
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Under Review

Software Version: 2.5.3, Document ID: 2018-04-10

Integration of R and Scala Using rscala

David B. Dahl
Brigham Young University

Abstract

The rscala software is a simple, two-way bridge between R and Scala that allows users
to leverage the unique strengths of both languages in a single project. Scala classes can
be instantiated from R and Scala methods can be called. Arbitrary Scala code can be
executed on-the-fly from within R, inline Scala functions can be defined, and callbacks
to R are supported. R packages can be developed using Scala. Conversely, rscala also
enables R code to be embedded within a Scala application. The rscala package is available
on CRAN and has no dependencies beyond base R and the Scala standard library.

Keywords: Java Virtual Machine, JVM, language bridges, R, Scala.

1. Introduction

This paper introduces rscala (Dahl 2017c), software that provides a bridge between R (R Core
Team 2017) and Scala (Odersky et al. 2004). The goal of rscala is to allow users to leverage
the unique strengths of Scala and R in a single program. For example, R packages can
implement computationally-intensive algorithms in Scala and, conversely, Scala applications
can take advantage of the vast array of statistical packages in R. Callbacks from embedded
Scala into R are supported. The rscala package is available on the Comprehensive R Archive
Network (CRAN). Also, R can be embedded within a Scala application by adding a one-line
dependency declaration in Scala Build Tool (SBT).

Scala is a general-purpose programming language that is designed to strike a balance be-

http://dx.doi.org/10.18637/jss.v000.i00

2 Integration of R and Scala Using rscala

tween execution speed and programmer productivity. Scala programs run on the Java Virtual
Machine (JVM) at speeds comparable to Java. Scala features object-oriented, functional,
and imperative programming paradigms, affording developers flexibility in application de-
sign. Scala code can be concise, thanks in part to type inference, higher-order functions,
multiple inheritance through traits, and a large collection of libraries. Scala also supports
pattern matching, operator overloading, optional and named parameters, and string inter-
polation. Scala encourages immutable data types and pure functions (i.e., functions without
side-effects) to simplify parallel processing and unit testing. In short, the Scala language
implements many of the most productive ideas in modern computing. To learn more about
Scala, we suggest Programming in Scala (Odersky, Spoon, and Venners 2016) as an excellent
general reference.

Because Scala is flexible, concise, and quick to execute, it is emerging as an important tool
for scientific computing. For example, Spark (Zaharia, Xin, Wendell, Das, Armbrust, Dave,
Meng, Rosen, Venkataraman, Franklin, Ghodsi, Gonzalez, Shenker, and Stoica 2016) is a
cluster-computing framework for massive datasets written in Scala. Several books have been
published recently on using Scala for data science (Bugnion 2016), scientific computing (Jan-
causkas 2016), machine learning (Nicolas 2014), and probabilistic programming (Pfeffer 2016).
We believe that Scala deserves consideration when looking for an efficient and convenient
general-purpose programming language to complement R.

R is a scripting language and environment developed by statisticians for statistical computing
and graphics. Like Scala, R supports a functional programming style and provides immutable
data types. Scala programmers who learn R (and vice versa) will find many familiar concepts,
despite the syntactical differences. R has a massive user base of statisticians and over 11,000
actively-maintained packages on CRAN. Hence, the Scala community has a lot to gain from
an integration with R.

R code can be very concise and expressive, but may run significantly slower than compiled
languages. In fact, computationally intensive algorithms in R are typically implemented in
compiled languages such as C, C++, Fortran, and Java. The rscala package adds Scala to this
list of high-performance languages that can be used to write R extensions. The rscala package
is similar in concept to Rcpp (Eddelbuettel and François 2011), an R integration for C and
C++, and rJava (Urbanek 2016), an R integration for Java. Though the rscala integration is
not as comprehensive as Rcpp and rJava, it provides the following important features to blend
R and Scala. First, rscala allows arbitrary Scala snippets to be included within an R script
and Scala objects can be created and referenced directly within R code. These features allow
users to integrate Scala solutions in an existing R workflow. Second, rscala supports callbacks
to R from Scala, which allow developers to implement general, high-performance algorithms in
Scala (e.g., root finding methods) based on user-supplied R functions. Third, rscala supports
developing R packages based on Scala which allows Scala developers to make their work
available to the R community. Finally, the rscala software makes it easy to incorporate R in
a Scala application without even having to install the R package. In sum, rscala’s feature-set
makes it easy to exploit the strengths of R and Scala in a single project.

We now discuss the implementation of rscala and some relevant existing work. Since Scala code
compiles to Java byte code and runs on the JVM, one could access Scala from R via rJava and
then benefit from the speed of shared memory. We originally implemented our rscala bridge
using this technique, but later moved to a custom TCP/IP protocol for the following reasons.
First, rJava and Scala’s read-eval-print loop (REPL) are both implemented using custom class

Journal of Statistical Software 3

loaders which, in our experience, conflict with each other in some cases. Second, since rJava
links to a single instance of the JVM, one rJava-based package can configure the JVM in a
manner that is not compatible with a second rJava-based package. The current rscala package
creates a new instance of the JVM for each Scala instance to avoid such conflicts. Third, the
simplicity of no dependencies beyond Scala’s standard library and base R is appealing from a
user’s perspective. Finally, callbacks in rJava are provided by the optional JRI component,
which is only available if R is built as a shared library. While this is the case on many
platforms, it is not universal and therefore callbacks could not be a guaranteed feature of
rscala software if it were based on rJava’s JRI.

The discussion of the design of rscala has so far focused on accessing Scala from R. The
rscala software also supports accessing R from Scala using the same TCP/IP protocol. This
ability is an offshoot of the callback functionality. Since Scala can call Java libraries, those
who are interested in accessing R from Scala should also consider the Java libraries Rserve
(Urbanek 2013) and RCaller (Satman 2014). Rserve is also “a TCP/IP server which allows
other programs to use facilities of R” (http://www.rforge.net/Rserve). Rserve clients are
available for many languages including Java. Rserve is fast and provides a much richer API
than rscala. Like rJava, however, Rserve also requires that R be compiled as a shared library.
Also, Windows has some limitations such that Rserve users are advised not to “use Windows
unless you really have to” (http://www.rforge.net/Rserve/doc.html).

The paper is organized as follows. Section 2 describes using Scala from R. Some of the more
important topics presented there include the data types supported by rscala, embedding
Scala snippets in an R script, accessing precompiled Scala code from R, defining inline Scala
functions, and calling back into R from embedded Scala. We also discuss how to develop
R packages based on Scala. Section 3 describes using R from Scala. In both Sections 2
and 3, concise examples are provided to help describe the software’s functionality. Section 4
provides a case study to show how Scala can easily be embedded in R to significantly reduce
computation time for a simulation study. We conclude in Section 5 with future work.

2. Accessing Scala in R

This section provides a guide to accessing Scala from R. Those interested in the reverse —
accessing R from Scala— will also benefit from understanding the ideas presented here.

2.1. Package and Scala installation

The rscala package is available on the Comprehensive R Archive Network (CRAN) and can
be installed by executing the following R expression.

install.packages('rscala')

The rscala package requires a Scala installation in the 2.11.x or 2.12.x series. A conve-
nience function, rscala::scalaInstall(), is provided to download and install Scala in
the user’s home directory under the .rscala directory. Because this is a user-level in-
stallation, administrator privileges are not required. System administrators can execute
rscala::scalaInstall(global=TRUE), which places Scala in the package’s directory but
requires a new installation every time the package is updated. To avoid this, system admin-
istrators can install Scala using their operating system’s software management system (e.g.,

http://www.rforge.net/Rserve
http://www.rforge.net/Rserve/doc.html

4 Integration of R and Scala Using rscala

“sudo apt install scala” on Debian/Ubuntu based systems). Finally, both administrators
and users can use a manual installation as described on the Scala webpage.

2.2. Instantiating a Scala interpreter in R

Load and attach the rscala package in an R session with the library function:

library('rscala')

Create a Scala instance using the scala function:

scala()

This implicitly makes the interpreter instance s available in the current environment. (The
name can be customized with the assign.name option of the scala function.) Information
on the Scala instance s is available using

scalaInfo(s)

Alternatively, details on the search for a suitable Scala installation are shown using

scalaInfo(verbose=TRUE)

The scala function includes parameters to specify which Scala installation to use, the class
path, whether matrices are in row-major or column-major order, and several other settings.
The functions scala2 and scala3 are equivalent to scala except they change the mode

option to customize how the bridge between Scala and R is established. Interactive users may
notice that the scala function feels faster because it starts Scala in the background. Details
on this and all other functions are provided in the R documentation for the package (e.g.,
help(scala)).

A Scala session is only valid during the R session in which it is created and cannot be saved
and restored through, for example, the save and load functions. Multiple Scala instances
can be created in the same R session. Each Scala instance runs independently with its own
memory and classpath.

The R to Scala bridge is not thread-safe so multiple R processes/threads should not access
the same Scala instance simultaneously.

2.3. Calling Scala code from R

Evaluating Scala snippets

Snippets of Scala code can be compiled and executed within an R session using several opera-
tors. The most basic operator is %@% which evaluates Scala code and returns NULL. Consider,
for example, computing the binomial coefficient

(
10
3

)
=
∏3

i=1(10 − i + 1)/i. The code below
uses Scala’s val statement to define an immutable variable c_10_3. The expression 1 to 3

creates a range and the higher-order map method of the range applies the function (10-i+1)

/ i.toDouble to each element i in the range. Finally, the results are multiplied together by
the product method.

Journal of Statistical Software 5

s %@% '
val c_10_3 = (1 to 3).map(i => {

(10-i+1) / i.toDouble

}).product.toInt

'

This result is available in subsequent Scala expressions as demonstrated below.

s %@% 'print("10 choose 3 is " + c_10_3 + ".")'

10 choose 3 is 120.

Notice the side effect of printing 120 to the console. The behavior for console printing is
controlled by the arguments serialize.output, stdout, and stderr of the scala function.
Default values depend on the operating system and are set such that console output is dis-
played in typical environments.

Scala snippets can also be evaluated with the %~% operator. Whereas %@% always returns
NULL, %~% returns the result of the last expression in the Scala snippet.

tenChooseThree <- s %~% '(1 to 3).map(i => (10-i+1) / i.toDouble).product'
tenChooseThree == choose(10,3)

[1] TRUE

String interpolation

The rscala package features string interpolation for dynamic code snippets. R code placed
between “@{” and “}” in a Scala snippet is evaluated and replaced by the string representation
of the R expression’s value before the Scala snippet is executed. The R code is executed in the
same environment (i.e., scope) as the evaluation request. A snippet can contain any number
of @{...} expressions. For example,

n <- 10

k <- 3

label <- "number of threesomes among ten people"

s %@% '
val count = (1 to @{k}).foldLeft(1) { (prod,i) => prod * (@{n}-i+1)/i }

println("The @{label} is " + count + ".")

'

The number of threesomes among ten people is 120.

Care is needed when using string interpolation because it relies on R’s character representation
on an R expression. One might be surprised, for example, that the second expression in the
next example is false. This is because @{tenChooseThree^20} is replaced by 6.191736e+20

which, when parsed by the Scala compiler, leads to a slightly different value than the calculated
value.

6 Integration of R and Scala Using rscala

s %~% 'math.pow(count, 20) == @{tenChooseThree^20}'

[1] FALSE

Primitive and copyable types

A Scala result of class Byte, Int, Double, Boolean, or String is passed back to R as a length-
one vector of raw, integer, double, logical, or character, respectively. We refer to these as the
primitive types supported by the rscala package. Further, Scala arrays and rectangular arrays
of arrays of the primitive types are passed to R as vectors and matrices of the equivalent
R types. We call copyable types those types that are primitives, arrays of primitives, and
rectangular arrays of arrays of the primitive types. The name emphasizes the fact that these
data structures are serialized and copied between Scala and R. This may be a costly exercise
for large data structures.

The code below produces a 2x5 matrix in R. If the row.major argument of the scala function
is changed to FALSE when defining the Scala instance s, the code produces a 5x2 matrix
instead.

s %~% 'Array.fill(2)(Array.fill(5)(scala.util.Random.nextDouble))'

[,1] [,2] [,3] [,4] [,5]

[1,] 0.8307614 0.3680790 0.32608991 0.09047411 0.1829110

[2,] 0.7239708 0.9187835 0.08826573 0.11337335 0.5833289

Table 1 shows the mapping of primitive Scala and R types using code examples.

Scala references

If the result of a Scala expression is not a copyable type, then the %~% operator will return a
reference to a Scala object that can be used in subsequent evaluations. If a Scala reference is
desired, even when working with copyable types, use the %.~% operator.

In the next example, an instance of the class scala.util.Random is created and, because
the result is not a copyable type, a Scala reference is returned. Second, a Scala reference to
an array of integers is returned, despite the fact this is a copyable type, because the %.~%

operator is used.

rng <- s %~% 'new scala.util.Random()'
rng

ScalaInterpreterReference... res6: scala.util.Random

scala.util.Random@46d2be66

oneToTenReference <- s %.~% 'Array.range(1,11)'
oneToTenReference

ScalaInterpreterReference... res8: Array[Int]

[I@76e5d5e5

Journal of Statistical Software 7

Primitives Vectors / Arrays Matrices / Rectangular Arrays of Arrays

a <- as.raw(3) f <- as.raw(c(1, 2)) k <- matrix(as.raw(c(1, 2)), nrow=2)

val a = 3.toByte val f = Array(1.toByte, 2.toByte) val k = Array(Array(1.toByte), Array(2.toByte))

b <- TRUE g <- c(TRUE, FALSE) l <- matrix(c(TRUE, FALSE), nrow=2)

val b = true val g = Array(true, false) val l = Array(Array(true), Array(false))

c <- 1L h <- c(1L, 2L, 3L) m <- matrix(c(1L, 2L), nrow=2)

val c = 1 val h = Array(1, 2, 3) val m = Array(Array(1), Array(2))

d <- 1.0 i <- c(1.0, 2.0, 3.0) n <- matrix(c(1.0, 2.0), nrow=2)

val d = 1.0 val i = Array(1.0, 2.0, 3.0) val n = Array(Array(1.0), Array(2.0))

e <- "a" j <- c("a", "b", "c") o <- matrix(c("a", "b"), nrow=2)

val e = "a" val j = Array("a", "b", "c") val o = Array(Array("a"), Array("b"))

Table 1: Scala values of type Byte, Int, Double, Boolean, or String (labeled primitives), as
well as arrays and rectangular arrays of arrays of these types are copied from Scala to R as
length-one vectors, vectors, and matrices of the equivalent R types. These are called copyable
types. Each cell in the table contains two lines: an R expression (top) and the equivalent Scala
expression (bottom) with the same identifier. The matrix examples assume that the scala

function is called with row.major=TRUE.

Getting and setting variables

Values of copyable types and Scala references can be obtained as the result of evaluating a
Scala expression using the %~% and %.~% operators. The expression can be very complex or,
as in the examples below, merely the name of a Scala identifier.

s %@% 'val fibSeq = Array[Double](0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqAsDouble <- s %~% 'fibSeq'
fibSeqReference <- s %.~% 'fibSeq'

Scala values can also be obtained using the $ operator and the identifier name. For example,
the following both provide equivalent definitions for fibSeqAsDouble above.

fibSeqAsDouble <- s$fibSeq

fibSeqAsDouble <- s$val('fibSeq')

Likewise, an equivalent definition for fibSeqReference is

fibSeqReference <- s$.val('fibSeq')

Note that val is a reserved word in Scala. Therefore, using val and .val does not conflict
with any variable names in Scala. While somewhat more verbose, the argument to val and
.val can be a literal or a variable, whereas the $ operator requires a literal.

Values of copyable types and Scala references can be set in the Scala session using assignment
with the $ operator, e.g.:

8 Integration of R and Scala Using rscala

s$fibSeq <- c(0, 1, 1, 2, 3, 5, 8, 13, 21)

s$copyOfFibSeqReference <- fibSeqReference

Instantiating objects

Scala objects can be instantiated in three ways. The following example demonstrates func-
tionally equivalent ways of creating a new instance of scala.util.Random with the seed set
at 123.

seed <- 123L

rng <- s %.~% 'new scala.util.Random(@{seed})'
rng <- s$.scala.util.Random$new(seed)

rng <- s$do('scala.util.Random')$new(seed)

Each method differs in terms of flexibility, readability, and speed. The first is mostly Scala
code and therefore self-evident to a Scala developer, but it is the slowest and awkward when
arguments are not easily set with string interpolation. The second (using s$.) is concise,
fast, and flexible in the arguments. The string literal following s$. and before the second $

(e.g., scala.util.Random) can be the name of any class in the classpath. (The period in s$.

is used to differentiate class names from variables names.) The last method (using s$do) is
also fast and flexible but is slightly awkward. It has the added advantage, however, that the
class name given as the argument to s$do can be a literal (as in this example) or a variable.
Note that do is a reserved word in Scala and is therefore guaranteed not to conflict with a
variable name.

Accessing methods and variables of Scala objects

Taking inspiration from rJava’s high-level $ operator, methods associated with Scala references
can be called directly using the $ operator, as shown below.

rng$setSeed(24234L)

rng$nextInt(10L)

[1] 4

oneToTenReference$sum()

[1] 55

If the result of a method call on a Scala reference is not a copyable type, then a reference to
a Scala object is returned. If a Scala reference is desired even when working with copyable
types, add a final argument .AS.REFERENCE=TRUE. For example,

intReference <- rng$nextInt(10L, .AS.REFERENCE=TRUE)

The value of an instance variable may be accessed as if there was a method of the same name
taking no arguments. For example, the value self in an instance of scala.util.Random is
access as

Journal of Statistical Software 9

rng$self()

ScalaCachedReference... _: java.util.Random

java.util.Random@76854686

If there are no arguments when calling a method of a Scala reference, the empty parentheses
are excluded in the generated Scala code. These empty parentheses are needed, however, when
one intends to use the methods default arguments. In that class, use .PARENTHESES=TRUE

when calling the method.

Calling methods of singleton objects

In contrast to Java, Scala classes do not have static variables or methods. Equivalent function-
ality is provided by singleton objects in Scala. A companion object is a singleton object whose
name is the same as a class. Methods of singleton objects can be called in three ways. For
example, consider the companion object Array to the class Array. Its range method creates
an array of regularly-spaced elements. The following three statements are all functionally
equivalent:

oneToTenReference <- s %.~% 'Array.range(1, 11)'
oneToTenReference <- s$.Array$range(1L, 11L, .AS.REFERENCE=TRUE)

oneToTenReference <- s$do('Array')$range(1L, 11L, .AS.REFERENCE=TRUE)

As for instantiating objects, each approach has its advantages in terms of flexibility, readabil-
ity, and speed.

Method arguments, null references, and length-one vectors

Arguments to a method of an object (as well as argument to new) can be copyable types and
Scala references. To pass a null reference of a particular type, use the scalaNull function.
For example, Java’s java.lang.System has a static setProperties method which takes a
null reference to java.util.Properties to clear the system properties, e.g.:

s$.java.lang.System$setProperties(scalaNull('java.util.Properties'))

R has no scalar types but they are often used in Scala. As such, length-one vectors have
special semantics. In the R expression rng$nextInt(10L), the value 10L is an integer vector
of length one in R, but is passed to Scala as Int, not Array[Int]. This is the most natural
and convenient behavior. If, however, an R vector should always be passed as an array —
despite the fact that it might be of length one — wrap the vector in a call to the I function.
This ensures that the vector is treated “as is”. For example, consider a singleton object with
an apply method that takes an array of any arbitrary type T and a value of type T, and sets
every element of the array to that value:

setter <- s %.~% '
object setter {

def apply[T](x: Array[T], value: T) = x.indices.foreach { x(_) = value }

}

10 Integration of R and Scala Using rscala

setter

'

When calling the apply method of the setter object, the first argument must be an array.
Thus, if there is a potential that the R vector is length-one, it should be wrapped by the I

function. In the example below, the first argument is wrapped by I and is therefore passed
to Scala as an array. The second argument is a length-one double vector in R yet is treated
as a Double (instead of Array[Double]) because it is not wrapped by I:

arr <- s %.~% 'Array(math.Pi, math.E)'
arr$mkString("<", ", ", ">")

[1] "<3.141592653589793, 2.718281828459045>"

setter$apply(I(arr), 3)

arr$mkString("<", ", ", ">")

[1] "<3.0, 3.0>"

The apply and update methods

Scala users are aware of the “compiler magic” that injects calls to the apply method of objects
when no method is specified. In the rscala package, this works for Scala snippets, but the
apply method must be specified explicitly when using the $ operator. For example, consider
an array of the starting elements of the Fibonacci sequence and the following functionally-
equivalent expressions:

fibSeqAsInt <- s %~% 'Array(0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqAsInt <- s %~% 'Array.apply(0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqAsInt <- s$.Array$apply(0L, 1L, 1L, 2L, 3L, 5L, 8L, 13L, 21L)

fibSeqAsInt <- s$do('Array')$apply(0L, 1L, 1L, 2L, 3L, 5L, 8L, 13L, 21L)

Likewise, the update method is automatically injected by the Scala compiler when appropri-
ate, but must be explicit when using the $ operator. Consider, for example, assigning the
value of π to the second element of the array using the following. The last four statements
are functionally equivalent.

s %@% 'val fibSeq = Array[Double](0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqReference <- s %.~% 'fibSeq'
s %@% 'fibSeq(1) = math.Pi'
s$.fibSeq$update(1L, pi)

s$do('fibSeq')$update(1L, pi)

fibSeqReference$update(1L, pi)

The previous example also illustrates that the s$. and s$do notations — which were first
introduced for object instantiation and calling methods of singleton objects — can also be
used for existing Scala values (e.g., fibSeq above).

Journal of Statistical Software 11

Quoting method names

Scala has type parameterization which is similar but arguably more advanced than generics in
Java and templates in C++. In many instances, the Scala compiler infers the type parameter,
but the user may need or want to explicitly provide it. When using the $ operator, the method
name with its type parameter should be quoted to prevent parsing errors in R. The following
expressions are functionally equivalent.

fibSeqAsDouble <- s %~% 'Array[Double](0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqAsDouble <- s %~% 'Array.apply[Double](0, 1, 1, 2, 3, 5, 8, 13, 21)'
fibSeqAsDouble <- s$.Array$'apply[Double]'(0L, 1L, 1L, 2L, 3L, 5L, 8L, 13L, 21L)

fibSeqAsDouble <- s$do('Array')$'apply[Double]'(0L, 1L, 1L, 2L, 3L, 5L, 8L, 13L, 21L)

Note the quotes around apply[Double] used in the last two expressions. Of course, since R
treats numeric literals as doubles, the simplest way to get the same result from the apply

method of the Array companion object is

fibSeqAsDouble <- s$.Array$apply(0, 1, 1, 2, 3, 5, 8, 13, 21)

Likewise, names of Scala methods may not be valid identifiers in R and may also need to be
quoted to avoid parsing errors in R. For example, note that the method :+ is quoted here:

list <- s$.List$apply(1L, 2L, 3L)

augmentedList <- list$':+'(100L)
paste0(augmentedList$toString(), " now contains 100.")

[1] "List(1, 2, 3, 100) now contains 100."

2.4. Defining inline Scala functions

In addition to calling previously-compiled Scala methods, the rscala package enables Scala
functions to be defined within an R session. The associated Scala code is compiled on-the-
fly and cached for subsequent evaluation in the R session. This feature is inspired by the
R packages Rcpp and inline (Sklyar, Murdoch, Smith, Eddelbuettel, Francois, and Soetaert
2015) for C, C++, and Fortran. We do not recommend that long, complicated algorithms be
implemented as inline Scala functions, but these functions can be helpful for implementing
small tasks or writing dynamic code to interface with existing Scala code.

To demonstrate Scala functions, consider computing the number of partitions of n items (i.e.,
the Bell number (Bell 1938) of n). This number is often used for finite mixture models and
random partition models (e.g., Casella, Moreno, and Girón (2014)). First, consider this R
implementation of an efficient algorithm based on the Bell triangle (also known as the Aitken’s
array or the Peirce triangle):

bell.version1 <- function(n, format=c("character","integer","double","log")[3]) {

n <- as.integer(n[1])

if (n <= 0) stop("'n' must be at least 1.")

if (n == 1) return(1)

12 Integration of R and Scala Using rscala

r1 <- r2 <- numeric(n)

r1[1] <- 1

for (k in 2:n) {

r2[1] <- r1[k-1]

for (i in 2:k) r2[i] <- r1[i-1] + r2[i-1]

r1 <- r2

}

value <- r2[n]

if (format == "character") sprintf("%0.0f", value)

else if (format == "integer") as.integer(value)

else if (format == "double") value

else if (format == "log") log(value)

}

The bell.version1 function performs calculations based on double-precision floating-point
arithmetic and provides exact answers for n ≤ 22, gives approximate answers for 22 < n ≤ 218,
and overflows for n > 218. The format argument controls the function’s output. Unfortu-
nately, n ≤ 218 is quite limiting because sample sizes are often much larger in practice. The
following Scala function, defined within the R session, implements the same algorithm but
allows n to be greater than 218.

bell.version2 <- function(n, format=c("character","integer","double","log")[3]) {

n <- as.integer(n[1])

if (n <= 0) stop("'n' must be at least 1.")

s %!% '
var r1 = new Array[BigInt](n)

var r2 = new Array[BigInt](n)

r1(0) = BigInt(1)

for (k <- 1 until n) {

r2(0) = r1(k-1)

for (i <- 1 to k) r2(i) = r1(i-1) + r2(i-1)

val tmp = r1; r1 = r2; r2 = tmp

}

val value = r1(n-1)

format match {

case "character" => value.toString

case "integer" => value.toInt

case "double" => value.toDouble

case "log" =>

val blex = value.bitLength - 1022

if (blex > 0) math.log((value >> blex).toDouble) + blex * math.log(2)

else math.log(value.toDouble)

}

'
}

There are a few minor differences between the R and Scala versions (e.g., Scala uses zero-based
indexing of arrays, syntactic differences between R and Scala, and the Scala version avoids
the copying found in the R version), but the practical difference is that bell.version2 uses
infinite precision integer arithmetic based on Scala’s builtin BigInt class. Overflow still
occurs when transferring to R using format="integer" or format="double", but there is

Journal of Statistical Software 13

no overflow for almost any n when format="log", and the exact value is returned when
format="character". The sample code below shows that the Scala function produces exact
integer calculations for large n. (The timings saved in cpuFirstEval will be used later in
Section 2.7.)

cpuFirstEval <- system.time(

bigNumber <- bell.version2(500, format="character")

)

cat(paste(strsplit(bigNumber, "(?<=.{80})", perl = TRUE)[[1]], collapse="\n"), "\n")

16060726010399914537437328604655077862919245466450012492214586470366090316923887

42264533068377381547526083956701374955501037620644265991485823997560423919472253

67315428771145224348262594342532452358780768322201616348260212763746283211063175

47158830590049998876724749569103056256873861593305494793167891236081525416343738

22059048622685196944645607338672012856321864174391445622227559253116940246721792

83672281903035512240651033569323506092293426051672552001567703068470162425920547

28359001944534021890469854092547483920907047584915942616242091271479118546769839

43733984734941560341133801950893641167229353543298699168088163197933266361361171

74956780625221057798069556967280134929327667145664940751718800283570310764911916

14894597598751539382954829601896350096235455285746800958124227773807905768259318

23862858389709617386930741651345394229457772

Take a closer look at the definition of the bell.version2 function. We call this a Scala
function because it contains s %!% ’...’, where s is a Scala instance and ’...’ represents
a Scala snippet. The effect of the %!% operator is two-fold: i. it automatically makes the
arguments of the enclosing function (namely, n and format) available in the Scala snippet,
although this can be customized with the [operator (as explained below), and ii. it caches
the on-the-fly compilation of the Scala snippet to substantially improve speed for repeated
calls. The %!% operator returns a copyable type or, if the result is not a copyable type, a Scala
reference. The %.!% operator is identical except that it always returns a Scala reference.

The consumer of a Scala function does not need to know that the implementation is written
in Scala, but the programmer of a Scala function should bear in mind a few items. If an
argument to a Scala function is not a copyable type or a Scala references, it will become a
EphemeralReference object that can still be used in R code executed by the Scala function.
(This functionality is demonstrated later.) The scalaNull function can be used to pass a null
reference of a particular type. For example, an argument to a Scala function might be rng =

scalaNull("scala.util.Random"), indicating a null reference to scala.util.Random.

Additional variables in the local environment can be automatically serialized to Scala by
listing them after the [operator of the Scala instance. Conversely, if an argument is not
needed in the Scala implementation (because, for example, it has already been processed in
the R code), the serialization can be avoided by using the drop argument of the [operator.
So, for example, we can make available new variables x, y, and z and skip variables a and
b using s["x","y","z",drop=c("a","b")] %!% ’...’. The automatically generated Scala
code for the conversion of variables can be displayed (for debugging purposes) by setting the
show.snippet option, e.g., scalaSettings(s, show.snippet=TRUE).

2.5. Callbacks into R from embedded Scala

When a Scala instance is created with the scala function, an instance of the Scala class

14 Integration of R and Scala Using rscala

org.ddahl.rscala.RClient is bound to the identifier R. This object provides access to the
R session from within the Scala instance. The RClient class is thread-safe. Its source code
and Scaladoc are located on GitHub: https://github.com/dbdahl/rscala/.

To assign a value to a variable in the R session from Scala, use the set method:

s %@% '
R.set("zone", java.util.TimeZone.getDefault.getDisplayName)

R.set("atLeast8", scala.util.Properties.isJavaAtLeast("1.8"))

'
zone

[1] "Mountain Standard Time"

atLeast8

[1] TRUE

R variables can be accessed in Scala using several methods. The first method is get. It returns
a Tuple2 where the first member is the R variable’s value (statically typed as Any) and the
second is a String identifying the resulting Scala type. Consider the example below in which
the value of the R variable T is obtained. Although the runtime type of T is Boolean, the
static type is Any. To be useful, it will likely need to be cast to another type as demonstrated
with the call to asInstanceOf[Boolean] below.

s %@% '
val result = R.get("T")

println("The result is " + result)

if (result._1.asInstanceOf[Boolean]) {

println("Good, nobody messed with the value of T.")

}

'

The result is (true,Boolean)

Good, nobody messed with the value of T.

Instead of casting the result from the get method, it may be more convenient to call a method
that returns a specific type. The RClient class includes a suite of methods whose names start
with get and end in XY , where X ∈ {R, I, D, L, S} and Y ∈ {0, 1, 2}. The value of X
indicates whether the result from R should be interpreted as raw, integer, double, logical, or
character, respectively. The value of Y indicates whether the result should be interpreted as
a scalar, an array, or a rectangular array of arrays, respectively. This example uses the getL0

method to return the value of the variable T as a logical scalar value.

s %@% 'if (R.getL0("T")) { println("Good, nobody messed with the value of T.") } '

Good, nobody messed with the value of T.

R expressions can be evaluated with a suite of methods whose names start with eval and end
in XY , where X and Y have the same meaning as in the get methods. In the example below,

https://github.com/dbdahl/rscala/

Journal of Statistical Software 15

R and Scala are used together to sample from a chi-square distribution with 100 degrees of
freedom.

set.seed(324)

s %~% 'R.evalD1("rnorm(100, sd=3)").map(math.pow(_, 2)).sum'

[1] 866.7211

The RClient class also provides the ability to call R functions through methods that start
with invoke and end in XY (as in the get and eval methods). For example, the previous
example could also be implemented as follows.

set.seed(324)

s %~% '
val mean = 100

R.invokeD1("rnorm", mean, "sd" -> 3).map(math.pow(_, 2)).sum

'

[1] 866.7211

The example above demonstrates the use of Scala’s builtin notation for creating pairs (e.g.,
"sd" -> 3) to provide named arguments to the R function invoked from Scala. The arguments
to an invoke method can be copyable types, Scala references, and EphemeralReference

objects, the last being automatically generated in Scala functions for all arguments that are
wrapped by the II function or that are not copyable types and not Scala references. Note
that a EphemeralReference object is only valid within the Scala function in which it is
defined. It can, however, be made valid beyond the Scala function by converting it to a
PersistentReference using R.getReference(x), where x is a EphemeralReference object.

A more interesting use case is calling a user-supplied R function from Scala. First, consider
an R function that computes f(n, α), the expectation of the Ewens(n, α) distribution, i.e., the
expected number of clusters when sampling n observations from a discrete random measure
obtained from the Dirichlet process with mass parameter α.

f <- function(n,alpha) sapply(alpha, function(a) sum(a / (1:n + a - 1)))

f(100, 1.0)

[1] 5.187378

In a Bayesian analysis, the Ewens distribution is a prior distribution in random partition
models and α is a hyperparameter. In the prior elicitation process, practitioners may want to
find the value of α that corresponds to the expert’s anticipated number of clusters. Thus, the
task is to numerically solve f(n, α) = µ for α, given fixed values for n and µ. To be specific,
suppose n = 1000 and µ = 10. The value α can be obtained using root finding methods. Here,
we demonstrate the bisection method implemented as a Scala function. The function’s first
argument, func, takes a user-defined R function. Since this argument is not a copyable type
or a Scala reference, it is passed to Scala as an EphemeralReference, which is subsequently
used in the expression R.invokeD0(func, x) to call the R function.

16 Integration of R and Scala Using rscala

bisection <- function(func, lower=1.0, upper=1.0, epsilon=0.000000001) s %!% '
def g(x: Double) = R.invokeD0(func, x)

val (fLower, fUpper) = (g(lower), g(upper))

if (fLower * fUpper > 0) sys.error("lower and upper do not straddle the root.")

@scala.annotation.tailrec

def engine(l: Double, u: Double, fLower: Double, fUpper: Double): Double = {

if (math.abs(l - u) <= epsilon) (l + u) / 2

else {

val c = (l + u) / 2

val fCenter = g(c)

if (fLower * fCenter < 0) engine(l, c, fLower, fCenter)

else engine(c, u, fCenter, fUpper)

}

}

engine(lower, upper, fLower, fUpper)

'

bisection(function(a) f(100, a) - 10, 0.1, 20)

[1] 2.572197

The most important aspect of this example is found in the first line of the Scala function
where the invokeD0 method calls the R function referenced by func and returns the result as
a Double.

The rscala package supports infinite recursion (subject to available resources) between R and
Scala. For example, the recursive.sum function below repeatedly calls itself from Scala to
compute 0 + 1 + 2 + . . .+ n.

recursive.sum <- function(n=0L) s %!% '
if (n <= 0) 0 else n + R.invokeI0("recursive.sum", n - 1)

'
recursive.sum(10)

[1] 55

2.6. Memory management

The rscala package ties into the garbage collectors of both R and Scala. As such, the user
often does not need to think about memory management. There are a few important things
to note, however. First, the default maximum heap size set by the Java Virtual Machine may
not be sufficient. Adjust the heap size using the scala function’s heap.size argument, or
use the global option rscala.heap.maximum (e.g., options(rscala.heap.maximum="4G")).
The former takes precedence over the latter.

Second, there is an unresolved issue (SI-4331) with the Scala REPL (read-eval-print-loop)
where allocated memory cannot be freed even if the same identifier is set to another value.
This issue prevents memory from being recovered in rscala when using the %~% and %.~%

operators, or when using the the $ assignment operator. This issue does not affect Scala
functions and calls to methods on Scala references. Hence, we encourage developers to use

https://issues.scala-lang.org/browse/SI-4331

Journal of Statistical Software 17

functions and methods for memory intensive applications. As will be shown later, functions
and methods also enjoy faster execution than the equivalent code using the %~% and %.~%

operators.

2.7. Speed considerations

Section 4 considers the easy of implementing and the execution speed of a simulation study
in R, C++ via Rcpp, and Scala via rscala. It is not a comprehensive comparison of the
performance of these languages. For that, we refer readers to benchmarks available on the
web, including Gouy (2017). Here we wish to highlight performance characteristics of rscala
itself.

Every Scala snippet associated with the %@%, %~%, and %.~% operators is compiled at every
invocation. In contrast, a Scala snippet in a Scala function (see Section 2.4) and methods of
Scala references are only compiled the first time they are run. Subsequent invocations are
faster because the compiled code is cached and re-used. Recall that in Section 2.4 the variable
cpuFirstEval saved the system time associated with the first invocation of the Scala function
bell.version2.

cpuFirstEval

user system elapsed

0.004 0.000 0.397

When we run the function again, we find the system time is substantially reduced because
the code does not need to be compiled.

cpuSecondEval <- system.time(

bigNumber <- bell.version2(500, format="character")

)

cpuSecondEval

user system elapsed

0.004 0.000 0.025

cpuFirstEval['elapsed'] / cpuSecondEval['elapsed']

elapsed

15.88

Methods of Scala references also benefit from caching. Consider, for example, two calls to the
method nextGaussian of an instance of scala.util.Random.

rng <- s$.scala.util.Random$new()

first <- system.time(rng$nextGaussian())['elapsed']
second <- system.time(rng$nextGaussian())['elapsed']
c(first=first, second=second, ratio=first/second)

first.elapsed second.elapsed ratio.elapsed

0.147 0.001 147.000

18 Integration of R and Scala Using rscala

Expression Package Q1 Mean Median Q3

fasterNextGaussianRJava() rJava 31.31 43.30 40.53 46.85
fasterNextGaussian() rscala 312.51 368.05 346.80 370.89
rngRJava$nextGaussian() rJava 763.78 887.50 793.31 834.60
rng$nextGaussian() rscala 488.65 544.23 540.23 567.02

Table 2: Comparison of execution time of various ways to call the nextGaussian method of
an instance of the scala.util.Random class. Since the method itself is relatively fast, the
timings here are an indication of the overhead involved with the various techniques. Each
expression was evaluated 1000 times and the results are in microseconds.

Beyond the one-time cost of compiling, calling methods of Scala references still involves a
recurring invocation cost, some of which can be eliminated as follows. Call the desired method
of the Scala reference with an additional trailing argument .EVALUATE=FALSE and store the
resulting function, e.g.:

fasterNextGaussian <- rng$nextGaussian(.EVALUATE=FALSE)

The function fasterNextGaussian is optimized and has less overhead than explicitly calling
the nextGaussian method of a Scala reference. By way of comparison, rJava also provides two
means to call the nextGaussian method. Suppose that rngRJava is the result of instantiating
an object of class scala.util.Random using rJava. The high-level $ operator of rJava can call
this method using rngRJava$nextGaussian(). Alternatively, the rJava’s low-level interface
provides the .jcall function. The next example and Table 2 compare the speed of rscala’s
rng$nextGaussian() and its optimized fasterNextGaussian(), together with rJava’s two
ways of calling the same method.

library('rJava', verbose=FALSE, quietly=TRUE)

invisible(

rJava::.jinit(

list.files(file.path(scalaInfo(s)$home, "lib"), full.names=TRUE)

)

)

rngRJava <- rJava::.jnew("scala.util.Random")

fasterNextGaussianRJava <- function() rJava::.jcall(rngRJava, "D", "nextGaussian")

if (suppressWarnings(require('microbenchmark', quietly=TRUE))) {

timings <- summary(microbenchmark(fasterNextGaussianRJava(), fasterNextGaussian(),

rngRJava$nextGaussian(), rng$nextGaussian(), times=1000))

} else load('timings.RData')

The results in Table 2 indicate that rJava’s .jcall interface is much faster than the other
techniques. We recommend that rscala users avoid calling Scala code in long-running, tight
inner loops where millisecond delays can add up.

2.8. Developing packages based on rscala

The rscala package enables developers to use Scala in their own R packages to implement
computationally intensive algorithms. For example, the shallot (Dahl 2017b) and bamboo

Journal of Statistical Software 19

(Dahl 2017a) packages on CRAN use Scala via rscala to implement statistical methodology of
their associated journal articles (Dahl, Day, and Tsai 2017; Li, Dahl, Vannucci, Joo, and Tsai
2014). The shallot package takes advantage of rscala’s callback functionality to allow access
a user-specific likelihood and sampling function. Readers are invited to study those examples
in addition to our description here.

An R package based on rscala should include rscala in the Imports field of the package’s
DESCRIPTION file. Also, add import(rscala) to the NAMESPACE file. Define an .onLoad

function which calls .rscalaPackage(pkgname), where pkgname is the package’s name. The
onLoad function may be as simple as

.onLoad <- function(libname, pkgname) {

.rscalaPackage(pkgname)

}

The .rscalaPackage function binds a Scala instance to the identifier s in the package’s
namespace using the scala function. The default for the mode argument is "parallel".
This instantiates a Scala interpreter in the background and therefore has minimal delay
when the interpreter s is first used. If, however, Scala itself is not already installed, the
user is asked for permission to download and install Scala (using the scalaInstall func-
tion). Analogous to rJava’s .jpackage function, the .rscalaPackage function adds the JAR
files in the source package’s inst/java directory to Scala’s classpath. Since Scala is binary-
compatible only within major releases, package developers are encouraged to cross-compile
for releases 2.11 and 2.12 and to place compatible Scala JAR files in inst/java/scala-2.11

and inst/java/scala-2.12, respectively. If a package supports only specific major releases
of Scala, change the major.release argument of the .rscalaPackage function.

The .rscalaPackage function takes several optional arguments. The classpath.packages

argument allows the package to use the JAR files of another package. For example, the
shallot package uses this argument to import the Apache Commons Mathematics Library
JAR files distributed with the R package commonsMath (The Apache Software Foundation
2017). The rational is that JAR files can be large and, by having them in a separate package,
they do not need to be updated as frequently. The arguments classpath.prepend and
classpath.append provide fine-grained control over the classpath. The argument snippet

provides Scala expressions that will be evaluated when Scala is instantiated. This feature is
useful for definitions and import statements. Finally, other arguments to .rscalaPackage

are passed directly to the scala function. This .onLoad function taken from the shallot
package demonstrates several of these optional arguments and also shows a callback to R so
that random data generation in Scala is based on R’s random number seed.

.onLoad <- function(libname, pkgname) {

snippet <- '
import org.apache.commons.math3.random.{ RandomDataGenerator => RDG }

import org.ddahl.shallot._

import parameter._

import parameter.decay._

import parameter.partition._

import distribution._

import mcmc._

20 Integration of R and Scala Using rscala

def rdg() = {

val ints = R.evalI1("runif(2,-.Machine$integer.max,.Machine$integer.max)")

val seed = ((ints(0).asInstanceOf[Long]) << 32) | (ints(1) & 0xffffffffL)

val r = new RDG()

r.reSeed(seed)

r

}

// This circumvents a bug in the class loader on some versions of Scala/JVM.

scala.util.Try {

new org.apache.commons.math3.random.EmpiricalDistribution()

}

'
Users may want to use 'options(rscala.heap.maximum="2G")'.
.rscalaPackage(pkgname,classpath.packages="commonsMath",snippet=snippet)

}

A package’s embedded Scala instance should be terminated when the package is unloaded by
calling the .rscalaPackageUnload function in the .onUnload hook as shown here.

.onUnload <- function(libpath) {

.rscalaPackageUnload()

}

Because rscala’s syntax for calling precompiled code is very similar to rJava’s high-level $
operator, developing a package based on rscala can be very familiar to those accustomed to
rJava. Take, for example, CRAN’s mailR package: “Interface to Apache Commons Email
to send emails from R” (Premraj 2015). This package uses rJava and its high-level $ conve-
nience operator. As a proof of concept, we ported the mailR package to rscala, replacing the
dependency on rJava. Version 0.6 of the mailR package is available on GitHub at https:

//github.com/rpremraj/mailR/ and our port is at https://github.com/dbdahl/mailR/.
The port involved changes to the DESCRIPTION file, the NAMESPACE file, and two script files.
We deleted 16 lines, added 4 lines, and modified 15 lines. Most modifications were simple
changes. For example,

base_dir <- .jnew("java.io.File", normalizePath(getwd()))

became

base_dir <- s$.java.io.File$new(normalizePath(getwd()))

The difference between the two versions can be viewed here: https://github.com/dbdahl/
mailR/commit/feb911f. Of course, porting a package that makes frequent use of rJava’s
“low-level interface” (e.g., the .jcall function) will require more changes.

The bamboo package was originally implemented in rJava. The original rJava code is com-
mented out with equivalent rscala code following immediately after. See, for example, https:
//github.com/dbdahl/bamboo/blob/master/R/bamboo.R. This example also illustrates the
difficulty in calling Scala using rJava since Scala has several features that do not map directly

https://github.com/rpremraj/mailR/
https://github.com/rpremraj/mailR/
https://github.com/dbdahl/mailR/
https://github.com/dbdahl/mailR/commit/feb911f
https://github.com/dbdahl/mailR/commit/feb911f
https://github.com/dbdahl/bamboo/blob/master/R/bamboo.R
https://github.com/dbdahl/bamboo/blob/master/R/bamboo.R

Journal of Statistical Software 21

to Java equivalents. Often, the developer is required to write Java-friendly wrapper methods
in Scala that hide advanced Scala features.

3. Accessing R in Scala

So far we have demonstrated assessing Scala from R. Conversely, rscala can also embed an R
interpreter in a Scala application via the org.ddahl.rscala.RClient class. This is achieved
by generalizing the previously-discussed callback functionality. In this case, however, there is
not an existing instance of the R interpreter. The R client spawns an R instance, immediately
starts the embedded R server, and connects R to Scala.

The RClient class is thread-safe. Source code and Scaladoc are located on GitHub: https:

//github.com/dbdahl/rscala/. As a convenience, rscala’s JAR file is available in stan-
dard repositories for use by dependency management systems. To use RClient in a Scala
application, simply add the following line to SBT’s build.sbt file.

libraryDependencies += "org.ddahl" %% "rscala" % "2.5.2"

Note that, since the necessary R code is bundled in the JAR file, the rscala package does not
need to be installed in R. An embedded R interpreter is instantiated as follows:

val R = org.ddahl.rscala.RClient()

This assumes that the registry keys option was not disabled during the R installation on Win-
dows. On other operating systems, R is assumed to be in the search path. If these assumptions
are not met or a particular installation of R is desired, the path to the R executable may be
specified explicitly (e.g., org.ddahl.rscala.RClient("/path/to/R/bin/R")). By default,
console output from R is serialized back to Scala. The protocol overhead may be reduced by
using serializeOutput=false when instantiating an RClient.

The rscala package can be an easy and convenient way to access statistical functions, facilitate
calculations, manage data, and produce plots in a Scala application. Consider, for example,
wrapping R’s qnorm function to define a method in Scala by the same name.

val R = org.ddahl.rscala.RClient()

def qnorm(x: Double, mean: Double = 0, sd: Double = 1, lowerTail: Boolean = true) = {

R.invokeD0("qnorm", x, mean, sd, "lower.tail" -> lowerTail)

}

val alpha = 0.05

println(s"If Z is N(0,1), P(Z >= ${qnorm(alpha, lowerTail=false)}) = $alpha.")

// If Z is N(0,1), P(Z >= 1.6448536269514726) = 0.05.

The next example uses R’s dataset eurodist to compute the European city that is closest, on
average, to all other European cities. While this statistical calculation is easily implemented
in R, one can imagine a Scala application that needs to perform a more taxing calculation
that leverages R’s rich data-processing functions.

https://github.com/dbdahl/rscala/
https://github.com/dbdahl/rscala/

22 Integration of R and Scala Using rscala

val R = org.ddahl.rscala.RClient()

val distances = R.evalD2("as.matrix(eurodist)")

val cities = R.evalS1("attr(eurodist,’Labels’)")

val centralCity = distances.map(_.sum).zip(cities).minBy(_._1)._2

println(s"Europe’s central city is $centralCity.")

// Europe's central city is Lyons.

The RClient also enables a Scala application to access R’s extensive plotting facilities and to
take advantage of the many packages available in R. As an example of a nontrivial Scala ap-
plication, consider a web site based on a Scala-based web framework such as Play Framework,
Scalatra, Xitrum, or Lift. Suppose part of the web application requires plotting forecasted
temperature data. Rather than looking for a Scala library to obtain the weather forecasts and
another library for plotting, the developer might want to leverage knowledge of the darksky
(Rudis 2017), httr (Wickham 2017), and ggplot2 (Wickham 2009) packages in R. One could
simply execute an R script to run the desired code and read the result from the disk. Another
solution is to connect to R using Rserve using its Java client. One could go so far as to set
up a server using, for example, RApache (Horner 2013), CGIwithR (Firth 2003), or Shiny
(Chang, Cheng, Allaire, Xie, and McPherson 2017), all of which require some initial effort
and ongoing maintenance beyond the effort required for the Scala-based web framework itself.
In contrast, the marginal cost of incorporating rscala is low, requiring only the declaration of
the dependency on rscala in the project’s build.sbt file (as shown earlier) and a standard
installation of R with the rscala, darksky, httr, and ggplot2 packages. The web application
is hosted here:

https://dahl.byu.edu/software/rscala/temperature/

The source code is available here:

https://github.com/dbdahl/rscala-example-temperature/

Figure 1 shows a screenshot of the application.

Apache Spark, a cluster-computing framework for massive datasets, is another example of a
Scala application that might benefit from access to R. Spark provides an application program-
ming interface to Scala, Java, R, and Python. R users who are not already familiar with Scala
would be best served by accessing Spark from R using a dedicated package such as sparklyr
or sparkr. Scala developers, however, might prefer to program directly with Spark’s Machine
Learning Library (MLlib) in Scala and to supplement its functionality with R through rscala.
Recall that every RClient has its own workspace, so several instances can be used to over-
come the single-threaded nature of R. One could, for example, use Apache Commons Pool to
manage a pool of RClient objects on each worker node. One potential limitation is the cost
of pushing large datasets over the TCP/IP bridge.

4. Case study: Simulation study accelerated with rscala

https://dahl.byu.edu/software/rscala/temperature/
https://github.com/dbdahl/rscala-example-temperature/

Journal of Statistical Software 23

Figure 1: Screenshot of a web application implemented in a Scala-based framework and
accessing R packages using rscala.

While the previously mentioned shallot and bamboo packages demonstrate the ability to
develop packages based on rscala, we now demonstrate the ease with which computationally-
intensive statistical procedures can be implemented by embedding Scala code in an R script.
The algorithm is embarrassingly parallel and we consider two means of parallelization: one
using Scala’s Future class and the other using R’s parallel package. By way of comparison,
we include a pure R implementation of the same algorithm, and also an implementation that
uses inline C++ code via the Rcpp package. All four implementations define a function that
takes an R sampling function as an argument.

We investigate a simulation study of the coverage probability of a bootstrap confidence interval
procedure. Consider a population parameter β1/β2, where β1 and β2 are population quantiles
associated with probabilities p1 and p2, respectively. Based on a sample of n observations, a
point estimator of the parameter is the ratio of the corresponding sample quantiles and the
following bootstrap procedure can be used to find a confidence interval when the population
distribution is unspecified. The sample estimate is recorded for each of nSamples bootstrap
samples. A bootstrap confidence interval is given by (l, u), where l and u are quantiles of the
bootstrap sampling distribution associated with α/2 and 1−α/2, respectively. Although the
nominal coverage is 1 − α, interest lies in computing the actual coverage probability of this
bootstrap confidence interval procedure using a Monte Carlo simulation study. nIntervals

samples from the population are obtained from a user-supplied sampling function. Although
the code is general, we sample n = 100 observations from the standard normal distribution
and set p1 = 0.75 and p2 = 0.35, making β1/β2 ≈ −1.75. We use nIntervals = 10,000 Monte
Carlo replicates, each having nSamples = 10,000 bootstrap samples.

24 Integration of R and Scala Using rscala

Machine Implementation Min. Q1 Mean Median Q3 Max.
U

b
u

n
tu

8
co

re
s

Pure R 1858.1 1863.9 1875.9 1867.9 1878.9 1943.8
Rcpp 105.1 105.3 107.3 105.6 106.5 118.6
rscala #1 81.8 82.0 82.5 82.2 82.5 84.8
rscala #2 70.2 70.4 71.4 70.7 70.9 77.9

U
b
u

n
tu

56
co

re
s Pure R 444.1 449.8 450.8 451.3 452.4 456.1

Rcpp 19.7 19.6 19.7 19.8 19.8 20.0
rscala #1 46.9 47.7 48.0 48.0 48.6 49.0
rscala #2 14.5 14.6 16.6 14.8 15.0 32.2

M
ac

8
co

re
s

Pure R
Rcpp 136.9 137.1 139.3 139.8 140.7 141.8
rscala #1 93.4 94.2 94.7 94.9 95.3 95.8
rscala #2 91.2 92.5 93.4 92.6 92.7 101.8

W
in

d
ow

s
8

co
re

s

Pure R
Rcpp 184.8 185.0 187.6 185.3 186.1 201.8
rscala #1 108.9 109.1 109.3 109.1 109.5 110.1
rscala #2 106.7 107.3 107.8 107.9 108.0 109.9

Table 3: Elapsed time (in seconds) for the four implementations of the bootstrap simulation
study executed on four different machines. Overall, the second rscala implementation had the
fastest execution times.

The four implementations are available in the Appendix, in the package, and at https:

//raw.githubusercontent.com/dbdahl/rscala/master/R/rscala/inst/doc/bootstrap-coverage.R. The
R implementation is the shortest and the rscala implementation is somewhat more concise
than the Rcpp implementation. The pure R iterates using apply functions. The Rcpp imple-
mentation is written in C style. The pure R, Rcpp, and second rscala implementations use the
parallel package to harness all available cores, whereas the first rscala implementation uses
Scala’s Future class for parallelism. In the first rscala implementation, a single instance of
RClient is used by multiple JVM threads to call back to the single R instance when sampling
the data. On machines with many cores, having each thread wait its turn to access the R
instance will likely slow down the execution. In the second rscala implementation, each CPU
core has a separate R instance with a corresponding RClient.

We tested on four machines running Ubuntu 16.04 with 8 cores, Ubuntu 16.04 with 56 cores,
Mac Sierra with 8 cores, and Windows 10 with 8 cores. R was compiled from source for
the Ubuntu machines and was installed from binaries downloaded from CRAN for the Mac
and Windows machines. All machines ran R 3.4.1, Scala 2.12.3, Java 8, Rcpp 0.12.12, and a
prerelease version of rscala 2.3.1.

Elapsed times (in seconds) for 10 replications of the simulation study are found in Table 3.
For the sake of expediency, the pure R implementation was only run on the Ubuntu machines.
The pure R implementation ran more than 26 times slower than the fastest implementation.
The second rscala implementation (which uses the parallel package) was the fastest overall.
The first rscala implementation was close behind, except on the Ubuntu machine with 56

https://raw.githubusercontent.com/dbdahl/rscala/master/R/rscala/inst/doc/bootstrap-coverage.R
https://raw.githubusercontent.com/dbdahl/rscala/master/R/rscala/inst/doc/bootstrap-coverage.R

Journal of Statistical Software 25

cores, which illustrates the difficulty of sharing a single R instance across all of the cores.
The Rcpp implementation is generally slower than the rscala implementations, but still much
faster than the pure R implementation.

5. Conclusion

This paper introduced the rscala software to bridge R and Scala. The software allows a user
to leverage their skills in both languages and to utilize libraries and exploit strengths in each
language. For example, R users can implement computationally intensive algorithms in Scala,
write R packages based on Scala, and access Scala libraries from R. Scala programmers can
take advantage of R’s tools for data analysis and graphics from within a Scala application.

We are exploring two possible features to improve the package. The first would allow em-
bedded Scala computations to be interrupted by the R user without destroying the TCP/IP
bridge. The second feature would permit R and Scala to run on separate machines.

Acknowledgements

The author’s work on this paper was supported by NIH NIGMS R01 GM104972. The author
thanks the CRAN maintainers for their excellent service. The author also thanks the following
students for valuable feedback on the software and paper: Floid Gilbert, Brandon Carter,
Deepthi Uppalapati, Scott Ferguson, and Richard Payne.

References

Bell ET (1938). “The iterated exponential integers.” Annals of Mathematics, 39, 539–557.
URL http://www.jstor.org/stable/1968633?seq=1#page_scan_tab_contents.

Bugnion P (2016). Scala for Data Science. Packt Publishing. URL https:

//www.amazon.com/Scala-Data-Science-Pascal-Bugnion-ebook/dp/B011V2NPYI?

SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&

creative=165953&creativeASIN=B011V2NPYI.

Casella G, Moreno E, Girón FJ (2014). “Cluster Analysis, Model Selection, and Prior Dis-
tributions on Models.” Bayesian Anal., 9(3), 613–658. doi:10.1214/14-BA869. URL
http://dx.doi.org/10.1214/14-BA869.

Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2017). shiny: Web Application Framework
for R. R package version 1.0.4, URL https://CRAN.R-project.org/package=shiny.

Dahl DB (2017a). bamboo: Protein Secondary Structure Prediction Using the Bamboo
Method. R package version 0.9.18, URL https://CRAN.R-project.org/package=bamboo.

Dahl DB (2017b). shallot: Random Partition Distribution Indexed by Pairwise Information.
R package version 0.3.2, URL https://CRAN.R-project.org/package=shallot.

Dahl DB (2017c). rscala: Bi-Directional Interface Between R and Scala with Callbacks. R
package version 2.3.1, URL https://CRAN.R-project.org/package=rscala.

http://www.jstor.org/stable/1968633?seq=1#page_scan_tab_contents
https://www.amazon.com/Scala-Data-Science-Pascal-Bugnion-ebook/dp/B011V2NPYI?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B011V2NPYI
https://www.amazon.com/Scala-Data-Science-Pascal-Bugnion-ebook/dp/B011V2NPYI?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B011V2NPYI
https://www.amazon.com/Scala-Data-Science-Pascal-Bugnion-ebook/dp/B011V2NPYI?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B011V2NPYI
https://www.amazon.com/Scala-Data-Science-Pascal-Bugnion-ebook/dp/B011V2NPYI?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B011V2NPYI
http://dx.doi.org/10.1214/14-BA869
http://dx.doi.org/10.1214/14-BA869
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=bamboo
https://CRAN.R-project.org/package=shallot
https://CRAN.R-project.org/package=rscala

26 Integration of R and Scala Using rscala

Dahl DB, Day R, Tsai JW (2017). “Random Partition Distribution Indexed by Pairwise
Information.” Journal of the American Statistical Association, in press. doi:10.1080/

01621459.2016.1165103. URL http://dx.doi.org/10.1080/01621459.2016.1165103.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Firth D (2003). “CGIwithR: Facilities for processing web forms using R.” Journal of Statistical
Software, 8, 1–8. R package version 0.50, URL http://www.omegahat.org/CGIwithR/.

Gouy I (2017). “The Computer Language Benchmarks Game.” http://benchmarksgame.

alioth.debian.org/u32/scala.html. Accessed: 2017-08-08.

Horner J (2013). rApache: Web application development with R and Apache. URL http:

//www.rapache.net/.

Jancauskas V (2016). Scientific Computing with Scala. Packt Publishing. URL https:

//www.amazon.com/Scientific-Computing-Scala-Vytautas-Jancauskas-ebook/dp/

B01ARXUY78?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&

camp=2025&creative=165953&creativeASIN=B01ARXUY78.

Li Q, Dahl DB, Vannucci M, Joo H, Tsai JW (2014). “Bayesian Model of Protein Primary
Sequence for Secondary Structure Prediction.” PLOS ONE, 9(10), 1–12. doi:10.1371/

journal.pone.0109832. URL https://doi.org/10.1371/journal.pone.0109832.

Nicolas PR (2014). Scala for Machine Learning. Packt Publishing. URL
https://www.amazon.com/Scala-Machine-Learning-Patrick-Nicolas-ebook/dp/

B00R6585KO?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&

camp=2025&creative=165953&creativeASIN=B00R6585KO.

Odersky M, Spoon L, Venners B (2016). Programming in Scala: Updated for
Scala 2.12. 3rd edition. Artima Press. ISBN 0981531687. URL https://www.

amazon.com/Programming-Scala-Updated-2-12/dp/0981531687?SubscriptionId=

0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&

creativeASIN=0981531687.

Odersky M, et al. (2004). “An Overview of the Scala Programming Language.” Technical
Report IC/2004/64, EPFL, Lausanne, Switzerland.

Pfeffer A (2016). Practical Probabilistic Programming. Manning
Publications. ISBN 1617292338. URL https://www.amazon.com/

Practical-Probabilistic-Programming-Avi-Pfeffer/dp/1617292338?

SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&

creative=165953&creativeASIN=1617292338.

Premraj R (2015). mailR: A Utility to Send Emails from R. R package version 0.4.1, URL
https://CRAN.R-project.org/package=mailR.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

http://dx.doi.org/10.1080/01621459.2016.1165103
http://dx.doi.org/10.1080/01621459.2016.1165103
http://dx.doi.org/10.1080/01621459.2016.1165103
http://www.jstatsoft.org/v40/i08/
http://www.omegahat.org/CGIwithR/
http://benchmarksgame.alioth.debian.org/u32/scala.html
http://benchmarksgame.alioth.debian.org/u32/scala.html
http://www.rapache.net/
http://www.rapache.net/
https://www.amazon.com/Scientific-Computing-Scala-Vytautas-Jancauskas-ebook/dp/B01ARXUY78?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B01ARXUY78
https://www.amazon.com/Scientific-Computing-Scala-Vytautas-Jancauskas-ebook/dp/B01ARXUY78?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B01ARXUY78
https://www.amazon.com/Scientific-Computing-Scala-Vytautas-Jancauskas-ebook/dp/B01ARXUY78?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B01ARXUY78
https://www.amazon.com/Scientific-Computing-Scala-Vytautas-Jancauskas-ebook/dp/B01ARXUY78?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B01ARXUY78
http://dx.doi.org/10.1371/journal.pone.0109832
http://dx.doi.org/10.1371/journal.pone.0109832
https://doi.org/10.1371/journal.pone.0109832
https://www.amazon.com/Scala-Machine-Learning-Patrick-Nicolas-ebook/dp/B00R6585KO?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00R6585KO
https://www.amazon.com/Scala-Machine-Learning-Patrick-Nicolas-ebook/dp/B00R6585KO?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00R6585KO
https://www.amazon.com/Scala-Machine-Learning-Patrick-Nicolas-ebook/dp/B00R6585KO?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00R6585KO
https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0981531687
https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0981531687
https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0981531687
https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0981531687
https://www.amazon.com/Practical-Probabilistic-Programming-Avi-Pfeffer/dp/1617292338?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617292338
https://www.amazon.com/Practical-Probabilistic-Programming-Avi-Pfeffer/dp/1617292338?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617292338
https://www.amazon.com/Practical-Probabilistic-Programming-Avi-Pfeffer/dp/1617292338?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617292338
https://www.amazon.com/Practical-Probabilistic-Programming-Avi-Pfeffer/dp/1617292338?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1617292338
https://CRAN.R-project.org/package=mailR
https://www.R-project.org/

Journal of Statistical Software 27

Rudis B (2017). darksky: Tools to Work with the ’Dark Sky’ ’API’. R package version 1.3.0,
URL https://CRAN.R-project.org/package=darksky.

Satman MH (2014). “RCaller: A Software Library for Calling R from Java.” British Journal
of Mathematics & Computer Science, 4(15), 2188–2196.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, Francois R, Soetaert K (2015). inline:
Functions to Inline C, C++, Fortran Function Calls from R. R package version 0.3.14,
URL https://CRAN.R-project.org/package=inline.

The Apache Software Foundation (2017). commonsMath: JAR Files of the Apache Com-
mons Mathematics Library. R package version 1.0.0, URL https://CRAN.R-project.org/

package=commonsMath.

Urbanek S (2013). Rserve: Binary R server. R package version 1.7-3, URL https://CRAN.

R-project.org/package=Rserve.

Urbanek S (2016). rJava: Low-Level R to Java Interface. R package version 0.9-8, URL
https://CRAN.R-project.org/package=rJava.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-0-387-98140-6. URL http://ggplot2.org.

Wickham H (2017). httr: Tools for Working with URLs and HTTP. R package version 1.3.1,
URL https://CRAN.R-project.org/package=httr.

Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman
S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016). “Apache Spark: A
Unified Engine for Big Data Processing.” Commun. ACM, 59(11), 56–65. ISSN 0001-0782.
doi:10.1145/2934664. URL http://doi.acm.org/10.1145/2934664.

https://CRAN.R-project.org/package=darksky
https://CRAN.R-project.org/package=inline
https://CRAN.R-project.org/package=commonsMath
https://CRAN.R-project.org/package=commonsMath
https://CRAN.R-project.org/package=Rserve
https://CRAN.R-project.org/package=Rserve
https://CRAN.R-project.org/package=rJava
http://ggplot2.org
https://CRAN.R-project.org/package=httr
http://dx.doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664

28 Integration of R and Scala Using rscala

Appendix A.

1 #### Code for Section 4. "Case Study: Simulation Study Accelerated with rscala"

2

3 makeConfidenceInterval <- function(p, n) {

4 me <- qnorm(0.975) * sqrt(p * (1 - p) / n)

5 c(estimate = p, lower = p - me, upper = p + me)

6 }

7

8 prob1 <- 0.75

9 prob2 <- 0.35

10 truth <- qnorm(prob1) / qnorm(prob2)

11 n <- 100

12 alpha <- 0.05

13

14

15 #### rscala implementation #1

16

17 library(rscala)

18 scala()

19

20 coverage.rscala1 <- function(sampler=NULL, n=0L, truth=0, prob1=0.0, prob2=0.0,

21 nSamples=1000L, alpha=0.05, nIntervals=1000L) {

22 coverage <- s %!% '
23 import scala.util.Random

24 import scala.concurrent.{Await, Future}

25 import scala.concurrent.ExecutionContext.Implicits.global

26

27 def quantile(sorted: Array[Double], p: Double) = {

28 val i = ((sorted.length-1)*p).asInstanceOf[Int]

29 val delta = (sorted.length-1)*p - i

30 (1 - delta) * sorted(i) + delta * sorted(i+1)

31 }

32

33 def statistic(x: Array[Double]) = {

34 scala.util.Sorting.quickSort(x)

35 quantile(x,prob1) / quantile(x,prob2)

36 }

37

38 def resample(x: Array[Double], rng: Random) = Array.fill(x.length) {

39 x(rng.nextInt(x.length))

40 }

41

42 def ciContains(x: Array[Double], rng: Random) = {

43 val bs = Array.fill(nSamples) { statistic(resample(x, rng)) }

44 scala.util.Sorting.quickSort(bs)

45 (quantile(bs, alpha/2) <= truth) && (truth <= quantile(bs, 1-alpha/2))

46 }

47

48 Await.result(Future.sequence(List.fill(nIntervals) {

49 val dataset = R.invokeD1(sampler, n)

50 val rng = new Random(R.invokeI0("runif", 1, -Int.MaxValue, Int.MaxValue))

51 Future { ciContains(dataset, rng) }

52 }), concurrent.duration.Duration.Inf).count(identity) / nIntervals.toDouble

53 '
54 makeConfidenceInterval(coverage, nIntervals)

55 }

Journal of Statistical Software 29

56

57

58 #### All of the remaining implementation use the parallel package.

59

60 library(parallel)

61 cluster <- makeCluster(detectCores())

62

63

64 #### rscala implementation #2

65

66 clusterEvalQ(cluster, {

67 library(rscala)

68 scala()

69 ciContains.rscala2 <- function(sampler=NULL, n=0L, truth=0, prob1=0.0, prob2=0.0,

70 nSamples=1000L, alpha=0.05) {

71 s %!% '
72 def quantile(sorted: Array[Double], p: Double) = {

73 val i = ((sorted.length-1)*p).asInstanceOf[Int]

74 val delta = (sorted.length-1)*p - i

75 (1 - delta) * sorted(i) + delta * sorted(i+1)

76 }

77

78 def statistic(x: Array[Double]) = {

79 scala.util.Sorting.quickSort(x)

80 quantile(x,prob1) / quantile(x,prob2)

81 }

82

83 def resample(x: Array[Double], rng: scala.util.Random) = Array.fill(x.length) {

84 x(rng.nextInt(x.length))

85 }

86

87 val x = R.invokeD1(sampler, n)

88 val rng = new scala.util.Random(R.invokeI0("runif", 1, -Int.MaxValue, Int.MaxValue))

89 val bs = Array.fill(nSamples) { statistic(resample(x, rng)) }

90 scala.util.Sorting.quickSort(bs)

91 (quantile(bs, alpha/2) <= truth) && (truth <= quantile(bs, 1-alpha/2))

92 '
93 }

94 })

95

96 coverage.rscala2 <- function(sampler, n, truth, prob1, prob2, nSamples, alpha, nIntervals) {

97 clusterExport(cluster, c("sampler","n","truth","prob1","prob2","nSamples","alpha"),

98 envir=environment())

99 coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

100 ciContains.rscala2(sampler, n, truth, prob1, prob2, nSamples, alpha)

101 }))

102 makeConfidenceInterval(coverage, nIntervals)

103 }

104

105

106 #### Pure R implementation

107

108 coverage.pureR <- function(sampler, n, truth, prob1, prob2, nSamples, alpha, nIntervals) {

109 statistic <- function(x) {

110 q <- quantile(x, probs = c(prob1, prob2))

111 q[1] / q[2]

112 }

30 Integration of R and Scala Using rscala

113 ciContains.pureR <- function(x) {

114 samples <- sapply(1:nSamples, function(i) {

115 statistic(sample(x, replace=TRUE))

116 })

117 ci <- quantile(samples, probs = c(alpha/2, 1-alpha/2))

118 (ci[1] <= truth) && (truth <= ci[2])

119 }

120 clusterExport(cluster, c("sampler","n","truth","prob1","prob2","nSamples","alpha"),

121 envir = environment())

122 coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

123 ciContains.pureR(sampler(n))

124 }))

125 makeConfidenceInterval(coverage, nIntervals)

126 }

127

128

129 #### Rcpp implementation

130

131 clusterEvalQ(cluster, { # Don't count compile timing when benchmarking Rcpp.

132 library(Rcpp)

133 sourceCpp(code="

134 #include <Rcpp.h>

135 using namespace Rcpp;

136

137 double quantile(double *sorted, int length, double p) {

138 int i = (int) ((length-1)*p);

139 double delta = (length-1)*p - i;

140 return (1 - delta) * sorted[i] + delta * sorted[i+1];

141 }

142

143 int compare_double(const void* a, const void* b) {

144 double aa = *(double*)a;

145 double bb = *(double*)b;

146 if (aa == bb) return 0;

147 return aa < bb ? -1 : 1;

148 }

149

150 double statistic(double *x, int length, double prob1, double prob2) {

151 qsort(x, length, sizeof(double), compare_double);

152 return quantile(x, length, prob1) / quantile(x, length, prob2);

153 }

154

155 double *resample(double *x, int length) {

156 double *y = (double*) malloc(length*sizeof(double));

157 for (int i=0; i<length; i++) y[i] = x[(int)(Rf_runif(0,1)*length)];

158 return y;

159 }

160

161 // [[Rcpp::export]]

162 bool ciContains(NumericVector data, double truth,

163 double prob1, double prob2, int nSamples, double alpha) {

164 double *y = (double*) malloc(nSamples*sizeof(double));

165 for (int i=0; i<nSamples; i++) {

166 int length = data.size();

167 double *z = resample(data.begin(), length);

168 y[i] = statistic(z, length, prob1, prob2);

169 free(z);

Journal of Statistical Software 31

170 }

171 qsort(y, nSamples, sizeof(double), compare_double);

172 bool result = (quantile(y, nSamples, alpha/2) <= truth) &&

173 (quantile(y, nSamples, 1-alpha/2) >= truth);

174 free(y);

175 return result;

176 }

177 ")

178 })

179

180 coverage.Rcpp <- function(sampler, n, truth, prob1, prob2, nSamples, alpha, nIntervals) {

181 clusterExport(cluster, c("sampler","n","truth","prob1","prob2","nSamples","alpha"),

182 envir=environment())

183 coverage <- mean(parSapply(cluster, 1:nIntervals, function(i) {

184 ciContains(sampler(n), truth, prob1, prob2, nSamples, alpha)

185 }))

186 makeConfidenceInterval(coverage, nIntervals)

187 }

188

189

190 #### Benchmarks

191

192 library(microbenchmark)

193 engine <- function(nSamples, nIntervals) microbenchmark(

194 pureR. = coverage.pureR(rnorm, n, truth, prob1, prob2, nSamples, alpha, nIntervals),

195 Rcpp. = coverage.Rcpp(rnorm, n, truth, prob1, prob2, nSamples, alpha, nIntervals),

196 rscala1. = coverage.rscala1(rnorm, n, truth, prob1, prob2, nSamples, alpha, nIntervals),

197 rscala2. = coverage.rscala2(rnorm, n, truth, prob1, prob2, nSamples, alpha, nIntervals),

198 times=10)

199

200 engine(nSamples = 10000L, nIntervals = 10000L)

Affiliation:

David B. Dahl
Professor
Department of Statistics
Brigham Young University
223 TMCB
Provo, UT 84602
E-mail: dahl@stat.byu.edu
URL: https://dahl.byu.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: 2017-08-22
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:dahl@stat.byu.edu
https://dahl.byu.edu
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

	Introduction
	Accessing Scala in R
	Package and Scala installation
	Instantiating a Scala interpreter in R
	Calling Scala code from R
	Evaluating Scala snippets
	String interpolation
	Primitive and copyable types
	Scala references
	Getting and setting variables
	Instantiating objects
	Accessing methods and variables of Scala objects
	Calling methods of singleton objects
	Method arguments, null references, and length-one vectors
	The apply and update methods
	Quoting method names

	Defining inline Scala functions
	Callbacks into R from embedded Scala
	Memory management
	Speed considerations
	Developing packages based on rscala

	Accessing R in Scala
	Case study: Simulation study accelerated with rscala
	Conclusion
	

