
rv: a simulation-based random variable class

Version 2.3.0

Jouni Kerman

April 26, 2017

1 Introduction

rv is an implementation of a simulation-based random variable object class
for R, originally introduced in Kerman and Gelman [2007].

rv implements a new class of vectors that contain a ‘hidden dimension’ of
simulations in each scalar component. These rv objects can be manipulated
much like any numeric vectors, but the arithmetic operations are performed
on the simulations, and summaries are calculated from the simulation vec-
tors.

rv is convenient for manipulating posterior simulations obtained from
MCMC samplers, for example using Umacs [Kerman, 2006] or R2WinBUGS
[Sturtz et al., 2005] (the package provides a coercion method to convert bugs
objects to rv objects.)

The paper by Kerman and Gelman [2007] introduces the principles of
the design of random variable objects. This document is a short overview
of some of the commands provided by the package rv. At the end of the
document there is a short description of the implementation.

1.1 Installation

Install the package ’rv’ (version 2.1.1 or higher) using the Package Installer
command in R (from the menu), and load the package using,

> library(rv)

1

Container version 1.0.0 2

2 A quick tour

The rv objects (or, “random vectors”) that we manipulate usually come from
a Markov chain sampler. To introduce some commands quickly, we will
instead use some random vectors generated by random-vector generating
functions which sample directly from a given (standard) distribution.

Number of simulations. First, we will set the number of simulations we
use. We choose 4000 simulations per each scalar component of a random
vector:

> setnsims(4000)

[1] 4000

We will not usually change this value during our session, unless we want to
repeat our analysis with more (or fewer) simulations. The default value is
4000, set whenever the package is loaded for the first time in the workspace;
therefore this is not strictly a necessary step to do every time we start the
package.

A Normally distributed random vector. To draw a random Gaussian
(Normal) vector of length 5 with corresponding means 1, 2, 3, 4, 5 and s.d.
1,

> x <- rvnorm(mean=1:5, sd=1)

In effect, the object x now contains five vectors of length 4000, drawn (in-
ternally) using rnorm, but we see x as a vector of length 5.

The length of the vector is derived from the length of the mean vector
(and the sd vector), and it is not necessary to specify a parameter “n”.

Quick distribution summary. To summarize the distribution of x by
viewing quantiles, means, and s.d.’s, we only type the name of the object at
the console:

> x

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.98 0.98 -1.35 -0.926 0.31 1 1.7 2.9 3.2 4000

[2] 1.98 1.01 -0.40 0.015 1.28 2 2.7 3.9 4.3 4000

[3] 3.02 0.99 0.76 1.059 2.35 3 3.7 5.0 5.2 4000

[4] 4.02 1.01 1.64 1.983 3.35 4 4.7 5.9 6.3 4000

[5] 4.99 0.97 2.77 3.144 4.33 5 5.7 6.9 7.2 4000

Container version 1.0.0 3

Similarly we can draw from Poisson (rvpois) Gamma, (rvgamma), Bi-
nomial (rvbinom):

> y <- rvpois(lambda=10)

Componentwise summaries. To extract the means, we use rvmean, the
s.d.’s, we use rvsd, the minimum, rvmin, the maximum rvmax, and the
quantiles, we use rvquantile. The componentwise medians are also ob-
tained by rvmedian:

> rvmean(x)

[1] 0.98 1.98 3.02 4.02 4.99

> rvsd(x)

[1] 0.98 1.01 0.99 1.01 0.97

> rvquantile(x, c(0.025,0.25,0.5,0.75,0.975))

2.5% 25% 50% 75% 98%

[1,] -0.926 0.31 1 1.7 2.9

[2,] 0.015 1.28 2 2.7 3.9

[3,] 1.059 2.35 3 3.7 5.0

[4,] 1.983 3.35 4 4.7 5.9

[5,] 3.144 4.33 5 5.7 6.9

> rvmedian(x)

[1] 1 2 3 4 5

> rvmin(y)

[1] 1

> rvmax(y)

[1] 24

For convenience, there is an alias E(...) for rvmean(...) which gives
the “expectation” of a random vector.

Note. Since the random vectors are all represented by simulations, the
expectation and all other functions that we compute are just numerical
approximations. Generating a “standard normal random variable” with z

<- rvnorm(n=1, mean=0, sd=1) will not have an expectation exactly zero.
Our main purpose here is to handle simulations, so the answers will be
approximate and necessarily involve a simulation error.

Container version 1.0.0 4

Extracting and replacing. Since rv objects work just like vectors, we
can extract and replace components by using the bracket notation. Here
we replace the 3rd and 4th components with random variables having (an
approximate) binomial distributions:

> x[3:4] <- rvbinom(size=1, prob=c(0.1,0.9))

> x[3:4]

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.1 0.30 0 0 0 0 0 1 1 4000

[2] 0.9 0.31 0 0 1 1 1 1 1 4000

The “mean” column now shows the estimate of the expectation of the two
indicator functions we generated.

Imputing into regular vectors. To “impute” a random vector in a reg-
ular numeric vector, we can either first turn the constant vector into an rv

object:

> y <- as.rv(1:5)

> y[3:4] <- x[3:4]

> y

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 1.0 0.00 1 1 1 1 1 1 1 1

[2] 2.0 0.00 2 2 2 2 2 2 2 1

[3] 0.1 0.30 0 0 0 0 0 1 1 4000

[4] 0.9 0.31 0 0 1 1 1 1 1 4000

[5] 5.0 0.00 5 5 5 5 5 5 5 1

or, use the special function impute that can handle regular vectors and rv

objects:

> y <- (1:5)

> impute(y, 3:4) <- x[3:4]

> y

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 1.0 0.00 1 1 1 1 1 1 1 1

[2] 2.0 0.00 2 2 2 2 2 2 2 1

[3] 0.1 0.30 0 0 0 0 0 1 1 4000

[4] 0.9 0.31 0 0 1 1 1 1 1 4000

[5] 5.0 0.00 5 5 5 5 5 5 5 1

Container version 1.0.0 5

The non-random components appearing as “constants,” or in other words,
random variables with point-mass distributions (and therefore having a zero
variance).

Summaries of functions of random vectors. Standard numerical func-
tions can be applied directly to random vectors. To find a summary of the
distribution of the function 1/(1 + exp(−x1)), we would write,

> 1/(1+exp(-x[1]))

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.69 0.18 0.21 0.28 0.58 0.73 0.84 0.95 0.96 4000

Or of the function of almost anything we like:

> 2*log(abs(x[2]))

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 1 1.5 -4.4 -2.9 0.5 1.4 2 2.7 2.9 4000

Order statistics. To simulate the order statistics of a random vector x,
we can use sort(x), min(x), max(x).

> x <- rvpois(lambda=1:5)

> x

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.98 1.0 0 0 0 1 2 3 4 4000

[2] 1.98 1.4 0 0 1 2 3 5 6 4000

[3] 2.97 1.7 0 0 2 3 4 7 8 4000

[4] 3.96 2.0 0 1 3 4 5 8 9 4000

[5] 5.03 2.2 1 1 3 5 6 10 11 4000

> sort(x)

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.61 0.69 0 0 0 0 1 2 2 4000

[2] 1.62 0.91 0 0 1 2 2 3 4 4000

[3] 2.72 1.07 1 1 2 3 3 5 5 4000

[4] 4.02 1.29 2 2 3 4 5 7 7 4000

[5] 5.96 1.83 3 3 5 6 7 10 11 4000

> min(x)

Container version 1.0.0 6

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.61 0.69 0 0 0 0 1 2 2 4000

> max(x)

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 6 1.8 3 3 5 6 7 10 11 4000

Note: the order method is not implemented.

Random matrices and arrays. rv objects behave like numerical vectors
in R; thus you can set their dimension attributes to make them appear
as arrays, and also use the matrix multiplication operator. (Note: %**%

performs the matrix multiplication, ensuring that non-rv and rv objects get
properly multiplied. Using %*% does not work if the matrix or vector on the
left is not an rv object.)

> p <- runif(4) # Some prior probabilities.

> y <- rvbinom(size=1, prob=p) # y is now a rv of length 4.

> dim(y) <- c(2,2) # Make y into a 2x2 matrix.

> y

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1,1] 0.3435 0.47 0 0 0 0 1 1 1 4000

[2,1] 0.1010 0.30 0 0 0 0 0 1 1 4000

[1,2] 0.4225 0.49 0 0 0 0 1 1 1 4000

[2,2] 0.0065 0.08 0 0 0 0 0 0 0 4000

> y %**% y

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1,1] 0.385 0.51 0 0 0 0 1 1 2 4000

[2,1] 0.032 0.18 0 0 0 0 0 1 1 4000

[1,2] 0.147 0.36 0 0 0 0 0 1 1 4000

[2,2] 0.048 0.21 0 0 0 0 0 1 1 4000

The componentwise summary functions such as E (rvmean) and rvsd return
the summaries with the correct dimension attribute set:

> E(y)

[,1] [,2]

[1,] 0.34 0.4225

[2,] 0.10 0.0065

Container version 1.0.0 7

Creating indicator functions with logical operations. Applying log-
ical operators gives indicators of events. If z is a standard normal random
variable the indicator of the event {z > 1} is given by the statement z>1:

> z <- rvnorm(1)

> z > 1

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 0.14 0.35 0 0 0 0 0 1 1 4000

We can also use the convenience function Pr(...) to compute the estimates
of the expectation of these indicators:

> Pr(z > 1)

[1] 0.14

Of course, we can find joint events as well and computer their probabilities
similarly. To find the probability that Z1 > Z2

2 , where both Z1 and Z2 are
independent standard normal, we’d type

> z <- rvnorm(2)

> Pr(z[1] > z[2]^2)

[1] 0.28

We can even compute probabilities of intersections or unions of events,

> Pr(x[1] > x[2] & x[1] > x[4])

[1] 0.022

> Pr(x[1] > x[2] | x[1] > x[4])

[1] 0.2

Functions of several random variables. We can use random vectors,
regular vectors, standard elementary functions, logical operations in any
combination as we wish.

Example. Let z1, z2 be standard normal, and let y1 = exp(z1), y2 =
y1 exp(z2). Compute the expectation of x = (y1− 1)1y1>11y2>1 and find the
probability Pr(x > 1).

Container version 1.0.0 8

> z <- rvnorm(n=2, mean=0, sd=1)

> y <- exp(z)

> y[2] <- y[2] * y[1]

> x <- (y[1]-1) * (y[1]>1) * (y[2]>1)

> E(x)

[1] 0.79

> Pr(x>1)

[1] 0.22

Posterior simulations from a classical regression model. We can
generate posterior simulations from a classical regression model, using the
standard assumptions for the priors. For convenience there is a function
posterior to do this.

> n <- 10

> ## Some covariates

> X <- data.frame(x1=rnorm(n, mean=0), x2=rpois(n, 10) - 10)

> y.mean <- (1.0 + 2.0 * X$x1 + 3.0 * X$x2)

> y <- rnorm(n, y.mean, sd=1.5) ## n random numbers

> D <- cbind(data.frame(y=y), X)

> ## Regression model fit

> fit <- lm(y ~ x1 + x2, data=D)

The Bayesian estimates (posterior distributions) are represented by,

> Post <- posterior(fit)

> Post

$beta

name mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] (Intercept) 1.1 0.80 -0.91 -0.45 0.56 1.0 1.5 2.7 3.1 4000

[2] x1 2.0 0.71 0.19 0.57 1.58 2.0 2.4 3.4 3.8 4000

[3] x2 2.9 0.22 2.33 2.43 2.77 2.9 3.0 3.3 3.4 4000

$sigma

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 1.7 0.54 0.91 0.97 1.3 1.6 1.9 3 3.5 4000

Container version 1.0.0 9

Creating replicated simulations. Continuing the previous example,
we’ll resample from the sampling distribution of y using the posterior simu-
lations we got. We can use the function rvnorm to do this, since it accepts
random vectors as arguments. Rather than think rvnorm to draw normal
random vectors, it rather “samples from the normal model.” The vector will
be normal given (constant) mean and s.d., but if the mean and s.d. are not
constants, the resulting vector will not be normal.

> sigma <- Post$sigma

> betas <- Post$beta

> M <- model.matrix(fit)

> y.rep <- rvnorm(mean=M %**% betas, sd=sigma)

> mlplot(y.rep) # Summarize graphically.

Note also that sigma is also an rv object.
The matrix multiplication statement returns a random vector of length

10:

> M %**% betas

name mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 1 9.14 0.74 7.2 7.6 8.7 9.1 9.58 10.65 11.07 4000

[2] 2 -2.95 1.24 -6.1 -5.4 -3.7 -3.0 -2.20 -0.41 0.18 4000

[3] 3 -0.41 1.19 -3.3 -2.7 -1.1 -0.4 0.27 2.05 2.61 4000

[4] 4 -1.34 1.00 -3.7 -3.3 -1.9 -1.3 -0.76 0.76 1.20 4000

[5] 5 7.99 0.56 6.6 6.9 7.6 8.0 8.33 9.14 9.41 4000

[6] 6 8.49 0.62 6.9 7.3 8.1 8.5 8.86 9.76 10.12 4000

[7] 7 14.06 1.01 11.4 12.0 13.5 14.1 14.67 16.10 16.58 4000

[8] 8 -1.63 0.91 -3.8 -3.4 -2.2 -1.6 -1.08 0.24 0.76 4000

[9] 9 8.53 0.63 7.0 7.3 8.2 8.5 8.91 9.82 10.18 4000

[10] 10 22.25 1.33 18.7 19.4 21.5 22.3 23.05 24.90 25.40 4000

Thus all the uncertainty in the mean estimate Xβ and the residual s.d.
estimate σ is propagated when the replicated vector yrep is generated. In
effect, this single line of code thus will in fact draw from the distribution
p(yrep|y) =

∫ ∫
Normal(yrep|µ, σ)p(µ, σ|y)dµdσ.

For convenience, there is a generic method rvpredict to generate repli-
cations and predictions:

> ## Replications

> y.rep <- rvpredict(fit)

Container version 1.0.0 10

We can also generate predictions at some other covariate values:

> ## Predictions at the mean of the covariates

> X.pred <- data.frame(x1=mean(X$x1), x2=mean(X$x2))

> y.pred <- rvpredict(fit, newdata=X.pred)

We can also perturb (add uncertainty to) the covariate x1, then predict
again.

> X.rep <- X

> X.rep$x1 <- rnorm(n=n, mean=X.rep$x1, sd=sd(X.rep$x1))

> y.pred2 <- rvpredict(fit, newdata=X.rep)

> y.pred2

mean sd 1% 2.5% 25% 50% 75% 97.5% 99% sims

[1] 13.143 2.1 8.1 8.9 11.833 13.134 14.4 17.56 18.7 4000

[2] -2.326 2.0 -7.5 -6.3 -3.556 -2.333 -1.1 1.65 2.6 4000

[3] 1.479 2.4 -4.5 -3.4 0.024 1.508 3.0 6.05 7.1 4000

[4] 0.053 2.1 -5.3 -4.4 -1.213 0.037 1.4 4.34 5.3 4000

[5] 9.236 2.0 4.3 5.3 8.095 9.214 10.4 13.13 14.3 4000

[6] 7.907 1.8 3.4 4.2 6.778 7.895 9.0 11.70 12.5 4000

[7] 12.812 2.2 7.3 8.4 11.506 12.850 14.1 16.95 18.0 4000

[8] -4.792 2.6 -11.1 -9.8 -6.347 -4.801 -3.3 0.39 1.9 4000

[9] 7.426 1.9 2.4 3.6 6.296 7.472 8.6 10.93 12.0 4000

[10] 20.114 2.2 14.5 15.8 18.832 20.110 21.4 24.62 25.9 4000

Graphical summaries Graphical summaries are still in development, but
it is now possible to plot a scatterplot with a regular vector against a ran-
dom vector, showing the 50% and 95% uncertainty intervals along with
the median, using plot(y,x,...), where y is not random but x is. or we
can show two random scalars plotted as a 2-dimensional scatterplot with
plot(x[1],x[2],...).

To illustrate, let us plot the predicted intervals of the previous example,
along with the data points.

Plot the predictions against y in red color; then plot the perturbed pre-
dictions with blue color.

> ## Plot predictions

> plot.rv(D$y, y.rep, rvcol="red")

> points.rv(D$y + 0.33, y.pred2, rvcol="blue")

Container version 1.0.0 11

●

●

●
●

● ●

●

●

●

●

0 5 10 15 20

−
10

0
10

20
30

x

y

●

●

●
●

●
●

●

●

●

●

Note that the function method needs to be called explicitly to be able
to plot constants vs. rv objects. If the first argument of plot(x, ...) is
an rv object, one can call plot.

Or, we can show a random vectors as horizontal intervals using mlplot:

> mlplot(y.rep, rvcol="red")

> mlplot(D$y, add=TRUE, col="blue", pch="x")

Container version 1.0.0 12

y.rep

−10 0 10 20 30

−10 0 10 20 30

10

9

8

7

6

5

4

3

2

1 ●

●

●

●

●

●

●

●

●

●

x

x

x

x

x

x

x

x

x

x

A histogram of the simulations of a random scalar x[1], can be plotted
with rvhist:

> rvhist(rvnorm(mean=0, sd=1)^3, xlim=c(-3, 3),

+ col="red", main="Cubed standard normal")

Container version 1.0.0 13

Cubed standard normal

rvnorm(mean = 0, sd = 1)^3[1]

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Example: Simulating Pólya’s Urn. This code simulates 200 iterations
of the well-known Pólya’s urn problem. The parameter x/(n+1) for the
Bernoulli-variate-generating function rvbern(...) is random: we can gen-
erate random variables using random parameters without much trickery; our
code looks therefore more natural.

The model:

X0 = 1 (1)

Xn −Xn−1|Xn−1 ∼ Bernoulli(Xn−1/(n+ 1)) (2)

The R code:

> x <- 1

> for (n in 1:100) {

+ x <- x + rvbern(n=1, prob=x / (n + 1))

+ }

Container version 1.0.0 14

> rvhist(x / (n + 1)) # Histogram

Histogram of x/(n + 1)[1]

x/(n + 1)[1]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

We can see that
the distribution is close to uniform, which is the limiting distribution
in this case.

3 Details

Obtaining the simulation matrix. To extract the simulation matrix
embedded in an rv object, use sims:

> s <- sims(y.rep)

> dim(s)

[1] 4000 10

It is our convention to have the columns represent the random vector
and the rows represent the draws from the joint distribution of the
vector.

Container version 1.0.0 15

Converting matrices and vectors of simulations to rv objects. A
matrix or a vector of simulations is converted into an rv object by
rvsims. Continuing the above example, we’ll convert the matrix back
to an rv object.

> y <- rvsims(s)

You can verify that all(sims(y)==s) returns TRUE. Also note that
length(y) gives 10, since y is “just a vector.”

Coercing vectors and matrices. The function as.rv(x) coerces ob-
jects to rv objects. However, this does not mean that matrices of
simulations are turned into rv objects—this is done with rvsims, as
explained above. as.rv(rnorm(4000)) would return a random vector
of length 4000, where each component has zero variance (and one sin-
gle simulation). You probably mean rvsims(rnorm(4000)), but the
correct way to generate this object is rvnorm(1).

Obtaining simulations from R2WinBUGS R2WinBUGS [Sturtz
et al., 2005] is an interface for calling WinBUGS within R, and ob-
taining the simulations as an R matrix (that is embedded in a “bugs”
object). If bugsobj is the bugs object returned by the bugs(...) func-
tion call, then as.rv will coerce it into a list of random vectors, split
by the parameter names: y <- as.rv(bugsobj)

Obtaining simulations from Umacs. Umacs facilitates the construc-
tion of a Gibbs/Metropolis sampler in R [Kerman, 2006], and returns
the simulations wrapped in an “UmacsRun” object. Again, the coercion
method as.rv will convert the Umacs object, say obj, into a list of
named random vectors: y <- as.rv(obj).

4 Some implementation details

rv is written in“S3”style object-oriented R rather than using the meth-
ods (“S4”) package. The main reason was speed, the secondary consid-
eration was the ease of writing new functions.

The main class is called rv. Most functions expecting an rv object
have names starting with rv. For example, rvnorm, rvmean, etc.

Container version 1.0.0 16

The package also features rv-specific methods extending the basic
numeric vector classes, e.g. c.rv, plot.rv, etc. However, the method
dispatch in R will not call the rv class method if the first object in
the argument list is not an rv object; for example, c(...) will not
call c.rv in the following case: suppose that x is an object of class rv

and k <- 10. Then c(k, x) will not call c.rv. To ensure the proper
result, wrap the first element in as.rv: c(as.rv(k), x) will produce
a proper random vector.

5 Disclaimer

This program is a work in progress, and it may contain bugs. Many
new features will be eventually (and hopefully) added.

For information about random variables in R, please refer to Ker-
man and Gelman [2007].

References

Jouni Kerman. Umacs: A Universal Markov Chain Sampler. Technical
report, Department of Statistics, Columbia University, 2006.

Jouni Kerman and Andrew Gelman. Manipulating and summarizing
posterior simulations using random variable objects. Statistics and
Computing 17:3, 235–244.

Sibylle Sturtz, Uwe Ligges, and Andrew Gelman. R2WinBUGS: A
package for running WinBUGS from R. Journal of Statistical Soft-
ware, 12(3):1–16, 2005. ISSN 1548-7660.

