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1 Introduction

This tutorial accompanies the R package polysat versions 1.6 and later, and
demonstrates how to use functions in polysat for recoding data from allopoly-
ploid or diploidized autopolyploid organisms such that each microsatellite marker
is split into multiple isoloci. The data can then be analyzed under the model of
random, Mendelian segregation; for example an allotetraploid organism can be
treated as diploid, giving the user access to a much greater number of analyses
both with polysat and with other software.

If you are not sure whether your organism is fully polysomic or whether
it has two or more subgenomes that segregate independently from each other,
keep reading. In the “Quality of clustering” section I illustrate what the results
look like if a locus (Loc7 in the example dataset) segratates in a polysomic
(autopolyploid) manner.

The methods described in this tutorial are designed for natural populations
of one hundred or more individuals. They will also work for certain types
of mapping populations, such as an F2 population derived from two inbred
grandparents. They will be much less effective for small sample sizes (< 50 for
tetraploids, < 200 for higher ploidies), and for datasets with multiple species
or highly-diverged ecotypes. The methods in this tutorial are also inappropri-
ate for species that reproduce asexually. If you have duplicate genotypes in
your dataset (either as a result of asexual reproduction, vegatative spread, or
sampling the same individual multiple times) you should remove them before
starting.

It is assumed that the reader is already familiar with R and with polysat.
If you aren’t, please spend some time with “An Introduction to R” and with
the “polysat version 1.7 Tutorial Manual”. Additionally, there is a manuscript
published in Molecular Ecology Resources at http://dx.doi.org/10.1111/

1755-0998.12639 that describes in detail the rationale and limitations of the al-
lele assignment tools described in this manual. You may also find the documen-
tation for individual functions to be helpful (e.g. see ?alleleCorrelations,
?processDatasetAllo, and ?recodeAllopoly). I’m always happy to answer
questions or help debug errors over email, although I appreciate it if you first
take the time to read the documentation carefully and check your work.
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2 Data hygiene

Below I have some recommendations for generating and cleaning up datasets so
that they will have the greatest success with the allele assignment algorithm.

2.1 Before you begin genotyping

Choose your markers well. If your research group has previously run microsatel-
lite markers on your species of interest, choose markers that have given clear,
consistent, and easy-to-interpret patterns of amplification in the past. If a link-
age map has been published for your species, use markers that are on the map;
low quality markers would have given segregation distortion and would not have
been mappable. Lastly, dinucleotide repeat markers should be used with cau-
tion, as their high mutation rate increases the chance of homoplasy occuring,
and their high degree of stutter can make amplification patterns difficult to
interpret in polyploids. Markers with trinucleotide or larger repeats will give
cleaner results, despite not having as many alleles.

Avoid multiplexing several markers in one PCR reaction. Multiplexing in-
creases the probability of scoring error due to allelic dropout. Run each marker
in a separate reaction, then, if desired for your electrophoresis method, pool the
reactions post-PCR.

Use the highest resolution electrophoresis method available to you. Agarose
gels may lack the resolution to distinguish all alleles from each other. If using
acrylamide gels, make an allelic ladder by pooling PCR products from several
diverse individuals, then run the same ladder on each gel to ensure consistency
of scoring. If using a capillary sequencer, always use the same size standard,
and be consistent in terms of which fluorescent dye goes with which marker.

“Oh no! I’ve already run all of my microsatellite markers, and I don’t have
time to re-do them!” It’s okay. Everything above was just a suggestion to
improve the probability that the method described in this vignette will work on
your dataset. The method may still work, and if it doesn’t, you can consider
whether failing to meet one of the above suggestions could have caused the
problem.

2.2 Scoring your microsatellite alleles

If you know someone in your lab or at your institution who has a lot of experi-
ence scoring microsatellites (and if you are not very experienced), get them to
sit down with you for a couple hours and demonstrate how they would score
the markers in your dataset. Understanding the additivity of overlapping stut-
ter and allele peaks is important, as is knowing how to distiguish true alleles
from PCR artifacts and dye blobs, and knowing how to check that the software
interpreted the size standard correctly.

Don’t trust any piece of software to score your markers. Most of them were
optimized for diploid species, and even then they have a lot of problems. After
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the software (e.g. GeneMapper or STRand) has called the alleles, you need to
manually inspect every genotype, and you will probably correct a lot of them.

Consistency is crucial. One allele may give a pattern of multiple peaks, so
you need to decide which peak to score, and whether to round up or down to get
the size in nucleotides. If using software that performs “binning”, go through
and correct all of the allele calls before using them to make bins. Using STRand,
I like to take screenshots to indicate how I score each marker, then I can easily
look at them months later when I genotype additional individuals.

2.3 Preliminary analysis of the data

In this section I’ll use a simulated dataset to demonstrate how to clean up your
data and split it into subpopulations if necessary. The same simulated dataset
will be used throughout the rest of this manual.

> library(polysat)

> data(AllopolyTutorialData)

> summary(AllopolyTutorialData)

Dataset with allele copy number ambiguity.

Simulated allotetraploid dataset.

Number of missing genotypes: 5

303 samples, 7 loci.

1 populations.

Ploidies: NA

Length(s) of microsatellite repeats: 3 4 5

> # make a copy of the dataset to modify

> mydata <- AllopolyTutorialData

Note that datasets can be imported using any of the normal import functions
for polysat (like read.GeneMapper). The data function here is used only
because this is an example dataset installed with the package.

First, any questionable genotypes should be removed. If an electropherogram
or banding pattern was unclear, it is best to replace that genotype with missing
data. Any duplicate or highly similar genotypes that likely represent the same
individual (or a group of asexually derived individuals) should be removed, such
that each genotype is only represented once in the dataset. (The assignClones

function might be useful for identifying duplicates if you haven’t already done
so.) Since this is an allotetraploid, let’s also make sure that no genotypes have
more than four alleles, and eliminate any that do.

> # Calculate the length of each genotype vector (= the number of alleles) and

> # construct a TRUE/FALSE matrix of whether that number is greater than four.

> tooManyAlleles <- apply(Genotypes(mydata), c(1,2),

+ function(x) length(x[[1]])) > 4

> # Find position(s) in the matrix that are TRUE.

> which(tooManyAlleles, arr.ind=TRUE) # 43rd sample, second locus
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row col

43 43 2

> # Look at the identified genotype, then replace it with missing data.

> Genotype(mydata, 43, 2)

[1] 143 146 149 152 161

> Genotype(mydata, 43, 2) <- Missing(mydata)

> Genotype(mydata, 43, 2)

[1] -9

Next, we’ll want to look at population structure in the dataset. We’ll make
a square matrix of genotype dissimilarities using a simple band-sharing metric,
then make a neighbor-joining tree.

> mydist <- meandistance.matrix(mydata, distmetric=Lynch.distance,

+ progress=FALSE)

> require(ape)

> mynj <- nj(mydist)

> plot(mynj, type="unrooted")
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You can see that individuals 301, 302, and 303 are highly dissimilar from
the rest. This is what it looks like when some individuals are a different species.
Because of the fast rate at which microsatellites mutate, allele assignments that
we make in one species are very unlikely to apply to another species. We will
remove these three individuals from the dataset.

> mydata <- deleteSamples(mydata, c("301","302","303"))

Now let’s examine the rest of the dataset for population structure using
principal coordinates analysis.

> par(mfrow=c(2,1))

> mypca <- cmdscale(mydist[Samples(mydata), Samples(mydata)])

> plot(mypca[,1], mypca[,2])

> hist(mypca[,1], breaks=30)
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We can see a slightly bimodal distribution of individuals, indicating moderate
population structure. Since population structure can interfere with preliminary
allele assignment in the alleleCorrelations step, we will assign individuals
to two populations that we can analyze separately. This will also help us to
evaluate reproducibility of allele assignments.

> pop1ind <- Samples(mydata)[mypca[,1] <= 0]

> pop2ind <- Samples(mydata)[mypca[,1] > 0]
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> PopInfo(mydata)[pop1ind] <- 1

> PopInfo(mydata)[pop2ind] <- 2

Of course, principal coordinates analysis is not the only method of assign-
ing individuals to populations. If you have already analyzed your data with
other software (for example, Structure) before importing it into polysat, you
could instead use population assignments from that software, and construct the
PopInfo vector accordingly to indicate population assignments.

3 The polysat algorithm for allele assignment

3.1 General considerations and parameters

To assign alleles to isoloci, you will primarily be using the function processDatasetAllo.
This function internally calls two other functions from polysat: alleleCorrelations
looks for negative correlations between alleles and uses those correlations to
make preliminary assignments, then testAlGroups adjusts those assignments
if necessary after checking them against individual genotypes. testAlGroups

has some parameters that affect its accuracy depending on the rate of meiotic
error (pairing between homeologs or paralogs during meiosis), the presence of
null alleles, and homoplasy (different alleles with identical amplicon size) be-
tween isoloci. Below are some recommendations for adjusting arguments from
the defaults depending on particular issues in the dataset.

Many alleles (> 10) Increase R (the number of allele swaps attempted)
Meiotic error Increase tolerance

Null alleles null.weight = 0

Null alleles at high frequency swap = FALSE

Homoplasy swap = FALSE

Because you may not know whether the last four issues are present in your
dataset, I recomment trying several parameter sets. The function processDatasetAllo

tests several parameter combinations across all loci in the dataset.

3.2 Running the algorithm

Now we will use processDatasetAllo to make allele assignments. Because
this is an allotetraploid we will use n.subgen = 2 (two subgenomes) and SG-

ploidy = 2 (each subgenome is diploid). Because we divided our dataset into
two subpopulations that appear to have different allele frequencies, we will
set usePops = TRUE to analyze the two populations separately according to
PopInfo(mydata). We will leave the parameters argument at the default,
which includes one parameter set optimized for no null alleles and no homo-
plasy, one optimized for homoplasy, and two optimized for null alleles. This
command will take a few minutes to process (especially since the data set in-
cludes deliberately problematic loci, which take longer). Here I have set R to
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500, which also increases processing time but makes it more likely that your
results will look similar or identical to mine.

> myassign <- processDatasetAllo(mydata, n.subgen = 2, SGploidy = 2,

+ usePops = TRUE, R = 500)

3.3 Inspecting the results

3.3.1 Warnings about positive correlations

We got a warning about Loc6 for both the populations. If population structure
were a serious problem, we would have gotten warnings about most or all loci.
Let’s take a look at which alleles had positive correlations for Loc6, to see if
there may have been a scoring problem.

The myassign object is a list, and it has an element called AlCorrArray

that contains the results of alleleCorrelations for each locus and population.
Each set of results is also a list. The list element called significant.pos

indicates any significantly positive associations between alleles. We will look at
the Loc6 results for both populations.

> myassign$AlCorrArray[["Loc6", 1]]$significant.pos

300 303 306 327 330 336 339 345 348

300 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

303 FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE

306 FALSE FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE

327 FALSE FALSE FALSE NA TRUE FALSE FALSE FALSE FALSE

330 FALSE FALSE FALSE TRUE NA FALSE FALSE FALSE FALSE

336 FALSE FALSE FALSE FALSE FALSE NA TRUE FALSE FALSE

339 FALSE FALSE FALSE FALSE FALSE TRUE NA FALSE FALSE

345 FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA TRUE

348 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE NA

> myassign$AlCorrArray[["Loc6", 2]]$significant.pos

300 303 306 327 330 336 339 345 348

300 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

303 FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE

306 FALSE FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE

327 FALSE FALSE FALSE NA TRUE FALSE FALSE FALSE FALSE

330 FALSE FALSE FALSE TRUE NA FALSE FALSE FALSE FALSE

336 FALSE FALSE FALSE FALSE FALSE NA TRUE FALSE FALSE

339 FALSE FALSE FALSE FALSE FALSE TRUE NA FALSE FALSE

345 FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA TRUE

348 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE NA

We see positive correlations between alleles 330 and 327, 339 and 336, and
348 and 345. Since these are trinucleotide repeats, it looks like some of the
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larger alleles (which would tend to have more stutter) had stutter peaks mis-
called as alleles. If this were a real dataset, I would say to go back to the gels
or elecropherograms and call the alleles more carefully. Since this is a simulated
dataset, we will simply exclude Loc6 from further analysis.

> mydata <- deleteLoci(mydata, loci="Loc6")

Occasionally, a locus with no population structure or scoring error will pro-
duce a warning about positive correlations between alleles simply due to sam-
pling error in the dataset. If you only get the warning for one locus and pop-
ulation in your dataset, and it does not look like there was scoring error (i.e.
the alleles that are positively correlated are not close in amplicon size), you can
safely ignore the warning.

3.3.2 Quality of clustering

In your working directory, you should now find a file called “alleleAssignment-
Plots.pdf” containing several plots to help you evaluate clustering quality. We
will recreate some of those plots here and discuss their interpretation.

> par(mfrow = c(1,1))

> plotSSAllo(myassign$AlCorrArray)
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This plot gives an indication of clustering quality using the K-means method
(from alleleCorrelations) alone, and is intended to help identify problematic
loci or populations. The x-axis essentially shows how much of the variation in
P -values for correlations between alleles could be explained by clustering alleles
into groups. The y-axis indicates how similar in size the groups of alleles are,
e.g two groups of five alleles each would give a high value, and one group with
one allele and one group with nine alleles would give a low value. So, loci and
populations in the upper-right quadrant performed well in allele assignment,
but others should be subject to scrutiny.

In the last section we identified Loc6 as a locus that we should exclude. In
this plot, for both populations, Loc6 has a relatively low value on the x-axis. It
is also marked in italics to indicate that there were positive correlations between
alleles, in case we hadn’t noticed this problem when the algorithm ran.

It looks like Loc7 may also have a problem, given that it got a low value on
the y-axis in both populations.

We can also make heatmaps of the P -values for correlations between alleles
to get a sense of how well the clustering went. Let’s compare a locus that seemed
to work very well (Loc5) to one that we expect to cluster poorly (Loc6), then
compare them to Loc7.

> heatmap(myassign$AlCorrArray[["Loc5", "Pop1"]]$heatmap.dist,

+ main = "Loc5, Pop1")
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The big red blocks neatly divide the alleles into two groups.

> # A plot to show how the colors correspond to p-values in the

> # heat map; you can repeat this for the other heat maps in this

> # tutorial if you wish.

> plot(x=seq(min(myassign$AlCorrArray[["Loc5", "Pop1"]]$heatmap.dist),

+ max(myassign$AlCorrArray[["Loc5", "Pop1"]]$heatmap.dist),

+ length.out=12),

+ y=rep(1,12), xlab="P-values", ylab="", bg=heat.colors(12),

+ pch=22, cex=3)
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> heatmap(myassign$AlCorrArray[["Loc6", "Pop1"]]$heatmap.dist,

+ main = "Loc6, Pop1")
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For Loc6, it is not nearly as obvious how to divide the alleles into two groups.

> heatmap(myassign$AlCorrArray[["Loc7", "Pop1"]]$heatmap.dist,

+ main = "Loc7, Pop1")
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> heatmap(myassign$AlCorrArray[["Loc7", "Pop2"]]$heatmap.dist,

+ main = "Loc7, Pop2")
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For Loc7, the alleles also don’t seem to go into two neat groups. In fact,
the dendrograms on both heatmaps first split off a single allele from the rest,
but that allele is different for Pop1 (125) versus Pop2 (150). When I simulated
Loc7, I actually simulated it as being a single tetrasomic locus instead of a pair
of disomic isoloci. If you have a large sample size and no positive correlations
between alleles, but the results for all of your loci look like this, you can probably
treat the data as being autopolyploid (polysomic). It is also quite possible for an
organism to have some disomic loci and some polysomic loci. We will leave Loc7
in the dataset but won’t attempt to do allele assignment or genotype recoding
with it.

3.4 Evaluating the parameter sets

Now we will take a look at the results of testAlGroups. As you may recall,
there are several parameters that can be adjusted for that function, and we tried
out the default four sets of parameters with processDatasetAllo. One way to
evaluate the quality of the assignments produced by testAlGroups is by seeing
how many alleles it decided to make homoplasious, i.e. how many alleles were
assigned to multiple isoloci. Let’s plot those proportions separately for the two
populations.

> plotParamHeatmap(myassign$propHomoplasious, popname = "Pop1",

+ main = "Proportion homoplasious loci:")
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Proportion homoplasious loci: Pop1
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Lighter colors indicate fewer homoplasious alleles, which in turn indicates
better quality allele assignment. We will ignore Loc6 and Loc7 since we already
decided to exclude them. In Pop1, Loc4 worked best with the third and fourth
parameter sets (allowing null alleles) and Loc1 worked best with the second,
third, or fourth parameter sets (allowing homoplasy or null alleles), but the
other loci worked equally well regardless of parameter set.

> plotParamHeatmap(myassign$propHomoplasious, popname = "Pop2",

+ main = "Proportion homoplasious loci:")
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Proportion homoplasious loci: Pop2
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For all loci in Pop2 except for Loc 1, we see the same proportion of homo-
plasious loci regardless of parameter set.

processDatasetAllo also runs the mergeAlleleAssignments function to
combine allele assignments across populations, within loci and parameter sets.
We take a look at how many more homoplasious alleles we get after merging the
assignments (since the same allele may have been assigned to different isoloci in
different populations).

> plotParamHeatmap(myassign$propHomoplMerged, popname = "Merged across populations",

+ main = "Proportion homoplasious loci:")
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Proportion homoplasious loci: Merged across populations
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Now we see that Loc6 and Loc7 look a lot worse, since their allele assignments
were different between populations. For Loc1, the second parameter set (opti-
mized for homoplasy) was clearly the best in terms of minimizing homoplasious
alleles. For Loc2, the first or third parameter set (using allele swapping) works
best. For Loc3, Loc4, and Loc5, we have the same number of homoplasious
alleles regardless of parameter set.

We can also examine, for each locus and parameter set, what proportion
of genotypes would be replaced with missing data if we used that set of allele
assignments to recode the data. Genotypes are recoded as missing if homoplasy
prevents them from being unambiguously determined. processDatasetAllo

runs recodeAllopoly in order to determine these missing data rates. When it
does so, it uses the allowAneuploidy=FALSE option so that genotypes that have
too many alleles (> SGploidy) for an isolocus will also be recoded as missing.

> plotParamHeatmap(myassign$missRate, popname = "All Individuals",

+ main = "Missing data after recoding:")
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Missing data after recoding: All Individuals
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This plot mirrors the plot reporting the proportion of loci that are homopla-
sious, since homoplasy tends to lead to genotypes that cannot be unambiguously
recoded.

processDatasetAllo suggests a best set of allele assignments based on miss-
ing data after recoding and the proportion of homoplasious alleles. For each
locus, it picks the parameter set that results in the lowest missing data rate,
then in the case of a tie the parameter set with the least amount of homoplasy
(after merging across populations), then in the case of a tie the lowest numbered
parameter set. So in this case, parameter set 2 would be chosen for Loc1, and
parameter set 1 for all other loci.

Let’s extract that list of optimal assignments from the results. We will also
eliminate Loc6 and Loc7 from the list since we discarded Loc6 and don’t want
to recode Loc7.

> myBestAssign <- myassign$bestAssign

> myBestAssign

[[1]]

[[1]]$locus

[1] "Loc1"

[[1]]$SGploidy

[1] 2
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[[1]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

[[1]]$proportion.inconsistent.genotypes

[1] 0

[[2]]

[[2]]$locus

[1] "Loc2"

[[2]]$SGploidy

[1] 2

[[2]]$assignments

140 143 146 149 152 155 158 161

[1,] 0 0 0 0 1 1 0 0

[2,] 1 1 1 1 0 0 1 1

[[2]]$proportion.inconsistent.genotypes

[1] 0.006688963

[[3]]

[[3]]$locus

[1] "Loc3"

[[3]]$SGploidy

[1] 2

[[3]]$assignments

98 102 106 110 114 118 122 126 130

[1,] 0 0 0 0 0 1 1 1 1

[2,] 1 1 1 1 1 0 0 0 0

[[3]]$proportion.inconsistent.genotypes

[1] 0.003344482

[[4]]

[[4]]$locus

[1] "Loc4"
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[[4]]$SGploidy

[1] 2

[[4]]$assignments

181 185 189 193 197 201

[1,] 0 0 1 1 1 0

[2,] 1 1 0 1 0 1

[[4]]$proportion.inconsistent.genotypes

[1] 0

[[5]]

[[5]]$locus

[1] "Loc5"

[[5]]$SGploidy

[1] 2

[[5]]$assignments

250 255 260 265 270 275

[1,] 1 1 0 1 0 0

[2,] 0 0 1 0 1 1

[[5]]$proportion.inconsistent.genotypes

[1] 0

[[6]]

[[6]]$locus

[1] "Loc6"

[[6]]$SGploidy

[1] 2

[[6]]$assignments

300 303 306 327 330 336 339 345 348

[1,] 0 0 1 1 1 1 1 1 1

[2,] 1 1 1 0 0 1 0 1 1

[[6]]$proportion.inconsistent.genotypes

[1] 0

[[7]]

[[7]]$locus
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[1] "Loc7"

[[7]]$SGploidy

[1] 2

[[7]]$assignments

125 130 135 140 145 150

[1,] 1 1 1 1 0 1

[2,] 1 1 0 1 1 0

[[7]]$proportion.inconsistent.genotypes

[1] 0.01333333

> myBestAssign <- myBestAssign[1:5]

We can see a large amount of homoplasy for Loc7 and some for Loc6, since
the allele assignment algorithm was not appropriate for those two loci. We can
also see that Loc1 and Loc4 each have one homoplasious allele. This accounts
for the much higher proportion of missing data when recoding Loc1 and Loc4
as opposed to Loc2, Loc3, and Loc5.

We can also extract from the results the proportion of missing data that is
introduced by recoding genotypes using the best allele assignments.

> apply(myassign$missRate, 1, min)

Loc1 Loc2 Loc3 Loc4 Loc5 Loc6

0.516666667 0.006688963 0.003344482 0.331103679 0.000000000 0.480000000

Loc7

0.701666667

Loc1 would have 52% missing data after being recoded using the best set of
allele assignments, Loc2 would have 0.7% missing data, etc.

It is possible to take a deeper look at the allele assignments that were pro-
duced before the best set was chosen. Let’s look at Loc1, since it has such a
high missing data rate after recoding.

> myassign$AlCorrArray[["Loc1", "Pop1"]]$Kmeans.groups

224 227 230 233 236 239

[1,] 1 0 1 1 0 0

[2,] 0 1 0 0 1 1

> myassign$AlCorrArray[["Loc1", "Pop2"]]$Kmeans.groups

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 0 1
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> myassign$AlCorrArray[["Loc1", "Pop1"]]$UPGMA.groups

224 227 230 233 236 239

[1,] 1 0 1 1 0 0

[2,] 0 1 0 0 1 1

> myassign$AlCorrArray[["Loc1", "Pop2"]]$UPGMA.groups

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 0 1

Both K-means clustering and UPGMA placed allele 236 in a different isolocus
depending on population. This is the same allele that was ultimately assigned
to be homoplasious in the “best” assignment set.

testAlGroups results for Loc1:

> myassign$TAGarray[["Loc1", "Pop1", 1]]$assignments

224 227 230 233 236 239

[1,] 1 1 0 1 1 1

[2,] 0 1 1 0 1 0

> myassign$TAGarray[["Loc1", "Pop2", 1]]$assignments

224 227 230 233 236 239

[1,] 1 1 0 1 1 0

[2,] 0 1 1 0 0 1

> myassign$mergedAssignments[["Loc1", 1]]$assignments

224 227 230 233 236 239

[1,] 1 1 0 1 1 1

[2,] 0 1 1 0 1 1

> myassign$TAGarray[["Loc1", "Pop1", 2]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> myassign$TAGarray[["Loc1", "Pop2", 2]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> myassign$mergedAssignments[["Loc1", 2]]$assignments
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224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> myassign$TAGarray[["Loc1", "Pop1", 3]]$assignments

224 227 230 233 236 239

[1,] 0 1 1 0 1 0

[2,] 1 1 0 1 0 1

> myassign$TAGarray[["Loc1", "Pop2", 3]]$assignments

224 227 230 233 236 239

[1,] 0 1 1 0 0 1

[2,] 1 0 0 1 1 0

> myassign$mergedAssignments[["Loc1", 3]]$assignments

224 227 230 233 236 239

[1,] 0 1 1 0 1 1

[2,] 1 1 0 1 1 1

> myassign$TAGarray[["Loc1", "Pop1", 4]]$assignments

224 227 230 233 236 239

[1,] 1 1 1 1 0 0

[2,] 0 1 0 0 1 1

> myassign$TAGarray[["Loc1", "Pop2", 4]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> myassign$mergedAssignments[["Loc1", 4]]$assignments

224 227 230 233 236 239

[1,] 1 1 1 1 1 0

[2,] 0 1 0 0 1 1

We can see that with parameter set 1, allele 236 was made homoplasious in
Pop1 and allele 227 was made homoplasious in both populations, resulting in
both being homoplasious in the merged set. With parameter set 2, however,
assignments were consistent between the two populations. Parameter set 3
produced allele assignments that were very different from those produced by
parameter sets 1 and 2. The parameter set 4 assignments matched the “best”
assignment set for Pop2, but not Pop1.
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3.5 Re-analyzing individual loci

For problematic loci, you may wish to try different population splits or parame-
ter sets. It is not necessary to re-run processDatasetAllo on the entire dataset
in order to accomplish this; we can run alleleCorrelations and testAlGroups

on individual loci instead.
Continuing to examine Loc1, what assignments do we get from K-means

clustering and UPGMA if we don’t split the datset into two populations?

> corrLoc1AllInd <- alleleCorrelations(mydata, locus = "Loc1", n.subgen = 2)

> corrLoc1AllInd$Kmeans.groups

224 227 230 233 236 239

[1,] 0 1 0 0 1 1

[2,] 1 0 1 1 0 0

> corrLoc1AllInd$UPGMA.groups

224 227 230 233 236 239

[1,] 1 0 1 1 0 0

[2,] 0 1 0 0 1 1

Analyzing both populations together gives us clustering identical to the pre-
vious clustering from Pop1.

We’ll try testAlGroups with a parameter set identical to parameter set 2
from our previous analysis. We’ll also try increasing tolerance a little bit to
see if it eliminates homoplasy. Increasing tolerance could be useful if Loc1
does not in fact segregate in a completely disomic manner.

> TaLoc1.param2 <- testAlGroups(mydata, corrLoc1AllInd, SGploidy = 2,

+ null.weight = 0.5, tolerance = 0.05,

+ swap = FALSE)

> TaLoc1.param5 <- testAlGroups(mydata, corrLoc1AllInd, SGploidy = 2,

+ null.weight = 0.5, tolerance = 0.1,

+ swap = FALSE)

> TaLoc1.param2$assignments

224 227 230 233 236 239

[1,] 0 1 0 0 1 1

[2,] 1 0 1 1 1 0

> TaLoc1.param5$assignments

224 227 230 233 236 239

[1,] 0 1 0 0 1 1

[2,] 1 0 1 1 1 0

In both cases we get the same allele assignments as before, so we will leave
it as is.

Hypothetically though, if we liked the new assignments better and wanted
to use them to replace the old assignments, here is how it would be done:
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> myBestAssign[[1]] <- TaLoc1.param5

3.6 Recoding the data

Now that we’ve chosen sets of allele assignments to use and thrown away loci
that had problems, we can recode the dataset.

> recodedData <- recodeAllopoly(mydata, myBestAssign)

> summary(recodedData)

Dataset with allele copy number ambiguity.

Simulated allotetraploid dataset.

Number of missing genotypes: 520

300 samples, 11 loci.

2 populations.

Ploidies: 2 1 3 NA

Length(s) of microsatellite repeats: 3 4 5

You’ll notice that we have more loci now that each marker (except Loc7) has
been split into two isoloci. We also have a lot of missing data, since homoplasy
can lead to uncertainty about what the true genotype is. We had homoplasy
for Loc1 and Loc 4.

> for(L in Loci(recodedData)){

+ proportionmissing <- mean(isMissing(recodedData, loci=L))

+ cat(paste(L,":",proportionmissing,"missing"),sep="\n")

+ }

Loc1_1 : 0.513333333333333 missing

Loc1_2 : 0.52 missing

Loc2_1 : 0.00333333333333333 missing

Loc2_2 : 0.00333333333333333 missing

Loc3_1 : 0.00333333333333333 missing

Loc3_2 : 0.00333333333333333 missing

Loc4_1 : 0.323333333333333 missing

Loc4_2 : 0.343333333333333 missing

Loc5_1 : 0.01 missing

Loc5_2 : 0.01 missing

Loc7 : 0 missing

You’ll also notice that not the entire dataset is diploid. That is because there
is some meiotic error in the dataset, and we used allowAneuoploidy = TRUE

in recodeAllopoly. Most genotypes are diploid though.

> table(Ploidies(recodedData))

1 2 3

3 2994 3
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We can manually add in the ploidy for Loc7, since it was not recoded.

> Ploidies(recodedData)[,"Loc7"] <- 4

The recoded data may now be analyzed with any polysat function, or
exported to other software using any of the various write functions in polysat.
For example, it is now appropriate to estimate allele frequencies from the data
and use those to estimate GST .

> myfreq <- simpleFreq(recodedData)

> myGst <- calcPopDiff(myfreq, metric = "Gst")

> myGst

Pop2 Pop1

Pop2 -0.002039396 0.039108231

Pop1 0.039108231 -0.002151562

We can also export the data if we want to do analysis using other software.

> write.GeneMapper(recodedData, file = "tutorialRecodedData.txt")

4 The Catalán method of allele assignment

An alternative method of allele assignment available in polysat is that by
Catalán et al. (2006; http://dx.doi.org/10.1534/genetics.105.042788).
The Catalán method does not allow for homoplasy, null alleles, or meiotic error,
but may perform equally to the polysat method in cases of strong population
structure, with less processing time. Let’s try it on our example dataset.

> catResults <- list()

> length(catResults) <- length(Loci(mydata))

> names(catResults) <- Loci(mydata)

> for(L in Loci(mydata)){

+ cat(L, sep="\n")

+ catResults[[L]] <- catalanAlleles(mydata, locus=L, verbose=TRUE)

+ }

Loc1

$locus

[1] "Loc1"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles: some genotypes have too few alleles"
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Loc2

Allele assignments:

140 143 146 149 152 155 158 161

[1,] 0 0 0 0 1 1 0 0

[2,] 1 1 1 1 0 0 1 1

Inconsistent genotypes:

[[1]]

[1] 143 155 158 161

[[2]]

[1] 140 143 149 155

$locus

[1] "Loc2"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles"

Loc3

Allele assignments:

98 102 106 110 114 118 122 126 130

[1,] 1 1 1 1 1 0 0 0 0

[2,] 0 0 0 0 0 1 1 1 1

Inconsistent genotypes:

[[1]]

[1] 102 106 110 118

$locus

[1] "Loc3"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles"

Loc4

$locus

[1] "Loc4"

$SGploidy

[1] 2
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$assignments

[1] "Homoplasy or null alleles: some genotypes have too few alleles"

Loc5

$locus

[1] "Loc5"

$SGploidy

[1] 2

$assignments

250 255 260 265 270 275

[1,] 1 1 0 1 0 0

[2,] 0 0 1 0 1 1

Loc7

$locus

[1] "Loc7"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles: some genotypes have too few alleles"

Assignments are returned for Loc5 only. For Loc2 and Loc3, the algorithm
found the correct allele assignments, but did not return them since some geno-
types were inconsistent with those assignments due to meiotic error.

The results of catalanAlleles can be passed to recodeAllopoly in the
same way as the results of testAlGroups.

5 Testing assignment accuracy using simulated
datasets

The simulated data in this tutorial, as well as the simulations for the manuscript,
were created using the simAllopoly function. If you have a different ploidy,
number of individuals, or number of alleles from the datasets simulated in the
manuscript, you can run your own simulations to estimate the accuracy of allele
assignment. By default, the alleles are given names that start with A, B, etc.
to indicate to which isolocus they belong, so that it is easy to see whether the
output of testAlGroups is correct. See ?simAllopoly for more information.
The tables_figs.R file that is included as supplementary information for the
manuscript can serve as a guide for how to run a large number of simulations
and test their accuracy.
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