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Abstract

This paper presents the R package prodest for production function estimation using
the control function approach. Focusing on the Value Added PF, it provides functions
to estimate two–steps models presented by Olley and Pakes (1996) and Levinsohn and
Petrin (2003), as well as their correction proposed by Ackerberg et al. (2015). The system
GMM framework proposed by Wooldridge (2009) is also implemented and tested in a
series of Monte Carlo exercises. The prodest package features the DGP used by Ackerberg
et al. (2015) and allows for the simulation of datasets according to various measurement
errors / random shock variances. I illustrate the package use with an application to a
popular firm–level dataset.
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1. Introduction

The correct estimation of the total factor productivity (TFP) is a fundamental issue in applied
economics and the main topic of several seminal papers. On the one hand, when subject
to positive productivity shocks, firms respond by both expanding their level of output and
demanding more input; negative shocks, on the other hand, lead to a decline in output and
demand for input. The positive correlation between the observable input levels and the
unobservable productivity shocks is a major source of bias in OLS when estimating the total
factor productivity. Various methods have been proposed to tackle such simultaneity issue
and, according to their approaches, is possible to group them in three families: Fixed Effects
(FE), Instrumental Variables (IV) and Control Function (CF). In the latter group, Olley
and Pakes (1996) - OP henceforth - are the first to propose a two-step procedure aimed
at overcoming the endogeneity: they use the investment level to proxy productivity. Their
approach has been refined by Levinsohn and Petrin (2003) - LP - and Ackerberg et al.
(2015) - ACF. Wooldridge (2009) proposes a novel estimation setting that shows i) how to
obtain LP estimator within a system GMM econometric framework, which can be estimated
in a single step, and ii) the appropriate moment conditions.

A crucial assumption underlies both the dynamic profit maximization problem faced by the
firm at each time t and all the above models: the idiosyncratic shock to productivity at
time t (i.e., ξt) does not affect the choice of the level of state variables, which is taken at
t − b1, but only that of free variables. Therefore, ξt is uncorrelated to the contemporaneous
value of the state and to all the lagged values of the free and state variables; all of these are
valid instruments for parameter identification. These, in turn, can be used in GMM–type
estimation settings.

prodest is a brand new package that implements - for the first time on R - all the main models
proposed in the literature so far, in a user-friendly and intuitive way. Dealing with Value
Added models,2 it allows users to perform (i) TFP estimation following OP, LP, ACF and
Wooldridge methods, and (ii) simulation of production data according to the Data Generating
Process firstly proposed by ACF. The package is written using S4 classes, and provides several
methods such as coef(), summary() and show(), alongside custom methods (omega and
FSres) to extract and analyze the results.

The remainder of the paper is structured as follows: in Section 2 we review the control
function approaches to TFP estimation in the literature, list their weaknesses and provide a
general overview of the state of the art in empirical applications; Section 3 presents prodest,
its main features, structure and functions; in Section 4 we present practical examples of the
package usage, along with comparative results of the various models implemented on real and
simulated data; Section 5 concludes.

2. Control function approach3

In this section we provide a brief but complete overview of the most common techniques for
production function estimation using control function approach. For the remainder of the

1where b > 0 can take different values depending on state variable dynamics.
2Extensions to the Gross Output case are planned.
3This section is taken from Mollisi and Rovigatti (2017), currently under review at The Stata Journal.
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paper, consider a Cobb-Douglas technology for firm i at time t :

yit = α+ witβ + xitγ + ωit + εit (1)

where yit is the log gross output , wit is a 1× J vector of log free variables and xit is a 1×K
vector of log state variables. The random component ωit is the unobservable productivity or
technical efficiency and εit is an idiosyncratic output shock distributed as white noise. We
assume with OP and LP that productivity evolves according to a first-order Markov process:

ωit = E(ωit |Ωit−1) + ξit = E(ωit |ωit−1) + ξit = g(ωit−1) + ξit (2)

where Ωit−1 is the information set at t − 1 and ξit is the productivity shock, assumed to be
uncorrelated with productivity ωt and with state variables xit.

2.1. Olley-Pakes method

OP were the first to propose a consistent two-step estimation procedure for (1). Their key
idea is to exploit firm investment levels as a proxy variable for ωit. They prove their estimates
of productivity to be consistent under several assumptions on top of those mentioned above:

A.1 iit = f(xit, ωit) is the investment policy function, invertible in ωit. Moreover, iit is
monotonically increasing in ωit;

A.2 The state variables - typically capital - evolve according to the investment policy function
iit which is decided at time t− 1;

A.3 The free variables wit - typically labor inputs - are non-dynamic, in the sense that
their choice at t does not impact future profits, and are chosen at time t after the firm
productivity shock realizes.

Hence, given A.1 and A.2, the investment iit is orthogonal to the state variable in t such that
E[iit|xit] = 0 and can be inverted, yielding the following proxy for productivity:

ωit = f−1(iit,xit) = h(iit,xit) (3)

which is an unknown function of observable variables. Plugging (3) in (1), we obtain:

yit = α+ witβ + xitγ + h(iit,xit) + εit =

= witβ + Φit(iit,xit) + εit (4)

where we define Φit(iit,xit) = xitγ + h(iit,xit) = xitγ + ωit. Equation (4) is a partially linear
model identified only in the free variable vector, wit and can be non parametrically estimated
approximating Φit(iit,xit) by a nth order polynomial Φ̂ or by a local linear regression (First
Stage). This yields a consistent estimate of the free variables’ parameters, β̂. Using (2), then,
it becomes possible to estimate γ by rewriting the model for yit −witβ̂ conditional on xit:
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yit −witβ̂ = α0 + xitγ + ωit + εit =

= α0 + xitγ + E[ωit|ωit−1] + ξit + εit =

= α0 + xitγ + g(ωit−1) + eit (5)

where eit = ξit + εit. Being ω̂it = Φ̂it − xitγ equation (5) becomes:

yit −witβ̂ = α0 + xitγ + g(Φ̂it−1 − xit−1γ) + eit (6)

where the function g(.) can be left unspecified and estimated non parametrically. Alterna-
tively, if we assume g(·) to follow a random walk we can restate equation (6) as:

yit −witβ̂ = α0 + (xit − xit−1) γ + Φ̂it−1 + eit (7)

and

eit = yit −witβ̂ − α0 − xitγ
∗ − g(Φ̂it−1 − xit−1γ) (8)

at the true γ∗ value.
Equation (7) suggests an immediate approach to the estimation. In fact, residuals eit can be
used to build a GMM estimator exploiting the moment conditions E[eitx

k
it]=0, ∀k (Second

Stage)4. The γ∗ vector is the vector of parameters which minimizes the criterion function:

γ∗ = argmax

∑
k

(∑
i

∑
t

eitx
k
it

)2
 (9)

In their seminal paper OP discuss potential selection bias due to the non-randomness in
plants dropping out the sample. More specifically, less productive firms could be forced
out of the market exactly due to their low level of productivity, thus leaving only the most
productive firms in the sample. They assume that a firm continues to operate provided that
its productivity level exceeds the lower bound, i.e. χit = 1 ⇐⇒ ωit ≥ ωit, where χit is a
survival binary variable and the ωit is industry-specific (see Hopenayn (1992) and Melitz
(2003)). Hence, they propose a third step in estimation in order to account for that: model
(6) is expressed conditionally not only on the state variable, but also on χit - i.e. productivity
is a function of its past values and of the survival indicator variable:

yit −witβ̂ = α0 + xitγ + E[ωit|ωit−1, χit] + eit (10)

The bias correction proposed by OP consists in adding to (7) an estimate of the unconditional
probability of remaining active in the market, i.e. P̂ rit ≡ Pr {χit+1 = 1|xit}. Thus:

yit −witβ̂ = α0 + xitγ + g(Φ̂it−1 − xit−1γ, P̂ rit−1) + eit (11)

4Alternatively, estimation of second stage can be carried out on Eq. (7) using non lineal least squares since
eit is a combination of pure errors.
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where P̂ rit−1 is the fitted surviving probability - typically estimated through a discrete choice
model on a polynomial of the state variable vector xit and the investment.

2.2. Levinsohn-Petrin method

OP approach has a major drawback in empirical applications which limits its range of appli-
cations: real firm- or plant-level data have many zeros in investment preventing, in practice,
the estimation. This is due to common industrial practices which violate the monotonicity
assumption A.1: investments are not decided at each point in time, but accumulated for few
years before being made all at once. LP propose to overcome this issue by exploiting inter-
mediate input levels as a proxy variable for ωit. As in the OP case, LP methodology is based
on some assumptions:

B.1 Firms observe their productivity shock and adjust their optimal level of intermediate
inputs - materials - according to the demand function m(ωit, xit);

B.2 mit = f(xit, ωit) is the intermediate input function, invertible in ωit. Moreover, mit is
monotonically increasing in ωit;

B.3 The state variables - typically capital - evolve according to the investment policy function
i() which is decided at time t− 1;

B.4 The free variables wit - typically labor inputs - are non-dynamic, in the sense that their
choice at t does not impact future profits, and are chosen in t after the firm productivity
shock realizes.

Under the set of assumptions B.1-B.4, intermediate input demand is orthogonal to the set of
state variables in t such that E[mit|xit] = 0 and mit can be inverted, yielding the following
technical efficiency proxy:

ωit = h(mit,xit) (12)

which is an unknown function of observable variables. Plugging (12) in (1) and distinguishing
the intermediate input variable from the free variables we obtain:

yit = α+ witβ + xitγ + δmit + h(mit,xit) + eit =

= witβ + Φit(mit,xit) + eit (13)

where eit = ξit + εit.

Equation (2.2) is a partially linear model identified only in the free variable vector but not
in the proxy variable, mit. Similar to OP, equation (12) can be non-parametrically estimated
approximating Φit(mit,xit) by a nth order polynomial or by local linear regression (First
Stage). At the true values [γ∗, δ*] we can define the residual function eit like:

eit = yit −witβ̂ − xitγ
∗ − g

(
Φ̂it−1 (δ∗)− xit−1γ

)
(14)
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However, eit is no longer a combination of pure errors. The intermediate input variable is
correlated with the error term given firms’ response to the technology efficiency shock ξit.
Thus, non-linear least squares would provide inconsistent estimates and relying on a GMM
estimator is mandatory. The GMM estimator might be constructed by exploiting the residuals
eit and the set of moment conditions E[eitz

k
it]=0, ∀k, where k is the index of the instrument

vector z = [xit, mit−1]

[γ∗, δ*] = argmax

∑
k

(∑
i

∑
t

eitz
k
it

)2
 (15)

consistently estimates the set of paramenters [γ, δ]ᵀ.

2.3. Ackerberg, Caves and Frazer correction

Both OP and LP assume that firms are able to instantly adjust some inputs at no cost when
subject to productivity shocks. However, ACF and Bond and Soderbom (2005) remark that
the labor coefficient can be consistently estimated in the first stage only if the free variables
show variability independently from the proxy variable. If this is not the case, their coefficients
would be perfectly collinear in the first-stage estimation and hence would not be identifiable.
In particular, in the LP setting labor and intermediate inputs are assumed to be allocated
simultaneously at t. This implies that labor and materials are both chosen as a function of
productivity and state variables xit:

mit = m(ωit, xit)
lit = l (ωit, xit)

(16)

Using the monotonicity condition (B.2) ACF provide the following results:

lit = l [h(mit,xit), xit] (17)

Hence, a collinearity issue arises in estimating the first stage, where the labor appears both as
a free variable and in the non-parametric polynomial approximation Φ̂it. In the same fashion
the collinearity issue affects the OP estimator. ACF propose an alternative approach based
on the following assumptions:

C.1 pit = pit(xit, lit, ωit) is the proxy variable policy function, invertible in ωit. Moreover, pit
is monotonically increasing in ωit;

C.2 The state variables are decided at time t− b;

C.3 The labor input, lit, is chosen at time t − ζ, where 0 < ζ < 1. The free variables, wit,
are chosen at time t when the firm productivity shock is realized.

Under the set of assumptions C.1-C.3 the first stage estimation is meant to remove the shock
εit from the the output yit. In particular the policy function can be inverted and plugged in
equation (1) yielding:

yit = Φit(pit,xit, wit, lit) + εit (18)
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where Φit(pit,xit, wit, lit) = xitγ+witβ+µlit +h(pit,xit, wit, lit). Once Φ̂it is recovered, for
any candidate vector (γ∗, β∗, µ∗), it is possible to obtain the residuals

ω̂it = Φ̂it − xitγ
∗ −witβ

∗ − µ∗lit (19)

and, exploiting the Markov chain assumption ωit = E(ωit |ωit−1) + ξit = g(ωit−1) + ξit, obtain
the residuals ξit. These, combined with the set of moment conditions E[ξitz

k
it]=0, ∀k, where

k is the index of the instrument vector z = [xit, mit−1, lit−1], lead to the GMM criterion
function (Second stage):

[γ∗, β∗, µ∗] = argmax

∑
k

(∑
i

∑
t

ξitz
k
it

)2
 (20)

2.4. Wooldridge

Wooldridge (2009) proposes to address the OP/LP problems by replacing the two-step es-
timation procedure with a generalized method of moments (GMM) setup as in Wooldridge
(1996). In particular, he shows how to write the relevant moment restrictions in terms of two
equations: these have the same dependent variable (yit) but are characterized by a different
set of instruments. Such approach has useful features with respect to previously proposed
estimation routines:

� it overcomes the potential identification issue highlighted by ACF in the first stage;

� robust standard errors are easily obtained, accounting for both serial correlation and/or
heteroskedasticity5.

In Equation (2.2) Φ(xit,mit) ≡ α + xitγ + h(xit,mit). The estimation of (β, γ) is addressed
in the first stage by OP/LP under the assumption that

E(εit|ωit−1, wit, xit,mit, wit−1, xit−1,mit−1, ..., wi1, xi1,mi1) = 0 (21)

without imposing any functional form on h(., .). The second stage assumption exploits the
markovian nature of productivity and the assumed uncorrelation between productivity shocks
and current values of state variables and past realizations of free variables and intermediate
inputs. Following LP and rewriting Eq. (2) it states:

E(ωit|xit, wit−1, xit−1,mit−1, ..., wi1, xi1,mi1) = E(ωit |ωit−1) = f [h(xit−1,mit−1)] (22)

where, as for h(., .), no functional form is imposed for f(.). Assumptions (21) and (22) directly
lead to the formulation of the two key functions to identify (β, γ):

yit = α+ witβ + xitγ + h(xit,mit) + vit (23)

5LP and OP recommend instead to bootstrap the standard errors of their estimators, as usual in two-step
estimation procedures.
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yit = α+ witβ + xitγ + f [h(xit−1,mit−1)] + ηit (24)

where ηit = ξit + vit.

In the estimation the approach followed is to deal with the unknown functional forms using
nth order polynomials in xit and mit

6, where the limiting case with xit and mit (i.e. n = 1)
entering linearly should always be allowed. In particular, if we assume that

h(xit, mit) = λ0 + k(xit,mit)λ1 (25)

it implies f(ωit) = δ0 + δ1[k(xit,mit)λ1] + δ2[k(xit,mit)λ1]
2 + ...+ δG[k(xit,mit)λ1]

G.

For sake of simplicity, consider the case with G = 1 and δ1 = 17: a simple substitution in
Eqs. (23)-(24) yields

yit = ζ + witβ + xitγ + k(xit,mit)λ1 + vit (26)

yit = θ + witβ + xitγ + k(xit−1,mit−1)λ1 + ηit (27)

The choice of instruments for both Eq. (26) and (27) is straightforward and reflects the
orthogonality conditions listed above: in particular, we define zit1 = (1,xit,wit, k(xit,mit)),

zit2 = (1,xit,wit−1, k(xit−1,mit−1)) and Zit =

(
zit1
zit2

)
.

For each t > 1 the usual GMM with IV setup applies and the moment conditions are derived
from the residual functions

rit(θ) =

(
rit1(θ)
rit2(θ)

)
=

(
yit − ζ −witβ − xitγ − k(xit,mit)λ1

yit − θ −witβ − xitγ − k(xit−1,mit−1)λ1

)
(28)

and E[Z′itrit(θ)] = 0.

6LP suggest to use third-degree polynomials. However, the higher the degree the better the result.
7This is the case whose estimation is implemented in prodest.
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3. The R package prodest

The R package prodest offers an integrated environment to deal with production function
approach methods in R. The implementation is straightforward and follows from the steps
and the models outlined in the previous section. In particular, it includes functions for i)
estimation, and ii) simulation of production function data along with a subset of a widely
used dataset on Chilean production.

The general nomenclature of estimation functions is “prodest...()” , where methods are
OP, LP, ACF and WRDG. These stand for (Olley and Pakes 1996; Levinsohn and Petrin
2003; Ackerberg et al. 2015) and Wooldridge (2009), respectively. As remarked in the

previous sections, all of these - apart from Wooldridge, a one-step system of equations - are
two-step models.

The function panelSim() is a Data Generating Process (DGP) that creates data suitable for
Monte Carlo simulations. It is directly taken from the DGP presented by Ackerberg et al.
(2015)

3.1. Specification

All prodest estimation functions accept at least 6 objects - either vectors, dataframes or
matrices:

- Y: vector/matrix/dataframe of log value added output. Every element of it corresponds
to the yit in (4), (2.2), (18) and (26);

- fX: the vector/matrix/dataframe of log free variables. These often account for the labor
input at each point in time - the wit in all above models;

- sX: the vector/matrix/dataframe of log state variables. These often account for the
capital input at each point in time - the xit in all specifications;

- pX: the vector/matrix/dataframe of log proxy variables. In OP these account for the
amount of investment (corresponding to iit in 4), whereas, following the ACF’s and
WRDG’s critique to the LP approach, the material input are generally a better choice
for the polynomial. The suitability of the proxy variable in these models strongly
depends on the type of firm, sector and country of the analysis;

- idvar: the vector/matrix/dataframe identifying individual panels. More specifically,
it must contain a unique identifier for the plant / firm, either in string or (preferred)
numeric format.

- timevar: the vector/matrix/dataframe identifying time: it should contain the date
(year, quarter, etc.) in numeric format.

There is a number of optional inputs, mostly model-specific. cX is a vector/matrix/dataframe
of control variables to be used in the estimation, by default cX = NULL; seed accepts a numeric
element and sets the seed for the estimation - i.e., it ensures results’ replicability - and by
default seed = 123456. The two-step models, then, accept further parameters related to
bootstrap repetitions, second stage optimization and parallelization.
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In particular, opt accepts a string element taking values ‘optim’, ‘DEoptim’ or ‘solnp’. These
refer to optimization procedures used for the second stage in the GMM framework: op-
tim (package stats) performs general-purpose optimization based on Nelder-Mead algorithm;
DEoptim - package DEoptim by (Mullen et al. 2011; Ardia et al. 2011) - performs the opti-
mization by the Differential Evolution algorithmPrice et al. (2006); solnp - package Rsolnp
by Ghalanos and Theussl (2015) - implements the solver firstly proposed by Ye (1988).

cluster option - cluster = NULL by default - accepts objects of class SOCKcluster or
cluster (e.g., using makeCluster() in parallel by Tierney and R Core team). If speci-
fied, the bootstrap repetitions for the second stage standard errors are performed in parallel.
theta0 is a numeric vector/matrix that can be specified in order to provide starting points
in the optimization of the second stage. Its use is recommended for methods like ACF,
which are very sensitive and whose value function appears to show several local maxima -
see section 4 for a general discussion of the issue. By default theta0 = NULL and, in this
case, the starting points are the first-stage results plus a noise drawn from a standard normal
(µ0 = 0, σ2 = 0.01).

3.2. Estimation

prodestOP() and prodestLP() proceed with a straightforward OLS estimation of Eq. (4)
and (2.2) with a 2nd order polynomial in state and proxy variables. The first stage regression
yields consistent estimates of β. Then, using the fitted residuals and the moment conditions
in (9) or (15) they proceed with the GMM estimation of the second stage, which yields γ̂.
Estimates of standard errors are computed by cluster-Bootstrapping at individual level the
second stage and collecting the estimates.

prodestACF() builds on a similar framework, but the first stage regression in (18) does not
yield β̂, which is instead estimated jointly with γ̂ in the second stage. It is done exploiting
the moment conditions in (20) in a GMM setting. Standard errors are computed by cluster-
Bootstrapping at individual level the second stage and collecting the estimates.

The Wooldridge estimator is implemented in two versions by prodest, with functions prodestWRDG()
and prodestWRDG_GMM(). The first is a classical two-step system GMM framework: it pro-
ceeds by estimating the system with an initial weighting matrix and assuming that the moment
equations are independent and identically distributed, with covariances between two moment
equations set to zero - first step. It uses the optim algorithm to perform the estimation.
Then, with the estimates of the first step it is possible to compute the optimal weighting
matrix W ? = σrsZ

′Z (see Wooldridge (2002)) and estimate the second-step parameters with
the same econometric model. Standard errors are computed by cluster-Bootstrapping at the
individual level and collecting the estimates.
prodestWRDG_GMM() implements a slightly different version of the same two-step estimator,
building a matrix of regressors X for the system of equation aimed at avoiding collinearity
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issues in the following way:

X =



X111 · · · X1k1 X1k+1
1 · · · X1r11 0 0 0

...
. . .

...
...

. . .
... 0 0 0

X11N · · · X1kN X1k+1
N · · · X1r1N 0 0 0

X211 · · · X2k1 0 0 0 X2k+1
1 · · · X2r21

...
. . .

... 0 0 0
...

. . .
...

X21N · · · X2kN 0 0 0 X2k+1
N · · · X2r2N


(29)

where k is the number of common regressors - the constant α, the free and state vari-
ables in equations (23) and (23) - r1 the number of regressors in the first equation and
r2 the regressors in the second. Then, the estimation is performed in two steps relying
on the fact that the solution to the GMM for over-identified linear models reads β̂0 =
((X ′Z)W 0(Z ′X))−1(X ′Z)W 0(Z ′Y ) - first step with unadjusted and independent weighting
matrix W 0. Using β̂0, define the optimal weighting matrix W ? = σrsZ

′Z and the param-
eters are estimated in the second step like β̂? = ((X ′Z)W ?(Z ′X))−1(X ′Z)W ?(Z ′Y ), with
variance-covariance matrix V ar(β̂?) = 1

N ((X ′Z)W ?(Z ′X))−1.8

All prodest estimation functions return objects of the S3 class prod. These are lists of length
3 with elements Model, Data and Estimates. In turn, these feature several subelements:

� Model: $method, a string with the method - OP, LP, etc. - $boot.repetitions, the
number of boostrap repetitions used to compute the standard errors, $elapsed.time,
showing the estimation time, $theta0, the vector of optimization starting points, $opt,
a string with the optimizer, $seed, $opt.outcome, the output from the optimizer,
$FSbetas, the vector of first stage estimated parameters.

� Data: the output, free, state, proxy and control variables used in the estimation are
stored in $Y, $free, $state, $proxy and $control, respectively. $idvar and $timevar

store the panel and time variable, while the $FSresiduals vector contains the vector
of first-stage residuals.

� Estimates: $pars, the vector of estimated parameters, and $std.errors, the vector
of parameters’ standard errors.

3.3. Simulation

panelSim() is a function implementing the data generating process proposed by Ackerberg et
al. (2015). They propose three different DGPs, clustered according to their characteristics:
the DGP1 is simulated with serially correlated wages and the labor input is set at time t− b,
the DGP2 with an optimization error in labor and the DGP3 is simulated with both sources
of heterogeneity.

panelSim() accepts up to 9 optional inputs, namely N, which is the number of firms, T, the
time spanned by the simulation, αl and αk, the productivity parameters of the free and the
state variables, respectively, DGP, which controls for the type of DGP, ρ is the AR(1) coefficient

8see (Wooldridge 2001, 2002)
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of ω in equation (2), σε and σω, the standard deviations of ε and of the productivity shocks,
and ρlnw, which is the AR(1) coefficient of log(wages). Option seed sets the seed as the
simulation starts.

panelSim() returns a data.frame with the idvar, the timevar, the output Y, the free - fX
- and state - sX - variables. In addition, it produces 4 proxy variables (pX1-pX4), simulated
with a measurement error drawn from distributions with standard deviation of 0, 0.1, 0.2 and
0.5, respectively. timevar will amount to the 10% of T, in order to deliver only observations
simulated in equilibrium.

3.4. Methods

prodest features several post-estimation methods aimed at handling prod objects. Among
them, show(), coef(), FSres() and summary, aimed at extracting parts of the stored results;
see help("prod"). omega() generates the residuals of the second stage, namely, the estimates
of the log productivity term.

4. Comparative results

4.1. Real Data

In table (1) we report the results of all models implemented in prodest on a sectoral subset
of the well-known and broadly used dataset of Chilean firms 1986-1996.

Table 1: Chilean dataset - sectoral estimation

OP LP Acf Wrdg Wrdg.GMM

βskil 0.314 0.199 0.646 0.247 0.247
(0.034) (0.025) (0.159) (0.031) (0.017)

βunskil 0.256 0.169 0.644 0.217 0.217
(0.036) (0.022) (0.209) (0.03) (0.015)

βk 0.168 0.117 0.251 0.058 0.058
(0.028) (0.041) (0.035) (0.092) (0.031)

N 2544 2544 2544 2544 1944

Note: productivity estimation on a sector-specific sample of Chilean firms 1986-1996. Free variables are skilled
and unskilled quantities of labor input, the state variable is capital k and the proxy variables is investment -
OP - or material inputs - LP, ACF, WRDG. Column titles indicate the estimated models. Standard errors are
bootstrapped - for all but Wrdg.GMM models and reported in parenthesis.

As an illustration of how prodest works, the code producing table (1) reads

R> data(chilean)

R> OP <- prodestOP(Y, fX, sX, pX = d\$log_investment, idvar, timevar, R = 20)
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R> LP <- prodestLP(Y, fX, sX, pX, idvar, timevar, R = 20)

R> ACF <- prodestACF(Y, fX, sX, pX, idvar, timevar, R = 20, theta0 = (c(.5,.5,.5)))

R> WRDG <- prodestWRDG(Y, fX, sX, pX, idvar, timevar, R = 5)

R> WRDG.GMM <- prodestWRDG_GMM(Y, fX, sX, pX, idvar, timevar, R = 5)

R> printProd(list(OP,LP,ACF,WRDG,WRDG.GMM), modnames = c('OP','LP','Acf','Wrdg','Wrdg.GMM'),

+ parnames = c('$\\beta_{skil}$','$\\beta_{unskil}$','$\\beta_{k}$'))

\begin{tabular}{ccccccccccc}\hline\hline

& & OP & & LP & & Acf & & Wrdg & & Wrdg.GMM \\\hline

$\beta_{skil}$ & & 0.314 & & 0.199 & & 0.646 & & 0.247 & & 0.247 \\

& & (0.034) & & (0.025) & & (0.159) & & (0.031) & & (0.017) \\

& & & & & \\

$\beta_{unskil}$ & & 0.256 & & 0.169 & & 0.644 & & 0.217 & & 0.217 \\

& & (0.036) & & (0.022) & & (0.209) & & (0.03) & & (0.015) \\

& & & & & \\

$\beta_{k}$ & & 0.168 & & 0.117 & & 0.251 & & 0.058 & & 0.058 \\

& & (0.028) & & (0.041) & & (0.035) & & (0.092) & & (0.031) \\

& & & & & \\

& & & & & \\

N & & 2544 & & 2544 & & 2544 & & 2544 & & 1944 \\\hline\hline

\end{tabular}

4.2. Monte Carlo simulations

Using panelSim() it is possible to run Monte Carlo-type estimations on a plethora of sim-
ulated datasets. In table (2) we report a replica of Ackerberg et al. (2015)’s Table I using
prodestACF() - columns 1-4 - and prodestLP() - columns 5-8 - on 12 different simulated
datasets (DGP1-3, each featuring 4 different levels of measurement error). Results replicate
fairly well those presented in the original paper.

4.3. Parallel

Parallel computing is extremely useful in prodest applications, mostly when dealing with a
high number of bootstrap repetitions. In table (3) we report the results, in terms of estimates,
number of bootstrap repetitions and computing time, of the ACF model run on a simulated
dataset (DGP = 2, N = 1000, T = 100) with 100 and 1000 bootstrap repetitions and estimated
plainly - columns (1) and (4) - or parallelized over 2 - columns (2) and (5) - and 3 - columns
(3) and (6) - cores. See Computational Details below for a full reference to the hardware used.

As expected, the computational time decreases with the number of cores employed, and
it is particularly relevant when the number of bootstrap repetitions increases: with 1000
repetitions, using 3 cores halves the computational time (≈ 6 to ≈ 3 mins).
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Table 2: ACF and LP - Monte Carlo Simulations

ACF LP
βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.599 0.009 0.401 0.015 -0.004 0.005 1.099 0.030
0.1 0.600 0.011 0.425 0.016 0.679 0.009 0.365 0.012
0.2 0.621 0.012 0.406 0.015 0.790 0.007 0.242 0.010
0.5 0.668 0.015 0.357 0.017 0.876 0.005 0.195 0.160

DGP2 - Optimization Error in Labor
0.0 0.606 0.054 0.395 0.054 0.600 0.003 0.401 0.013
0.1 0.610 0.030 0.406 0.033 0.755 0.004 0.257 0.009
0.2 0.617 0.021 0.404 0.024 0.809 0.004 0.205 0.010
0.5 0.633 0.019 0.389 0.022 0.864 0.003 0.446 0.238

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.593 0.005 0.409 0.014 0.473 0.003 0.576 0.017
0.1 0.602 0.037 0.425 0.041 0.635 0.005 0.417 0.012
0.2 0.610 0.042 0.424 0.041 0.702 0.005 0.348 0.012
0.5 0.621 0.023 0.415 0.027 0.778 0.005 1.320 0.191

Notes: 1000 replications. True values of parameters are βl = 0.6 and βk = 0.4. Standard deviations have been
calculated among 1000 replications. ρ is set at .7 and we used optim (optimizer: ’BFGS’).
DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t− b (DGP1 plus
DGP2)



Gabriele Rovigatti 15

Table 3: ACF estimation in parallel - various cores

Acf Acf-par2 Acf-par3 Acf Acf-par2 Acf-par3

βfree 0.617 0.617 0.617 0.617 0.617 0.617
(0.007) (0.007) (0.007) (0.009) (0.009) (0.009)

βstate 0.386 0.386 0.386 0.386 0.386 0.386
(0.014) (0.014) (0.014) (0.016) (0.016) (0.016)

Time 35.61 28.97 26.59 6.19 3.43 3.23
BootRep 100 100 100 1000 1000 1000

N 10000 10000 10000 10000 10000 10000

Notes: all models are estimated on a DGP1, N=1000, T=100 simulated dataset. Columns (1)-(3) show models
estimated with 100 bootstrap repetitions for the standard errors, while (4)-(6) employ 1000 repetitions.
Estimates are obtained using 1 (plain), 2, or 3 cores in parallel.
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5. Conclusions

This article introduced the R package prodest for production function estimation using the
control function approach and for simulating production data. It is the first package that
implements the models proposed by Olley and Pakes (1996), Levinsohn and Petrin (2003),
Ackerberg et al. (2015) and Wooldridge (2009); as such, it allows practitioners to perform
their applied research on TFP within the R environment.

After providing a brief theoretical background of the models implemented, I introduced the
specifications and illustrated the package usage and various features. In order to do that, I
performed several estimations on real and simulated data, showing how the performance can
improve with the use of parallel computing, even with a relatively small number of cores.
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Computational Details

All results in this paper were obtained using R 3.3.2 (R Core Team 2017) with the pack-
ages: prodest version 1.0.1 Rovigatti (2017), Rsolnp version 1.16 Ghalanos and Theussl
(2015), DEoptim version 2.2.4 Ardia et al. (2011), plyr version 1.8.4 Wickham (2011), par-
allel version 3.3.2 R Core Team (2017), Matrix version 1.2.7.1 Bates and Maechler (2016).
Computations were performed on a Intel® Core CPU i7–6500U 2.59Ghz processor.

R itself and all packages used are available from CRAN at http://CRAN.R-project.org/.
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