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Abstract

Summary: rtrim is an r-package for the analysis of time series of counts of
animal populations with missing observations. The package contains functions to
estimate indices and trends and to asses the effects of covariates on these indices and
trends. This report describes, in some detail, the statistical methods and models
implemented in this package.
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1 Introduction

The package rtrim (Bogaart, van der Loo and Pannekoek, 2016) is developed for the
analysis of count data obtained from monitoring animal populations. Such monitoring
projects typically involve a large number of sites that are surveyed annually, seasonally
or monthly during some period of time. One of the principal objectives of monitoring is
to assess between-year changes in abundance of the species under study. These changes
are usually represented as indices, using (usually) the first year as a base year.

In practice, this kind of data often contains many missing values. This hampers the
usefulness of index numbers because index numbers calculated on incomplete data will
not only reflect between year changes but changes in the pattern of missing values as
well. By the use of models that make assumptions about the structure of the counts, it is
possible to obtain better estimates of the indices. The idea is to estimate a model using
the observed counts and then to use this model to predict the missing counts. Indices
can then be calculated on the basis of a completed data set with the predicted counts
replacing the missing counts. The package rtrim implements a variety of loglinear models
for this purpose.

The purpose of these models is not only to produce estimates of annual indices but also
to investigate trends in these indices: is the abundance of a certain species increasing or
decreasing over time. These trends need not be constant over time, allowing conclusions
like “the development over time can be described by an annual increase of x% from 1980
up to 1988, no change between 1988 and 1993 and an annual decrease of y% from 1993
onwards”. TRIM also includes models that allow for effects of covariates on the trends
and indices. Apart from leading to improved estimates of annual indices, covariates are
also important for investigating, for instance, whether or not environmental factors such
as acidification or pollution have an impact on the trends.

A problem in monitoring programmes is the oversampling of particular areas and
the undersampling of others. Especially when many volunteers are involved, the more
natural areas like dunes, heathland and marshes might be overrepresented whereas urban
areas and farmland are underrepresented. This hinders the assessment of national figures
because the changes are not necessarily similar in all area types. This situation can be
remedied by the use of weights that can counter the effects of over- and undersampling.

In the application of loglinear models to the kind of data considered here, there are
some statistical complications to deal with. First, the usual (maximum likelihood) ap-
proach to estimation and testing procedures for count data are based on the assumption
of independent Poisson distributions (or a multinomial distribution) for the counts. Such
an assumption is likely to be violated for counts of animals because the variance is often
larger than expected for a Poisson distribution (overdispersion), especially when they oc-
cur in colonies. Furthermore, the counts are often not independently distributed because
the counts in a particular year will also depend on the counts in the year before (se-
rial correlation). Therefore, rtrim uses statistical procedures for estimation and testing
that take these two phenomena into account. Second, the usual algorithms for estimat-
ing loglinear models are not practical for the large number of parameters in our models
(since there is a parameter for each site the total number of parameters is larger than the
number of sites which can be several hundreds). This complication is dealt with by an
algorithm that is tailor made for the applications discussed here and is much faster and
requires much less memory than the usual approach.

The remaining of this report consists of the following two main sections:
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Models and statistics This section gives an overview of the models and methods
implemented in rtrim to analyse trends and estimate indices. These models belong to
the class of loglinear models and, although this section is self-contained, some background
in loglinear analysis will be helpful in understanding the models described here. General
introductions to the theory and practice of analysing count data by loglinear models can
be found in standard text books such as Agresti (1990, chapter 5), McCullagh and Nelder
(1989, chapter 6), chapter 6 or Fienberg (1977). Application of loglinear models to the
analysis of monitoring data, also referred to as “Poisson regression”, has been discussed
by ter Braak et al. (1994), Thomas (1996) and Weinreich and Oude Voshaar (1992). This
section also summarizes the test-statistics implemented in rtrim, including goodness-of-
fit tests for the models and Wald-tests for the significance of specific parameters.

Details of estimation and computation This section provides a more technical
description of the estimation methods and the algorithms involved as well as more details
of the calculation of the summary statistics and parameter transformations that can
(optionally) be produced by rtrim.

2 Models and statistics

2.1 Terminology

Observed counts and missing counts The data for which the package rtrim is
developed are counts obtained from a number of sites at a number of years (or any equi-
distant time points), and optionally months (or any other season) within these years
or time point. In what follows, we will, without loss of generality, speak of ‘years’ and
‘months’. In case of annual data, the count or frequency in site i at year j will be denoted
by fij (i = 1 . . . I, j = 1 . . . J) with I the total number of sites and J the total number of
years. There will usually not be observations fij for every combination of site and year
and the unobserved counts are called missing counts. In case of monthly (or any other
type of higher frequency) data, we will have observed frequencies fijm (m = 1 . . .M) with
M the number of months.

To cover cases with and without monthly observations, we will use the notation ij(m)
to denote both ij, in case of yearly observations, and ijm in case of monthly observations.

Expected and estimated counts The counts are viewed as random variables. The
expected counts are the expected values of the counts. The models, to be discussed in the
next subsection, express the expected counts as a function of site-effects and time-effects
(or, site-parameters and time-parameters). In many cases it will be possible to estimate
the model parameters and hence to calculate an estimated (or predicted) expected count
for every combination of i and j (and optionally m) even with a substantial number of
missing counts. This depends however on the model type and the pattern of missing
values. In general, complicated models with many parameters can only be estimated if
the data are not too sparse (the number of missing data is not too large), and simple, but
perhaps not very realistic, models can be estimated even with very sparse data. rtrim

will inform you if a chosen model cannot be estimated because the data are too sparse. In
the following, expected counts will be denoted by µij(m), and estimated expected counts
(also be called estimated counts) will be denoted by µ̂ij(m).
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Imputed counts The count after imputation (imputed count) for a Site by Time com-
bination, denoted by f+

ij(m), equals the observed count if an observation is made and
equals the estimated count µ̂ij(m) if an observation is missing, i.e.,

f+
ij(m) =

{
fij(m) if fij(m) availabe (observed),

µ̂ij(m) otherwise.

Observed, model based and imputed time-total For year j, the observed total is
f+j =

∑
i∈obs fij, where the notation i ∈ obs denotes that summation is over available

(observed) fij only. Similarly, the model-based total is defined as µ+j =
∑

i µij, and the
imputed total as f+

+j =
∑

i f
+
ij .

Similarly, for monthly observations, we define f+j+ =
∑

i,m∈obs fijm, µ+j+ =
∑

im µijm,

and f+
+j+ =

∑
i,m∈obs f

+
ijm

Model based and imputed index values An annual index value, index for short,
describes the increase or decrease of a species aggregates over all sites, relative to some
specific reference year or time period. Index values are computed as the total for a
specific year, divided by the total for a specified reference year or period. Usually, for
these indices, the first year of a time series is used as the reference year, but it is possible
to select any other year to serve as reference. For the exposition in most of the remainder
of this report it is assumed, however, that the first time-point is the base time-point. The
model based indices are indices calculated from the model based totals and the imputed
indices are indices calculated from the imputed totals.

2.2 Models

This section gives a brief description of the models that are used in rtrim to analyse trends
and estimate indices. These models belong to the class of loglinear models. Loglinear
models are linear models for the logarithm of expected counts in contingency tables (in
our case the two-way Site by Time table).

Because rtrim models for monthly data sets are expressed as a mixture of models
for yearly data, first the ‘yearly’ models will be presented, and then the corresponding
‘monthly’ models.

2.2.1 Model 1: no time-effects

A very simple, base-line, model for lnµij is:

lnµij = αi, (1)

with αi the effect for site i. For the expected counts under this model we have µij(m) =
exp(αi). This “no time-effects” model implies that the counts vary only across sites and
not across time-points; the model based time-totals are thus equal for each time point
and the model based indices are all equal to one.

2.2.2 Model 2: Linear (switching) trend

A model with a site-effect and a linear (on the log-scale) effect of time can be written as

lnµij = αi + β(j − 1) (2a)
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According to this model the lnµij’s for each site i are a linear function of j with slope
β; the log expected count increases with an amount β from one time-point to the next.
Model (2a) can be rewritten in multiplicative form as:

µij = aib
(j−1) = bµi,j−1 (2b)

with ai = exp(αi) = µi,1 and b = exp(β) This formulation shows that for each site the
expected count at some time-point j (j > 1) is a factor b times the expected count at the
previous time-point. For the model based time-totals we have µ+j = b(j−1)

∑
i ai, and the

model based indices are b(j−1).
Model (2a) implies exponential growth or decrease in the expected counts from each

time point to the next. Such a model may give an adequate description of short time
series but will usually become unrealistic if the time series get longer. A switching trend
model allows the slope parameter to change at some time points.

For instance, a model with a slope β1 for time points 1 to 4, a slope β2 for time points
5 to 7 and a slope β3 for time points beyond 7 is a switching trend model with two changes
in slope, one at time point 4 and one at time point 7. The time points (4 and 7 in this
example) where the slope parameter changes are called changepoints or knots and will
be denoted by kl, with l = 1 . . . L and L the number of changepoints (k1 = 4, k2 = 7 and
L = 2 in this example).

This model can be reformulated to encompass the no time-effects model (1) by setting
the slope to zero from the first time point up to the first changepoint, to β1 from the
first to the second changepoint and so on. The no time-effects model is then obtained
if there are no changepoints and the model in the example above is obtained if we set
three changepoints: k1 = 1, k2 = 4 and k3 = 7. The linear trend model (2a) is obtained
if there is a changepoint at the first time-point only.

In this formulation, the log expected counts for a model with L changepoints can be
written as

lnµi,j =



αi for 1 ≤ j ≤ k1

αi + β1(j − k1) for k1 ≤ j ≤ k2
...

αi + β1(k2 − k1) + β2(k3 − k2) + · · ·+ βl(j − kl) for kl ≤ j ≤ kl+1

αi + β1(k2 − k1) + β2(k3 − k2) + · · ·+ βL(j − kL) for kL < j ≤ J

So the log expected counts are constant (equal to αi) for time points up to and including
k1. At time point (k1 + 1) the log expected count is αi + β1. The increase between
successive time points (slope) remains β1 until the next change point k2 is reached where
the increase becomes β2, and so on.

The equations for the log expected counts can be comprised into a single equation as
follows:

lnµij = αi +
L∑
l=1

(βl − βl−1)(j − kl)κ(j, kl), (3)

where the function κ(j, kl−1) is defined by

κ(j, kl−1) = 0 for j ≤ kl

= 1 for j > kl
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κ(j, kl−1) =

{
0 for j ≤ kl

1 for j > kl

2.2.3 Model 3: Effects for each time-point

An alternative to describing the development in time with a (number of) linear trend(s)
is to use a model with separate parameters for each year. A model with effects for each
site and each year can be expressed as

lnµij = αi + γj (4)

with γj the effect for time j on the log-expected counts. One restriction is needed to
make the parameters of this model identifiable. In rtrim, the parameter γ1 is set to zero.
Model (4) can be rewritten in multiplicative form as:

µij = aicj (5)

with ai = exp(αi) = µi,1, c1 = exp(0) = 1 and cj = exp(γj). From (5) we have for the
expected total for time j: µ+j =

∑
i µij = cj

∑
i ai and so the model based indices are

identical to the parameters cj (since µ+j/µ+1 = cj).
The time parameters in model (4) can be decomposed in a linear trend parameter (β∗j )

and parameters (γ∗j ) describing the deviations from this linear trend for each year. Such a
representation makes it easy to investigate for which years significant deviations from the
linear trend occur (γ∗j different from zero). One way of obtaining such a decomposition
is by fitting a linear regression line through the lnµij of model (4), see section(4.2) for
the details. This reparameterization can be written as

lnµij = α∗i + β∗dj + γ∗j (6)

with dj equal to j minus the average of the j’s, so dj = j − 1
j

∑
j j. The parameter α∗i is

the intercept and the parameter β∗ is the slope of the regression line through the lnµij.
The parameters γ∗j are the deviations of the lnµij from this regression line. Note that
(6) is just a different version of (4) and (5), the expected counts and model based indices
being the same for all three representations.

The model with time-point parameters is equivalent to a switching trend model when
all time-points (except the last) are changepoints. For the model with time-point param-
eters the trend between time-points j and j + 1 is

lnµij+1 − lnµij = γj+1 − γj (7)

and for the equivalent switching trend model the trend is (compare (3))

lnµij+1 − lnµij = βj (8)

and β1 = γ2, since γ1 = 0.
So, the switching trend model (3) is a more general model than the time-effects model

(4) since it includes this last model as a special case.
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2.2.4 Extended model formulations for monthly data

In case monthly data are used, i.e. fijm instead of fij, models 1, 2, and 3 are extended to
include month effects, denoted by additional parameters δm (for month m). In all cases,
month effects are expressed similar to how year effects are expressed in Model 3, and the
extended model definitions now read

lnµijm = αi + δm (9)

lnµijm = αi + β(j − 1) + δm (10)

lnµijm = αi + γj + δm (11)

or similar, for models 1, 2 and 3, respectively. As with γ parameters, δ1 ≡ 0

2.3 Effects of categorical covariates on the trend

Both model 2 and model 3 are restrictive in the sense that the time related parameters (β,
γ and δ) are assumed to be the same for each site. By the use of covariates, this assump-
tion can be relaxed and the models can be improved. The rtrim package accomodates
additive effects of categorical covariates on trends and time-point parameters. For this
purpose, dummy-variables are created for the categories of each covariate. Since one of
the dummies is redundant, the dummy variable for the first category of each covariate is
omitted. The values of these dummy variables are denoted by zij(m)k, (k = 1 . . . K) with
K the sum of the numbers of categories of the covariates minus the number of covariates.

An extension of the simple linear trend model (2a) that allows for additive effects of
K covariates on the slope parameter is

lnµij = αi + (β0 +
K∑
k=1

zijkβk)(j − 1) (12)

so that the slope of the linear trend for site i and year j consists of a for all i and j common
component β0 (which is the slope parameter for site by time combinations belonging to
the first categories of all covariates) plus a component that is the sum of the effects of the
categories to which site i belongs at time j. Note that the values of covariates can vary
not only across sites but also across time points. This allows for the possibility that, for
instance, a site is classified as ‘wood’ at some point in time but as ‘farmland’ at another
point in time. A switching trend model with effects of covariates on each of the slope
parameters is obtained similarly by replacing βl in (3) with βl0 +

∑K
k=1 zijkβlk.

An extension of model 3 that allows for additive effects of categorical covariates on
the time-effects is:

lnµij = αi + γj0 +
K∑
k=1

zijkγjk (13)

The effect of time j at site i now consists of a for all sites common component γj0 (which
is the time-effect for time j for sites belonging to the first categories of all covariates) plus
an effect

∑
k zijkγjk, that is specific for the combination of categories of the covariates.

Above formulations, which are given here for yearly observations only, can be extended
for monthly observations by inclusion of categorial month effects, similar to the year
effects (13)

lnµijm = . . .+ δm0 +
K∑
k=1

zijmkδmk (14)
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2.4 Changepoints and model estimability

In many cases, users want make as few assumptions as possible regarding actual trend
changes, and therefore would like to use model 3 or, equivalently, a ‘maximal’ model 2,
where each time point is treated as a change point. However, not in all cases will there
be sufficient observations to estimate the corresponding model parameters. A single year
without any observations is one simple example.

In applications it will often be the case that a switching trend or time-parameters
model with covariates cannot be estimated owing to a lack of observations. For the
time-parameters model to be estimable, it is necessary that for each time-point there are
observations for each category of each covariate. For the switching trend model to be
estimable it is necessary that for each time-interval between two adjacent changepoints
(time-points j for which kl < j ≤ kl+1) there is at least one observation for each category
of each covariate. rtrim checks these conditions and, if necessary, an error message will
be issued indicating for which time-interval (time-point) and covariate category there are
no observations.

An other option is, for the switching trend model, to automatically delete changepoints
such that for the remaining time-intervals there are observations for each category of each
covariate. This is accomplished by deleting the changepoint corresponding to the end
point of the first time-interval for which no observations are available and then checking
again, beginning with the newly created interval.

Note that this procedure is aimed at the identification of a ‘maximum’ set of change
points, given the amount of actual observations. The alternative is to identify a ‘minimal’,
parsimonious, model (a model with as few parameters as possible, without compromising
the explanatory power of the model). This can be carried out by a stepwise selection of
changepoints, explained in Section 4.1.

2.5 Overall trend

When covariates are used, trends and indices vary between sites and the models do not
provide a measure of the trend in the aggregated (over sites) time-counts. Although the
between-sites differences in trends will usually be of scientific interest since they reflect
the effects of covariates on the trend, the trend in the aggregated time-counts will often
also be of interest since this ‘overall trend’ reflects changes in the total population over
time. A simple measure of overall trend can be obtained as the ordinary least squares
(ols) estimator of the slope parameter, β+ say, of a linear regression line through the log
estimated model-based time-totals, ln µ̂+j. Thus, as the ols estimator β̂+ of β+ in the
expression

ln µ̂+j = α + β+(j − 1) + εj (15)

with εj the deviation of the log estimated time-total for time j from the linear trend.
To obtain expressions for the ols-estimators of the slope parameters, we introduce

the following notation: X1 is a J-vector with one’s, X2 a J-vector with values j − 1
(J = 1, . . . , j), X = (X1,X2) y1 a J-vector with values lnµ+j, and y2 a vector with
values ln

(µ+j

µ+1

)
. Then we have for the ols-estimators for the intercept and slope in model

(2.5):
β̂ = (α, β+)T = (XTX)−1XTy1, (16)

It is important to note that the estimator β̂+ of the overall slope is not viewed as
an estimator of a parameter of a model thought to have generated the ln µ̂+j’s but as a
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descriptive statistic highlighting one aspect (the linear trend) of the ln µ̂+j’s. The ln µ̂+j’s
in (15) are estimates that can have been derived from any of the models discussed before,
and will not generally follow a linear trend.

Although β̂+ is defined by ols-regression, its variance is estimated in a way that is
different from the usual ols-regression approach. In line with the interpretation of β̂+ a
summary statistic (function) of the ln µ̂+j’s, estimator of its variance is obtained from the
estimated covariance matrix of the ln µ̂+j’s, which in turn is derived from the estimated
covariance matrix of the parameters of the model used to generate the ln µ̂+j’s (see,
section 5).

2.6 Using weights

In some instances it is advisable to use cell weights to improve the estimates of national
indices, see van Strien et al. (1995) for an example. For instance, if sites from urban
areas are underrepresented relative to sites from other areas, weights could be calculated
such that the weighted total surface of urban sites equals the population total surface of
urban areas and the weighted total surface of other areas also equals the corresponding
population surface. Then, assuming that the counts are proportional to the surface of the
sites, the counts can be multiplied by these weights to obtain a better representation of
the population counts. More generally, weights can be determined such that the weighted
total surface of sites of a certain type at a certain point in time equals, or is proportional
to, the total population surface of sites of that type. This kind of weighting can counter
the effects of over- and undersampling and is easy to incorporate in the loglinear modelling
approach.

When weights are used, interest will be in models describing the weighted expected
counts. If the weights are denoted by wij(m), the expected value of the weighted counts
will be E[wij(m)fij(m)] = wij(m)µij(m) since the weights are known constants. A model, for
instance model 3 (effects for each time-point), for the weighted expected counts can be
written as

lnwijµij = αi + γj, (17)

or
wijµij = aici. (18)

This model implies for the unweighted expected counts

lnµij = αi + γj − lnwij. (19)

The lnwij are parameters that are known in advance. Such parameters are called an
offset in the terminology of generalized linear models (glm’s) (McCullagh and Nelder,
1989).

When weights are used, the model based indices are
∑

iwijµij/
∑

iwi1µi1 (assuming
the first time point is taken as reference). These indices will not change if the weights
are multiplied by a constant different from zero, but the model based totals for the time-
points will change. If the weights do not change over time we can write wij = wi, with
wi the common weight for all time-points for site i. The indices for model (18) can then
be expressed as

∑
iwiaicj/

∑
iwiai = cj showing that the indices are independent of the

weights and the weighted model based indices are equal to the unweighted model based
indices. More generally, weighted and unweighted model based indices are equal if the
weights are equal for all time-points and the time related parameters are the same for
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all sites. Thus, if wij = wi, the weighting does not affect the indices for models without
covariates but does affect the indices if covariates are used.

Weighted model based indices will be calculated using the weighted estimated counts
and weighted imputed indices will be calculated using the weighted observed counts wijfij
if they are available and the weighted estimated counts otherwise.

The weighting as described in this subsection should not be confused with the weight-
ing as performed by estimation methods such as weighted least squares or generali-
sations thereof such as the iterative weighted least squares algorithm used for gener-
alised linear models. In such procedures the observations are weighted by the inverse
of their variances and the weights are part of the estimation procedure but not of the
model. The weights as described here are part of the model, they are multiplicative
factors used to increase/decrease counts for site/time combinations that are underrepre-
sented/overrepresented in the sample and do not change the variances of the observations.

In case of monthly observations, this reasoning does not change, and e.g. Equa-
tions (17) and (19) are written as

lnwijmµijm = αi + γj + δm (20)

and
lnµijm = αi + γj + δm − lnwijm. (21)

2.7 Estimation options

The usual approach to statistical inference for loglinear models is to use maximum likeli-
hood (ML) estimation and associated calculations of standard errors and test statistics.
These estimation and testing procedures are based on the assumption of independent
Poisson distributions (or a multinomial distribution) for the counts. Such an assumption
is likely to be violated for counts of animals because the variance is often larger than ex-
pected for a Poisson distribution (overdispersion), especially when they occur in colonies.
Furthermore, the counts are often not independently distributed because the counts at a
particular point in time will often depend on the counts at the previous time-point (se-
rial correlation). The rtrim package uses procedures for estimation and testing that take
these two phenomena into account (a Generalised Estimating Equations (GEE) approach,
see section 3.2 for details). This procedure is based on the following assumptions for the
variance of the counts and the correlation between the counts for adjacent time-points:

var(fij) = σ2µij (22)

and
cor(fij, fi,j+1) = ρ (23)

The parameter σ2 is called a dispersion parameter. For σ2 = 1, the variance of fij is equal
to its expectation which is the variance under the Poisson assumption. The parameter ρ
is the serial correlation parameter. The counts are independent if ρ = 0. If both σ2 = 1
and ρ = 0, the estimation procedure used in rtrim is identical to the usual maximum
likelihood approach. If σ2 6= 1 and ρ = 0, the estimates of parameters (and expected
counts and indices) are equal to the maximum likelihood estimates but the estimated
standard errors and test statistics will be different. If ρ 6= 0 both the estimates of param-
eters and standard errors differ from the maximum likelihood estimates. The difference
between GEE and ML estimates of parameters is usually small and tends to decrease
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as the counts increase. However, the corresponding difference between estimated stan-
dard errors and test-statistics need not be small nor decreases when the counts become
larger. So, allowing ρ and σ2 to be unequal to 0 and 1 respectively, has little impact on
the estimated parameters but can have important effects on standard errors. In rtrim

options can be set that allow the user to specify whether overdispersion and/or serial
correlation must be taken into account or not. If either of these options is used estimates
of σ2 and/or ρ will be calculated and used in estimation and testing procedures.

In case of monthly observations, overdispersion is allowed, and Equation (22) is written
as

var(fijm) = σ2µijm

but serial correlation is not considered (ρ ≡ 0).

2.8 Test-statistics

2.8.1 Model goodness-of-fit tests

The goodness-of-fit of loglinear models is generally tested by Pearson’s chi-squared statis-
tic, given by

χ2 =
∑
ij(m)

(fij(m) − µ̂ij(m))
2

µ̂ij(m)

(24)

or by the likelihood ratio test given by

LR = 2
∑
ij(m)

fij(m) ln

(
fij(m)

µij(m)

)
(25)

where the summation is over observed (i, j) or (i, j,m) only. For independent Poisson
observations, both statistics are asymptotically χ2

ν distributed, with ν the number of de-
grees of freedom (equal to the number of observed counts minus the number of estimated
parameters). Models are rejected for large values of these statistics and small values of the
associated significance probabilities. These tests indicate how well the model describes
the observed counts.

The likelihood ratio statistic can be used to test for the difference between nested
models. That is, if we have two models, M1 with p parameters and M2 with the same p
parameters plus q additional parameters, then M1 is said to be nested within M2 (M1 can
be obtained from M2 by setting the q additional parameters of M2 equal to zero). Now,
model M1 can be tested against model M2 by using the difference between the likelihood
ratio statistics for the two models (LR1−2 = LR1 − LR2, say) as test statistic. This
difference is also a likelihood ratio statistic and therefore asymptotically χ2

ν distributed,
with degrees of freedom ν equal to the difference in degrees of freedom for the two models
which is also equal to the number of additional parameters q.

Another approach to comparing models is by the use of Akaike’s Information Criterion
(AIC) (see, e.g. McCullagh and Nelder (1989), page 91). For loglinear models this
criterion can be expressed as C+LR−2ν where the constant C is the same for all models
for the same data set. According to this approach, models with smaller values of AIC,
or equivalently LR− 2ν, provide better fits than models with larger values. Contrary to
comparing models by using the likelihood ratio test for the difference, comparing models
on the basis of AIC-values is not restricted to nested models.

12



If the counts are not (assumed to be) independent Poisson observations and either
σ2 or ρ is estimated, the statistics defined by (24) and (25) are not asymptotically χ2

ν

distributed and the associated significance probabilities are incorrect. Also, the AIC
cannot be used for comparing models. However, Wald-tests (to be described below) can
still be used to test for the significance of (groups of) parameters.

2.8.2 Wald-tests for significance of parameters

A number of tests can be performed in rtrim to test for the significance of groups of
parameters. These so called Wald-tests are based on the estimated covariance matrix
of the parameters and since this covariance matrix takes the overdispersion and serial
correlation into account (if specified), these tests are valid, not only if the counts are
assumed to be independent Poisson observations but also if σ2 and/or ρ is estimated. The
general form of the Wald-statistic for testing simultaneously whether several parameters
are different from zero is

W = θ̂T
[
var(θ̂)

]−1
θ̂,

with θ̂ a vector containing the parameter estimates to be tested and var(θ̂) the covariance
matrix of θ̂.

The following Wald-tests can be performed in rtrim:

1. Test for the significance of the slope parameter (model 2).

2. Tests for the significance of changes in slope (model 2).

3. Test for the significance of the deviations from a linear trend (model 3).

4. Tests for the significance of the effect of each covariate (models 2 and 3).

Wald-tests are asymptotically χ2
ν distributed, with the number of degrees of freedom equal

to the rank of the covariance matrix var(θ̂). The hypothesis that the tested parameters
are zero is rejected for large values of the test-statistic and small values of the associated
significance probabilities (denoted by p), so parameters are significantly different from
zero if p is smaller than some chosen significance level (customary choices are 0.01, 0.05
and 0.10)

In addition to these tests the significance of each individual parameter can be tested
by a t-test e.g., a parameter is significantly (at the 0.05 significance level) different from
zero if it exceeds plus or minus 1.96 times its standard error.

2.9 Equality of model based and imputed indices

For the model with parameters for each time point (model 3, i.e., without month effects),
the model-based and imputed indices are equal if ρ = 0 and no weighting is used. This
is explained in this subsection.

Model 3 (without covariates) is the model of independence in a two-way contingency
table. It is well known (e.g. Fienberg (1977, ch. 2) that if the parameters of this model
are estimated by maximum likelihood, the estimated expected counts satisfy∑

i∈obs

µ̂ij =
∑
i∈obs

fij = f+j, (26)
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where again the summation is over observed (i, j) only. Thus, the time-totals of the
estimated expected counts, where the summation is over the observed cells only, are
equal to the time-totals of the observed counts (also summing over the observed cells
only, of course). For the imputed time-totals we then have∑

i

f+
ij =

∑
i∈obs

fij +
∑
i

µ̂ij −
∑
i∈obs

µ̂ij = f+j + µ̂+j − f+j = µ̂+j (27)

So, the imputed time-totals are equal to the estimated model based time-totals and the
imputed and model based indices will both be equal to the estimates of the parameters
cj. This equality between imputed and model based indices holds also when covariates
are used since then equalities analogous to (26) and (27) apply to the imputed and model
based time-totals for each group of sites sharing the same covariate values. Therefore,
the imputed and model based time-totals for all sites, obtained by adding the per group
time totals, must also be equal.

Equality between imputed and model based indices also holds if σ 6= 1 and ρ = 0 be-
cause the estimates of parameters (and expected counts) are then equal to the maximum
likelihood estimates (see section 2.7) but the equality does not hold (in general) if either
I) the model is not the time-effects model or II) weighting is used or III) ρ 6= 0.

3 Details of estimation and computation

3.1 Matrix formulation

To facilitate the discussion of estimators for the model parameters, it is convenient to
formulate the models in matrix notation. If we collect the expected frequencies in an
IJ(M)-vector µ = (µ1,1(,1), . . . , µI,J(,M)), all models can be written as

lnµ = Aα+Bβ, (28)

with α a vector of length I containing the site-parameters and β a vector containing the
time related parameters (which can be either all βj or γj, augmented with all δm in case
of monthly data). A and B are dummy matrices for the site-effects and time-effects.
For all models in rtrim, α has length pa = I, and A is an IJ(M) × I-matrix with I
dummy-variables, one for each site. The matrix B and vector β (of length pb) are specific
for each model.

The parameter vectors α and β can be combined to one vector θ = (αT ,βT )T and the
design matrices A and B can be combined to one IJ(M)× p design matrix X = (A,B)
with p = pa + pb the total number of α and β parameters to estimate.

The model (28) can then be written as

lnµ = Xθ (29)

and models for weighted counts can be specified as

ln diag(w)µ = Xθ

or
lnµ = Xθ − lnw

with w an IJ(M)-vector containing the cell weights and diag(w) a diagonal matrix with
w on the diagonal.
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3.2 Generalized estimating equations

The estimation method used in rtrim is based on generalized estimating equations (GEE)
see, Liang and Zeger (1986), Zeger and Liang (1986), McCullagh and Nelder (1989), chap-
ter 9. Contrary to maximum-likelihood (ML) this method doesn’t require the distribution
of the observations to be specified in full. The specification (up to some unknown param-
eters) of the first two moments (expectation and covariance matrix) is sufficient. This
makes it relatively easy to take overdispersion and serial correlation into account. Further-
more, the GEE approach to estimating loglinear models reduces to the usual maximum
likelihood approach if the covariance matrix of the observations equals the covariance
matrix of independent Poisson observations (σ2 = 1 and ρ = 0).

For estimating the parameters only the observed counts can be used and therefore, in
this subsection, the vector f refers to the O-vector (O ≤ IJ(M)) with observed counts
only and similarly the rows of the matrices X, A and B corresponding with missing
counts are deleted such that the dimensions of these matrices are now O× p, O× pa and
O × pb, respectively.

Given the values of the parameters in the covariance matrix, the GEE estimator θ̂ for
θ is the solution of the estimating equation

U(θ̂) = DTV −1(f − µ) = 0, (30)

with D the O × p matrix ∂µ/∂θ and V the covariance matrix of f . Since the elements
of D are given by Dij,k = ∂µij/∂θk = Xijkµij we can write D = diag(µ)X and for the
estimating function U(θ) we have

U(θ) = XT diag(µ)V −1(f − µ) (31)

If the counts were assumed to be independently Poisson distributed, V would be
diag(µ) and the function U (θ) would reduce to XT (f − µ) which is well known to be
the score-function (derivative w.r.t. θ) of the likelihood associated with this assumption.

The expected value of the derivative matrix ∂U(θ)/∂θT is

−DTV −1D = −i(θ), (32)

where i(θ) plays the same role as the Fisher information matrix for likelihood functions.
In particular, if the model is correct and the observed counts are large, the distribution
of the GEE estimator θ̂ is approximately normal with covariance matrix i(θ)−1.

For given values of the correlation and dispersion parameters, the GEE estimator for
θ (the solution to (30)) is usually obtained by Fisher scoring iterations given by

θt+1 = θt + i(θt)U(θt)
−1

= θt + (DT
t V

−1
t Dt)

−1DT
t V

−1
t (f − µt) (33)

where t is the iteration number and θt, Vt, Dt and µt are estimates at iteration t. If
V = diag(µ) (the Poisson assumption), the current estimate of V would be diag(µ(θt))
and depend on the current estimate of θ only. In our applications we are often not willing
to assume that V = diag(µ) because it is likely that overdispersion and serial correlation
are present and V will depend on µ as well as on dispersion and correlation parameters
and estimates of these parameters are required in order to update θ. Consequently,
the algorithm iterates between updating θ and estimating the dispersion and correlation
parameters as described in section 3.3.
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A problem with the updating equation (33) is the size (p×p) of the matrixDT
t V

−1
t Dt.

The number of parameters p is at least equal to the number of sites I, which can be well
over 1000. Inverting such large matrices is very time and memory consuming, and a
potential source for numerical instability. The matrix V is of course even larger (O×O),
but for this matrix a block diagonal structure is assumed (section 3.3) which reduces the
problem to inverting the covariance matrices for the observations for each site separately.
As an alternative to (33) an algorithm can be applied that uses the derivatives of U(θ)
with respect to β only. This procedure leads to an algorithm that is much faster and less
memory consuming than an algorithm based on (33) and is described in section (3.4).

3.3 Estimation of the covariance matrix

To allow for overdispersion and serial correlation, the O×O covariance matrix V of f is
expressed as

V = σ2
√

diagµR
√

diagµ, (34)

with R a correlation matrix. In case of no serial correlation, R simply is the identity ma-
trix, implicating that V = σ2 diagµ in this case, or even V = diagµ when overdispersion
is also absent (Poisson assumption)

A simple correlation matrix R that reflects serial correlation is obtained by assuming
that within each site there is a constant correlation, ρ say, between the observed counts
at years j and j − 1 and that counts from different sites are uncorrelated. This leads to
a block diagonal correlation matrix of the form

R =


R1

. . .

Ri

. . .

RI

 (35)

with Ri the Oi × Oi correlation matrix of the Oi observations in site i. If there are no
missing values in a site i then Ri is a J × J matrix and can be expressed as

Ri =


1 ρ ρ2 . . . ρJ−1

ρ 1 ρ . . . ρJ−2

...
...

...
...

ρJ−1 ρJ−2 ρJ−3 . . . 1

 (36)

which reflects a declining correlation between counts as they are further apart in time. For
sites with missing values the correlation matrix can be obtained from (36) by deleting the
rows and columns corresponding to the time-points for which there are no observations.

Following Liang and Zeger (1986), an estimates of σ2 can be obtained from the Pearson
residuals

rij(m) = (fij(m) − µij(m))/
√
µij(m), (37)

(which are obviously only available for the O observed i, j,m combinations), as

σ̂2 =
1

O − p
∑
ij(m)

r2ij(m) (38)
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where the summation is again over the observed (i, j(,m)) only. Note that the inclusion
of p in the denominator of (38) is to account for the effect of parameter-dependency of
the µij(m)’s and hence the rij(m)’s on the available degrees of freedom.

Similarly, an estimate of ρ can be obtained as

ρ̂ =
1

Nσ̂2

I∑
i=1

J−1∑
j=1

ri,jri,j+1 (39)

where the j-summation is only over consecutive pairs j, j + 1 if both are observed, and
N is the total number of all such pairs. Note again, that serial correlation is only used
when observations are on an annual time scale.

3.4 An efficient algorithm

Using the partitioning θ = (αT ,βT )T of the parameter vector and the corresponding
partitioning X = (A,B), the estimating equation U(θ) = 0 can be expressed in two
equations as

Ua = AT diagµV −1(f − µ) = 0 (40a)

Ub = BT diagµV −1(f − µ) = 0 (40b)

The negative expected derivative matrix i(θ), defined in (32), can be partitioned similarly
leading to

i(θ) = −
[
∂Ua/∂α

T ∂Ua/∂β
T

∂Ub/∂α
T ∂Ub/∂β

T

]
=

[
ATΩA ATΩB
BTΩA BTΩB

]
(41)

with Ω = diagµV −1 diagµ.
The equations (40a) and (40b) can be solved in two steps. First we solve (40a) with

respect to α using the value for β from the previous iteration and substitute the resulting
value α̂(β), say in (40b), leading to

U ∗b = Ub(α̂(β),β). (42)

Second, we solve (42) with respect to β. With the new value for β the two steps
can be repeated. This process is iterated until convergence. The resulting estimates for
α and β solve the equations (40a, 40b) and hence U(θ) = 0. This two-step procedure
is similar to the “concentrated likelihood” approach for solving likelihood equations (see
Amemiya, 1985, Ch. 4.2.5).

To solve (40a) for α we note that the matrix A contains dummy variables for each
site and the matrix V is a block diagonal covariance matrix of the same form as (35) so
that for site i we can write

1TOi
diag(µi)V

−1
i (fi − µi) = 0 (43)

with Oi the number of observed counts for site i, 1Oi
an Oi-vector with ones and fi

the Oi-vector with observed counts for site i with expectation µi and covariance matrix
Vi. For µi we can write µi = ai exp(Biβ), with Bi the matrix with the rows of B
corresponding to the observations in site i. Now, (43) can be written as

µTi V
−1
i (fi − âi exp (Biβ)) = 0
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leading to
âi = µTi V

−1
i fi

/
µTi exp(Biβ). (44)

To solve the equation U ∗b = 0 for β a Fisher scoring algorithm analogous to (33) can
be used. The expected value of the required derivative matrix, i∗b say, can be written as

−i∗b = ∂U ∗b
/
∂βT = ∂Ub

/
∂βT +

(
∂αT

/
∂β
) (
∂UT

b

/
∂α
)

(45)

where the derivatives are evaluated in α = α̂(β).
Next, differentiating both sides of the equation Ua(α̂(β),β) = 0 with respect to β

we obtain (
∂αT

/
∂β
) (
∂UT

a

/
∂α
)

+ ∂UT
a

/
∂β = 0

and so we have for ∂αT
/
∂β

∂αT
/
∂β = −∂UT

a

/
∂β
(
∂UT

a

/
∂α
)−1

(46)

where again α = α̂(β). Now, substituting (46) in (45) and using (41) we obtain

−i∗b = BTΩB −BTΩA
(
ATΩA

)−1
ATΩB (47)

The matricesA,B and Ω can be very large but (47) can be rewritten in a form suitable
for computation. Since the columns of A are dummy variables indicating the sites and
Ω has the same block diagonal structure as V (and R) we can write ATΩA = diag(d)
with d the I-vector with elements di = 1ToiΩi1oi and Ωi the ith block of Ω which can be
expressed as Ωi = diag(µi)V

−1
i diag(µi)

Now, we can rewrite (47) as

−i∗b =
∑
i

(
BT
i ΩiBi −

1

di
BT
i ΩiAiA

T
i ΩiBi

)
=
∑
i

BT
i

(
Ωi −

1

di
Ωi1oi1

T
oi

Ωi

)
Bi, (48)

and so, the matrix −i∗b can be build up by a summation of components for each site that
do not involve very large matrices.

In summary, the algorithm alternates between updating α and β according to

αti = lnzTi fi − ln zTi exp(Biβ
t−1)

µt = exp(Aαt +Bβt−1 − lnw)

βt = βt−1 − (i∗b)
−1U ∗b

(49)

where zTi = 1Toi in case of a ML model or iteration step, and zTi = µiV
−1
i for a GEE

iteration step. For GEE steps, σ2 and ρ are updated using the current value of µ.
Equations (49) are repeated until convergence in β (ML) or β, ρ and σ2 (GEE).

The asymptotic covariance matrix of β̂ can be estimated by the pb × pb submatrix
in the lower-right corner of −i(θ)−1 evaluated at θ = θ̂. But, using the formula for
the inverse of a partitioned matrix, it can be seen that this inverse equals the inverse of
the right-hand side of (47) evaluated at the estimates α̂, β̂. So, after convergence of the
algorithm (49) the matrix − (i∗b)

−1 provides an estimate of the covariance matrix of β̂, γ̂

(and/or δ̂.
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4 Model variants and extensions

4.1 Stepwise refinement

If the slope parameters (or, if covariates are present, the effects of covariates on the
slope) before and after a certain changepoint do not differ significantly, one may wish to
delete that changepoint in order to obtain a more parsimonious model, which has less
parameters than the original model, without compromising the explanatory power. After
refitting the reduced model one may again wish to delete a certain changepoint and so
on. In rtrim a stepwise model selection procedure is implemented for this purpose. This
procedure repeats the following steps:

1. Wald statistics for the difference of the parameters before and after each changepoint
and their associated significance levels are calculated. If the largest significance level
exceeds a certain threshold value (probability to remove, PR, default value is 0.20)
the corresponding changepoint is removed from the model.

2. For all removed changepoints except the last one, a score statistic is calculated to
assess the significance of the difference in parameters before and after the change-
point. If the smallest significance level is smaller than a threshold value (probability
to enter, PE, default value is 0.15) the changepoint is added to the model.

The procedure stops if no changepoints can be either removed or added.

4.1.1 Score test

The score test mentioned above is a test for the significance of additional parameters
that could be added to a model. The test can be performed without actually having to
estimate the extended model that includes these additional parameters. This is especially
an advantage for forward stepwise model selection procedures were the significance of a
number of possible additional parameters is evaluated before adding the most significant
one to the model.

The score test for testing if r-parameters among a larger set of p-parameters are
significantly different from zero, is obtained as follows. Let the p-vector with parameters
be partitioned as βp = (βq,βr). Where βq are unrestricted parameters and βr are
parameters restricted to be zero under the null hypothesis. To estimate βp under the
null hypothesis, we estimate βq in a reduced model that does not contain the restricted

parameters and then add zeroes for the restricted parameters, thus we obtain β̂p =

(β̂q,0r). Using β̂p we can evaluate the score vector and Hessian matrix under H0 resulting

in, using the notation of section 3.4, U ∗b (β̂p) and i∗b(β̂p), respectively.
The score statistic for testing H0 : βr = 0 is then given by (see, e.g. Cox and Hinkley,

1974, Ch. 9):
S(βr) = U ∗b (β̂p)

T [−i∗b(β̂p)]−1U ∗b (β̂p) (50)

But U ∗b (β̂p) = [U ∗b (β̂q),U
∗
b (β̂r)] = [0,U ∗b (β̂r)], because of the maximisation with respect

to the unrestricted parameters βq. Now, if we denote, for ease of notation, [−i∗b(β̂p)]−1
by V and we partition this matrix conformably with the partitioning βp = (βq,βr), we
can write the score statistic as

S(βr) =
[
0 U ∗b (β̂r)

]T [Vq,q Vq,r
Vr,q Vr,r

] [
0

U ∗b (β̂r)

]
= U ∗b (β̂r)

TVr,rU
∗
b (β̂r) (51)
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4.2 Reparameterization of the time effects model

Here we consider the reparameterization of the time-effects model in terms of a model
with a linear trend and deviations from this linear trend for each time point. The time-
effects model is given by

lnµij = αi + γj, (52)

with γj the effect for time j on the log-expected counts and γ1 ≡ 0. This reparameteri-
zation can be expressed as

lnµij = α∗i + β∗dj + γ∗j , (53)

with dj = j − j̄ and k̄j the mean of the integers j representing the time points.
The parameter α∗i is the intercept and the parameter β∗ is the slope of the least

squares regression line through the J log-expected time counts in site i and γ∗j can be
seen as the residuals of this linear fit. From regression theory we have that the ‘residuals’
γ∗j sum to zero and are orthogonal to the explanatory variable, i.e.,∑

j

γ∗j = 0

and ∑
j

djγ
∗
j = 0. (54)

Using these constraints we obtain the equations:

lnµij = α∗i + β∗dj + γ∗j = αi + γj (55)∑
j

lnµij = Jα∗j = Jαi +
∑
j

γj (56)∑
j

dj lnµij = β∗
∑
j

d2j =
∑
j

djγj, (57)

where (55) is the re-parameterization equation itself and (56) and (57) are obtained by
using the constraints.

From (56) we have that α∗i = αi + 1
j

∑
j γj. Now, by using the equations (55) thru

(57) and defining D =
∑

j d
2
j , we can express the parameters β∗ and γ∗ as functions of

the parameters γ as follows:

β∗ =
1

D

∑
j

djγj, (58)

γ∗j = αi + γj − α∗i − β∗dj (using (55))

= αi −
(
αi +

1

j

∑
j

γj

)
+ γj − dj

1

D

∑
j

djγj

= γj −
1

j

∑
j

γj − dj
1

D

∑
j

djγj. (59)

Since β∗ and γ∗j are linear functions of the parameters γj they can be expressed in
matrix notation by (

β∗

γ∗

)
= Tγ, (60)
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with γ∗ = (γ∗1 , . . . , γ
∗
J), γ = (γ1, . . . , γJ) and T the (J + 1) × J transformation matrix

that transforms γ to (β∗,γ∗). From (58) and (59) it follows that the elements of T are
given by:

T(1,j) =
dj
D

(for i = 1; j = 1, . . . , J)

T(i,j) = 1− 1

j
− 1

D
di−1dj (for i = 2, . . . , J + 1; j = 1, . . . , J ; i− 1 = j)

T(i,j) = −1

j
− 1

D
di−1dj (for i = 2, . . . , J + 1; j = 1, . . . , J ; i− 1 6= j)

The covariance matrix of the transformed parameter vector can now be obtained from
the covariance matrix of γ as

cov

(
β∗

γ∗

)
= cov(Tγ) = T cov(γ)T T . (61)

4.2.1 Wald-test for deviations from linear trend

To test for the significance of the deviations of the linear trend, we can test the hypothesis
H0 : γ∗ = 0. To test this H0 we must take into account that two of the γ∗-parameters are
redundant in the sense that any subset of 2 of the γ∗-parameters can be obtained from the
remaining J−2 ones by using the two linear constraint equations (54). In particular, the
values of any subset of 2 parameters are zero if the remaining J − 2 ones are. Therefore,
testing γ∗ = 0 is equivalent to testing γ∗J−2 = 0, with γ∗J−2 a vector consisting of some
subset of J − 2 of the elements of γ∗. The Wald-statistic for H0 : γ∗J−2 = 0 is given by

Wγ∗
J−2

= (γ∗J−2)
T var

(
γ∗J−2

)−1
γ∗J−2, (62)

which is independent of the choice of the subset of J − 2 γ∗-parameters. This statistic is
asymptotically χ2 distributed with J − 2 degrees of freedom.

Alternatively, we could retain the complete γ∗-vector and the corresponding covari-
ance matrix to define a Wald-statistic. In that case, a generalized inverse must be used
since the covariance-matrix of γ∗ is a singular matrix, with rank J − 2 (See e.g. Harville,
1997, Chapter 9). This approach would, however, lead to the same results as using (62).

5 Uncertainty analysis

The most important parameters produced by rtrim are the time-totals and, especially,
the indices that are derived from them. In this subsection we describe how the covariance
matrix of the time-totals is estimated and how the covariance matrix of the indices is
derived from that matrix. For the calculation of these covariance matrices we must
distinguish between model-based and imputed time-totals and indices (see, subsection
2.1). In subsections 5.2.1 and 5.2.2 we describe the covariance estimator for the model-
based and imputed time-totals, respectively, and in subsection 5.3 we show how the
variance of indices can be derived from the variance of time-totals.
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5.1 Intermezzo: Standard error of multiplicative parameters
and the delta-method

The multiplicative parameters are simple transformations of the additive parameters. If
we let θ denote an additive scalar parameter, then the corresponding multiplicative scalar
parameter, t say, can be expressed as a function of the additive parameter by t = f(θ),
with f = exp(.).

The variance of the multiplicative parameters can be approximated by the use of the
delta method (see, e.g. Agresti, 1990, ch. 12 or Särndal et al., 1992, ch. 5). This method
is based on approximating the function f(θ̂) by the first two terms of the Taylor series
expansion around the true value θ:

f(θ̂) = f(θ) + f ′(θ)(θ̂ − θ),

with f ′(θ) the derivative of f w.r.t. θ. The variance of this approximation is

var(t̂) = var
(
f(θ̂)

)
=
(
f ′(θ)

)2
var(θ̂). (63)

For the function f = exp(·), that transforms the additive parameters into the multiplica-
tive ones, this variance approximation leads to the variance estimator

var(t̂) = t̂2 var(θ̂), (64)

so that the standard error of a multiplicative parameter can simply be estimated by
the standard error estimate of the additive parameter times the estimated value of the
multiplicative parameter.

There is a straightforward generalisation of the Taylor-series approximation, and cor-
responding variance estimator, for a (vector- or scalar-valued) function of a vector-valued
random variable. In particular, if t is a function f(θ) of θ, with θ a vector and t either
a vector or a scalar, the first two terms of the Taylor-series expansion are

f(θ̂) = f(θ) +D(θ̂ − θ) (65)

with D = ∂f(θ)/∂θ and the covariance matrix of t can be expressed as

cov(t) = D cov(θ)DT , (66)

with cov(θ) the covariance matrix of θ, a result which will be used repeatedly in the
sections below.

5.2 Standard errors of time-totals

5.2.1 Standard errors of model based time-totals

Starting with model based time totals, these are defined as the total estimated counts for
a given year j aggregated over all sites i:

t̂j =
∑
i(m)

µ̂ij(m) (67)

or, vectorizing,
t̂ = Cµ̂ (68)
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where t̂ is a J-vector, and J × IJ matrix C is defined as C = (IJ , IJ , . . . , IJ), with IJ
an J × J identity matrix, and the number of identity matrices equal to the number of
sites I.

The covariance matrix of the estimated time-totals can then be expressed as

var(t̂) = C var(µ̂)CT = CD var(θ̂)DTCT

= C diag(µ̂)X var(θ̂)XT diag(µ̂)CT
(69)

where we have used the usual Taylor-series variance approximation var(µ̂) = D var(θ̂)DT ,
with D = ∂µ/∂θT (see section 5.1).

To compute the standard errors of the model based time-totals according to (69) we
need the covariance matrix of the complete estimated parameter vector θ. This matrix
is not easy the compute because it requires inversion of a very large matrix, as pointed
out in section 3.2. An alternative formula for var(t̂) that is suitable for computation will
be derived in this subsection.

Consider the partitioned form (41) of i(θ), which can be re-expressed as

i(θ) =

[
ATΩA ATΩB
BTΩA BTΩB

]
=

[
iaa iab
iTab ibb

]
(70)

with Ω = diag(µ)V −1 diag(µ).
The inverse of this partitioned matrix can be expressed as (Rao, 1973, page 33)

i(θ)−1 =

[
i−1aa + FE−1F T −FE−1
−E−1F T E−1

]
=

[
Φ11 Φ12

Φ21 Φ22

]
(71)

where

iaa = ATΩA = diag(d),

E = ibb − iTabi−1aa iab = i∗β

and

F = i−1aa iab = diag(d)−1ATΩB =

 d−11 w
T
1B1

...
d−1I w

T
I BI

 ,
with

wi = 1TOi
Ωi =

∑
j

(µ
1
2
i )j(µ

1
2
i )k(Ri)jk

and

di = 1TOi
wi

From this representation we see that we only need the inverse of E (which is already
produced by the algorithm) and the inverse of iaa (which is a diagonal matrix) in order
to calculate the inverse of i(θ).
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The covariance matrix of the estimated time-totals can now be expressed as

var(t̂) = C diag(µ)X var(θ̂)XT diag(µ)CT

= C diag(µ)
[
AΦ11A

T +BΦ21A
T +AΦ12B

T +BΦ22B
T
]

diag(µ)CT

= GΦ11G
T +HΦ21G

T +GΦ12H
T +HΦ22H

T

= Gdiag(d)−1GT +GFE−1(GF )T −HE−1(GF )T −GFE−1HT +HE−1HT

= Gdiag(d)−1GT + (GF −H)E−1(GF −H)T (72)

with G = C diag(µ)A and H = C diag(µ)B.
To compute the covariance matrix (72) the following expressions for the elements of

the J × I matrix G, the J × pb matrix GH , the J × pb matrix H and the J × J matrix
Gdiag(d)−1GT are used:

Gji = µij, (73)

(GF )jk =
∑
i

µijFik, (74)

Hjk =
∑
i

(Bi)jkµij (75)

(Gdiag(d)−1GT )jk =
∑
i

µijµikd
−1
i . (76)

So, the matrices GF −H and Gdiag(d)−1GT can be obtained by a summation over
sites.

In case of monthly data, the expressions for G and Gdiag(d)−1GT changes to

Gji =
∑
m

µijm

(GF )jk =
∑
i

GjiFik

Hjk =
∑
i

∑
m

(Bim)jkµijm

(Gdiag(d)−1GT )jk =
∑
i

GjiGikd
−1
i

where Bim the subblock of Bi representing the β parameters corresponding to month m.
For m = 1 these are rows 1, . . . , J , for m = 2 rows (J + 1), . . . , 2J , etc.

5.2.2 Standard error of imputed time-totals

The J-vector with imputed time-totals can be written as

t̃ = Cf+ = Cof +Cxµ̂x, (77)

where f+ denotes the vector containing the imputed counts with elements given by

f+
ij(m) =

{
fij(m) if observed

µij(m) otherwise
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The vector f+ is split up in two parts: a vector f containing the observed elements and
a vector µ̂x with the estimated values for the missing observations. The matrix C is
split up accordingly, into a matrix Co containing the columns of C corresponding to the
observed elements in f+ and a matrix Cx containing the columns of C corresponding to
the missing elements in f+.

Now, the covariance matrix of t̃ can be written as the sum of three J × J matrices:

var(t̃) = Co var(f)CT
o + 2Cx cov(µ̂x,f)CT

o +Cx var(µ̂x)C
T
x . (78)

where we have used that Co cov(f , µ̂x)C
T
x = Cx cov(µ̂x,f)CT

o .
To evaluate (78) we need estimates of the three covariance matrices var(f), var(µ̂x)

and cov(µ̂x,f). Using previous results, var(f) and var(µ̂) are relatively easy to obtain
but cov(µ̂x,f) needs some further linear approximations.

To obtain the covariance between the observed counts f and the estimated missing
counts µ̂x we first express the estimated expected counts as a function of the estimated
parameters θ̂ by the Taylor-series approximation according to (65):

µ̂x ≈ µx +Dx(θ̂ − θ), (79)

since Dx = ∂µx/∂θ. Next we use a Taylor-series approximation of the GEE estimating
equation (30) to express the parameter estimate θ̂ as a function of the observed counts,
leading to

U (θ̂) = DT
o V

−1(f − µ̂o)
≈ U(θ) + (∂U(θ)/∂θ)(θ̂ − θ)

= DT
o V

−1(f − µo)−DT
o V

−1Do(θ̂ − θ),

and hence,
θ̂ − θ = (DT

o V
−1Do)

−1DT
o V

−1(f − µo),

which, after substituting in (79), results in an expression for µ̂x as a function of f :

µ̂x − µx = Dx(D
T
o V

−1Do)
−1DT

o V
−1(f − µo).

Using this expression we obtain for cov(µ̂x,f)

cov(µ̂x,f) = E(µ̂x − µx)(f − µo)T

= Dx(D
T
o V

−1Do)
−1DT

o V
−1E(f − µo)(f − µo)T

= Dx(D
T
o V

−1Do)
−1DT

o V
−1 var(f)

= Dx var(θ̂)DT
o . (80)

Now, by using Cx var(µ̂)CT
x = CxDx var(θ̂)DT

xC
T
x (analogous to (69)) and by substitut-

ing (80) in (78), we have

var(t̃) = Co var(f)CT
o + 2CxDx var(θ̂)DT

oC
T
o +CxDx var(θ̂)DT

xC
T
x ,

= Co var(f)CT
o +CD var(θ̂)DTCT −CoDo var(θ̂)DT

oC
T
o . (81)

The matrix Co var(f)CT
o can be estimated from the data by using var(f) as decribed

in section 3.3. This estimate depends on the assumptions of possible serial correlation and
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overdispersion. If serial correlation is assumed to be present, the observed counts within
sites are correlated but remain independent across sites, resulting in a block-diagonal
structure with blocks corresponding to the sites.

The matrix CD var(θ̂)DTCT is the covariance matrix of the model based time-totals,
the computation of which is described in section 5.2.1. The matrix CoDovar(θ̂)DT

oC
T
o

can be calculated similarly, by restricting all calculations to the observed counts only.

5.2.3 Standard errors with external covariance matrix of counts

The estimation procedures and standard error estimates in rtrim normally use an esti-
mate of the covariance matrix of the observed counts, based on the user specified options
for serial correlation and overdispersion. It is, however, also possible to use a covariance
matrix that is completely specified by the user. In this case, the parameters of the models
will be estimated by maximum likelihood, that is, using a covariance matrix based on
the assumption of independent Poisson distributions for the counts (no serial correlation,
variance equal to the expected value). Although this assumption will normally not be in
line with the user specified covariance matrix, the parameter estimates remain consistent
and the effects on point estimates of using the ”wrong” covariance matrix are usually
small. This does, however, not hold for the effects on variances and standard errors and
for these a correction is necessary that takes the user specified covariance matrix into ac-
count. This approach is described by e.g. Royal (1986) and White (1980). The resulting
corrected covariance estimator is often called the “sandwich” estimator. This sandwich
estimator is applied in rtrim for estimating the covariance of time-totals when a user
specified covariance matrix is used and will be described below.

The sandwich covariance estimator is given by

var(θ̂) = i(θ)−1 S i(θ)−1 (82)

With i(θ)−1 the inverse of the information matrix of the likelihood (compare (32)). This
matrix is the covariance matrix of the parameter estimate θ̂ if the model assumptions
underlying the ML-procedure are satisfied (independent Poisson counts). The matrix i(θ)
in (82) is a special case of the corresponding matrix in the GEE-estimation procedure of
section 3.2, obtained by setting the covariance matrix of the observed counts (V ) equal
to diag(µ) in accordance with the independent Poisson assumption.

The matrix S is the outer product of the score vector (derivative of the log-likelihood),
which in this case is:

S = E
[
XT (f − µ)(f − µ)TX

]
= XT var(f)X, (83)

with f the observed counts and µ the expected counts corresponding to these observed
counts. The covariance matrix of the observed counts var(f) is a block diagonal matrix
with elements specified by the user. Using this S we write the covariance matrix of t̂ as:

var(t̂) = C diag(µ)Xi(θ)−1XT var(f)Xi(θ)−1XT diag(µ)CT

= P var(f)P T , say. (84)
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Using the partitioning (70) of i(θ)−1 and X = [A,B] we can write for P :

P = C diag(µ)[AΦ11A
T +BΦ21A

T +AΦ12B
T +BΦ22B

T

= GΦ11A
T +HΦ21A

T +GΦ12B
T +HΦ22B

T

= Gdiag(µ+)−1AT +GFE−1F TAT −GFE−1BT −HE−1F TAT +HE−1BT

= Gdiag(µ+)−1AT + (GF −H)E−1(F TAT −BT ),

(85)

where F , G, H and E as defined in (71) and (72). The matrices F and E are somewhat
simpler here because, in the absence of overdispersion and serial correlation, they are
based on the simplified form of i(θ) obtained by setting Ω equal to diag(µ). The matrix
diag(µ+) is a diagonal matrix with the sum, over the years, of the expected counts of
each site on the diagonal.

The first component of the sum P (85), can be partitioned according to the sites as,

Gdiag(µ+)−1AT =
1

µ+1

µ11
T
obs1

, . . . ,
1

µ+i

µi1
T
obsi

, . . . ,
1

µ+I

µi1
T
obsI

= [Q1
..., . . . ,

...Qi
..., . . . ,

...QI ], say,

(86)

ith 1obsi a vector of ones with length equal to obsi, the number of observed values in site
i, thus the length of fi. The site specific matrices Qi have obsi identical columns, each
equal to µij/µi+.

The matrix (GF −H) is a constant for all sites because it is obtained by a summation
over sites, analogous to the calculation of this matrix in the case of variance of the model
based indices in section 5.2.1.

The matrix E−1 is also constant over sites. It is in this case the estimated covariance
matrix of the β-parameters according to the ML-method with which these parameters
are estimated. This matrix is calculated as part of the ML-procedure.

5.3 Standard error of indices

Estimated time-totals can be model-based or imputed, and each of these is based on a
model that can have been estimated the ML or GEE method. The covariance matrix
of the time-totals will differ among definitions and methods, but in all cases, the indices
are the same functions of the time-totals and the covariance matrix of the indices is the
same function of the covariance matrix of the time-totals, irrespective of the definition
or estimation procedure used.

The index for time-point j with respect to some reference time point b, (τj say) can
be expressed as a function of the time-totals for time-points j and b:

τj = tj/tb. (87)

To obtain the variances of the estimated indices as functions of the variances and covari-
ance of the time-totals tj and tb, we apply the delta-method outlined in section 5.1. For
this we need the vector with derivatives of τj w.r.t. tj and tb, given by

d =

(
−tjt−2b
t−1b

)
(88)
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The variance of an index τj can now be obtained, by applying (66), as

var(τj) = dTVtb,tjd, (89)

with Vtb,tj the covariance matrix of tb and tj corresponding to the definition of the totals
(model-based or imputed) and estimation method used.

Note that the index for time-point b (the base-time) is, by definition and for all data
sets, equal to 1. So, for j = b we must have that var(τj) = 0. Indeed, by substituting
tb for tj in (89) and setting var(tj) = cov(tj, tb) = var(tb) we obtain zero for the r.h.s. of
(89).

5.3.1 Using multi-year reference periods for indexing

Sometimes, interannual variability of observations is high, such that the computed index
values are highly contingent on the counts in the base year. In these cases, it may be more
robust to use a longer time period as reference instead of a single year. rtrim facilitates
this extended indexing by allowing for multiple, say n, base years, say b1, . . . , bn In this
case, the expression (87) for τj changes to

τj = tj/t̄b (90)

where t̄b = (tb1 + . . .+ tbn)/n is the average time total for the base years.
The partial derivatives of τj are now given by the vector of length n+ 1

d =


−ntj(

∑
n tbi)

−2

...
−ntj(

∑
n tbi)

−2

n(
∑

n tbi)
−1

 (91)

where the repeated elements make up the first n elements of d. Note that (87) and (88)
are special cases of (90) and (91).

5.4 Standard error of overall slope

In section 2.5 we defined as a summary measure for the overall trend the slope of the
regression line, estimated by ols, through the estimated log time-totals (model (15)). For
this model, we did write (see, (16))

β̂ = (α, β+)T = (XTX)−1XTy,

with y the vector with as elements the log-expected total counts, lnµ+j. The covariance

matrix of β̂ is a function of the covariance matrix V (y) of y and is given by

V (β̂) = (XTX)−1XTV (y)X(XTX)−1, (92)

and the variance of the estimated overall slope parameter β̂+ is the lower right element
of this matrix.

The covariance matrix V (y) in (92) will depend on the model used and the specifica-
tion of the covarance matrix of the observed counts, e.g., the settings of the options for
serial correlation and overdispersion.
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