type argument
even with the default newdata=NULL; if that isn’t possible, issue an error message
rather than silently returning bad results.

2This is an exception to the rule that models should conform to the lm way of doing things. Note
also that lm.fit shouldn’t be used as an example of an x,y interface — because, for example, predict
can’t be used to make predictions on lm.fit models. Instead use a “.default” function as illustrated
in Section 3.

3

Provide defaults for the other arguments where possible so the user can call
predict with minimum bother. Be kind to the user and allow newdata to be
a matrix or a data.frame. (From plotmo’s perspective this is more than just
being kind, it’s necessary for plotmo’s default internal call to predict.) You can
use as.matrix for the conversion to matrix, as described in section iii above.

7. If the model supports prediction or confidence levels, allow the user to access
those in the same way as predict.lm, i.e., when the appropriate arguments are
specified, predict should return a matrix with column names fit, lwr, and upr.

8. It is good practice to provide the standard model functions. A basic list is
case.names, coef, fitted, model.matrix, na.action, plot, print, print.summary,
residuals, summary, update, variable.names, and weights. Not all of those
may apply to your model. Some of them come for free if the model is built in the
standard way (the default methods in the stats package will automatically work
for the model).

Note that coefficients, fitted.values, and resid methods are unnecessary,
since the standard functions for these dispatch to coef, fitted, and residuals.
For inference the following should be added where applicable: deviance, df.residual,
logLik, nobs, and vcov.

9. Don’t use missing(). Accomplish the same thing by making the default value of
the argument NA or some other special value, and checking for that value internally.
(The use of missing in a function complicates code that calls the function — it
has to include two different calls to the function, one with the argument and one
without. This can get out of hand if missing is used on more than argument.)

10. Allow the user to abbreviate argument names and values. Use match.arg or
similar to match arguments that take strings.

3 Example S3 Model

Friedrich Leisch’s tutorial [2] is a good introduction to building R packages, and is
recommended for a broader context on some of the ideas discussed in this document.

The minimal linmod code in the tutorial, although ideal for the purposes of the tutorial,
has limitations that can create issues with functions that further process the model.
For example

data(trees)

fit1 <- linmod(Volume~., data = trees)

predict(fit1, newdata = data.frame(Girth = 10, Height = 80))

gives

Error in eval(expr, envir, enclos) : object 'Volume' not found

and

fit2 <- linmod(cbind(Intercept = 1, trees[,1:2]), trees[,3])

predict(fit2, newdata = trees[,1:2])

4

http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

gives

Error in x %*% coef(object) : requires numeric/complex matrix/vector arguments

Tools like plotmo can sometimes be modified to work around these issues, but a more
general solution is to modify linmod. Figure 1 shows one way of doing that. We can
try the code with a few examples:

library(plotmo) # for plotres

data(trees)

fit1 <- linmod(Volume~., data=trees) # formula interface

plotres(fit1) # plot the model's residuals

fit2 <- linmod(trees[,1:2], trees[,3]) # x,y interface

plotres(fit2)

Functions like print.linmod in Friedrich Leisch’s tutorial don’t need to be modified
for tools like plotmo, and don’t appear in the code in Figure 1.

The new linmod.formula saves the model terms, not just the formula. The new
predict.linmod accepts a data.frame or a matrix. This is what users would expect,
and is necessary for plotmo’s internal call to predict. Note also that linmod.default
doesn’t require the user to manually add an intercept column. There are also a few
minor changes to the model fields for closer compatibility with lm.

4 Limitations of the example S3 model

Production code should include sanity tests that aren’t included in our linmod example.
For example, to prevent confusing downstream error messages, linmod.fit should be
extended to check that x and y are numeric, and contain no NAs. From the user’s
perspective an error message like

Error in linmod.fit(x, y) : NA in x

is better than the error message issued by the current code

Error in qr.default(x) : NA/NaN/Inf in foreign function call (arg 1)

And a message like

Error in linmod.default(x, y) : non-numeric column in x

is better than

Error in qr.default(x) : NAs introduced by coercion

Similar tests should be made in predict.linmod, which should also check that the new
data has the correct number of columns. Production code would also handle collinearity
properly, ensure x and y have conformable dimensions, and take care of details like
propagating rownames in the input data to the residuals and other returned fields.

5

A simple linear model (new version of linmod from Friedrich Leisch's tutorial).

Functions like print.linmod in the tutorial don't need to be modified for tools

like plotmo, and don't appear in the code below.

linmod <- function(...) UseMethod("linmod")

linmod.fit <- function(x, y) # internal function, not for the casual user

{ # first column of x is the intercept (all 1s)

y <- as.vector(as.matrix(y)) # necessary when y is a data.frame

qx <- qr(x) # QR-decomposition of x

coef <- solve.qr(qx, y) # compute (x'x)^(-1) x'y

df.residual <- nrow(x) - ncol(x) # degrees of freedom

sigma2 <- sum((y - x %*% coef)^2) / df.residual # variance of residuals

vcov <- sigma2 * chol2inv(qx$qr) # covar mat is sigma^2 * (x'x)^(-1)

colnames(vcov) <- rownames(vcov) <- colnames(x)

fitted.values <- qr.fitted(qx, y)

fit <- list(coefficients = coef,

residuals = y - fitted.values,

fitted.values = fitted.values,

vcov = vcov,

sigma = sqrt(sigma2),

df.residual = df.residual)

class(fit) <- "linmod"

fit

}

linmod.default <- function(x, y, ...)

{

fit <- linmod.fit(cbind("(Intercept)"=1, as.matrix(x)), y)

fit$call <- match.call()

fit

}

linmod.formula <- function(formula, data=parent.frame(), ...)

{

mf <- model.frame(formula=formula, data=data)

terms <- attr(mf, "terms")

fit <- linmod.fit(model.matrix(terms, mf), model.response(mf))

fit$terms <- terms

fit$call <- match.call()

fit

}

predict.linmod <- function(object, newdata=NULL, ...)

{

if(is.null(newdata))

y <- fitted(object)

else {

if(is.null(object$terms)) # x,y interface

x <- cbind(1, as.matrix(newdata)) # columns must be in same order as orig x

else { # formula interface

terms <- delete.response(object$terms)

x <- model.matrix(terms, model.frame(terms, as.data.frame(newdata)))

}

y <- as.vector(x %*% coef(object))

}

y

}

Figure 1: A simple linear model. This code can be used for new models by replacing
all occurrences of “ linmod” with the new model name and by rewriting the function
linmod.fit.

6

Code that includes the checks mentioned here and the guidelines in Section 2 can be
found at www.milbo.org/doc/linmod.R. We suggest that this more complete code is
used as a template for new S3 models (rather than the code in Figure 1).

Our code handles the model formula in a very basic way. See [4] for more advanced
handling, including weights and subset, and [5] for a more modern treatment of
formulas with extensions.

A thanks goes out to Achim Zeileis for his feedback.

References

[1] J.M. Chambers and T.J. Hastie. Statistical Models in S. Chapman and Hall/CRC,
1991. Cited on page 2.

[2] Friedrich Leisch. Creating R Packages: A Tutorial. Compstat Proceedings in
Computational Statistics, 2008. https://CRAN.R-project.org/doc/contrib/

Leisch-CreatingPackages.pdf. Cited on page 4.

[3] S. Milborrow. plotmo: Plot a model’s response and residuals, 2015. R package,
https://CRAN.R-project.org/package=plotmo. Cited on page 1.

[4] W.N. Venables and B.D. Ripley. S Programming. Springer, 2000. http://www.

stats.ox.ac.uk/pub/MASS3/Sprog. Cited on pages 1, 2, and 7.

[5] Achim Zeileis and Yves Croissant. Extended Model Formulas in R: Multiple
Parts and Multiple Responses. Journal of Statistical Software, 2010. https://

cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf. Cited
on page 7.

7

http://www.milbo.org/doc/linmod.R
https://CRAN.R-project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://CRAN.R-project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://CRAN.R-project.org/package=plotmo
http://www.stats.ox.ac.uk/pub/MASS3/Sprog
http://www.stats.ox.ac.uk/pub/MASS3/Sprog
https://cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf
https://cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf

