
sdpt3r - Semidefinite Quadratic Linear

Programming in R

Adam Rahman
University of Waterloo

Abstract

We present the package sdpt3r, an R implementation of the MATLAB package SDPT3
(?). The purpose of the software is to solve semidefinite quadratic linear programming
(SQLP) problems, a framework in which many important statistical problems can be cast.
These include problems such as D-optimal experimental design, the nearest correlation
matrix problem, and distance weighted discrimination, as well as problems in graph theory
such as finding the maximum cut or Lovasz number of a graph, among others.

While some tools exist in R to solve individual problems, such as the nearPD function
in the Matrix package (?) which solves the nearest correlation matrix problem, there
currently does not exist a general solver for the SQLP class of problems, making sdpt3r
a novel addition to the R library.

Keywords: R, semidefinite programming, linear programming, quadratic programming, near-
est correlation matrix, D-optimal experimental design, maximum cut, Lovasz number.

1. Introduction

Convex optimization is a well traversed field with far reaching applications. While perhaps
unfamiliar to those in the statistical sciences, many problems important to statisticians can
be formulated as a convex optimization, perhaps the most well known of which would be the
least squares problem. More specifically, many problems in statistics can be formulated as a
subset of these convex optimization problems, known as conic linear optimization problems.

One such example would be the nearest correlation matrix problem (?), which was first
considered when attempting to find correlations between stocks, where incomplete data on
daily stock returns are not unusual. Pairwise correlations are only computed when data is
available for both pairs of stocks under consideration, resulting in a correlation matrix that
contains pairwise correlations, but is not necessarily positive semidefinite - an approximate
correlation matrix. The goal is to then find the correlation matrix that is nearest to the
approximate correlation matrix in some way.

Other examples of problems that can be formulated in terms of a conic linear optimization
problem include D-optimal experimental design (?), classification using distance weighted
discrimination (?), minimum volume ellipsoids (?), and problems in educational testing (?).

Important problems in related fields can also be solved, including finding the maximum cut
(or maximum k-cut) of a graph, finding the upper bound of the Shannon entropy of a graph,
also known as the Lovasz number (?), as well as problems in control theory, Toeplitz matrix

2 sdpt3r - SQLP in R

approximation, and Chebyshev approximation.

For the purpose of solving these conic linear optimization problems, we introduce the R
package sdpt3r, an implementation of the MATLAB package SDPT3 by ?. While there are
currently functions in R available to solve some of the specific problems mentioned above -
for instance the function nearPD in the Matrix package by ? solves the nearest correlation
matrix problem - there currently does not exist a general solver for conic linear optimization
in R, making sdpt3r a novel addition to the R library.

This paper is structured as follows. In Section 2 we discuss in greater detail the mathematical
formulation of the linear conic optimization problem, and introduce three examples to explore
the increasing generality of the problem to be solved. Section 3 discusses the R implementation
of sdpt3r, and the main function by which conic linear optimization problems are solved, sqlp,
including the required input, and the output generated. The same examples used in Section
2 will be used to demonstrate how a standard conic linear optimization problem can be
converted to a form solvable by sqlp. Section 4 presents the classic form of several other well
known problems that can be solved using sdpt3r, as well as the helper functions available to
convert them to the appropriate form. Finally Section 5 provides some closing remarks.

2. Conic linear optimization

At its simplest, a conic linear optimization problem has the following standard form (?):

minimize
X

〈C, X〉
subject to

〈Ak, X〉 = bk, k = 1, ...,m
X ∈ K

(1)

where K is a cone. Generally, K is either a

� Semidefinite Cone - Sn = {X ∈ Rn×n : X � 0,Xij = Xji ∀ i 6= j}

� Quadratic Cone - Qn = {x = [x0; x̃] ∈ Rn : x0 ≥
√
x̃Tx̃}

� Linear Cone - Ln - non-negative orthant of Rn

Here, x̃ = [x1, . . . , xn−1], and 〈·,·〉 represents the standard inner product in the appropriate
space. In the semidefinite cone the inner product is 〈X, Y〉 = vec(X)Tvec(Y), where the
operator vec is the by-column vector version of the matrix X, that is, for the n × n matrix
X = [xij], vec(X) is the n2 × 1 vector [x11, x12, x13, . . . , x(n−1)n, xnn]T. Note that vec does
not require a square matrix in general.

While not inherently statistical, one of the simplest problems that can be formulated in terms
of a conic linear optimization problem is finding the maximum cut of a graph. Let G = [V,E]
be a graph with vertices V and edges E. A cut of the graph G is a partition of the vertices
of G into two disjoint subsets G1 = [V1,E1], G2 = [V2,E2], with V1 ∩V2 = ∅. The size
of the cut is defined to be the number of edges connecting the two subsets. The maximum
cut is defined to be the cut of a graph G whose size is at least as large as any other cut. For

Adam Rahman 3

a weighted graph object, we can also define the maximum cut to be the cut with weight at
least as large as any other cut.

Finding the maximum cut is referred to as the Max-Cut Problem, and was one of the first
problems found to be NP-complete, and is also one of the 21 algorithms on Karp’s 21 NP-
complete problems (?). The Max-Cut problem is also known to be APX hard (?), meaning
in addition to there being no polynomial time solution, there is also no polynomial time
approximation.

Using the semidefinite programming approximation formulation of ?, the Max-Cut problem
can be approximated to within an approximation constant. For a weighted adjacency matrix
B, the objective function can be stated as

minimize
X

〈C,X〉
subject to

diag(X) = 1
X ∈ Sn

where Sn is the cone of symmetric positive semidefinite matrices of size n, and C = −(diag(B1)−
B)/4. Here, we define diag(a) for an n × 1 vector a to be the diagonal matrix A = [Aij]
of size n × n with Aii = ai, i = 1, . . . , n. For a matrix X, diag(X) extracts the diagonal
elements from X and places them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written
in the same form as Equation 1. The objective function is already in a form identical to that
of Equation 1, with minimization occurring over X of its inner product with a constant matrix
C = −(diag(B1)−B)/4. There are n equality constraints of the form xkk = 1, k = 1, ..., n,
where xkk is the kth diagonal element of X, and bk = 1 in Equation 1. To represent this in
the form 〈Ak, X〉 = xkk, take Ak to be

Ak = [aij] =

{
1, i = j = k

0, otherwise

Now 〈Ak, X〉 = vec(Ak)
Tvec(X) = xkk as required, and the Max-Cut problem is specified as

a conic linear optimization problem.

Allowing for optimization to occur over only one variable at a time is quite restrictive, as
only a small number of problems can be formulated in this form. Allowing optimization to
occur over multiple variables simultaneously would allow for a broader range of problems to
be solved.

2.1. A separable set of variables

The conic linear optimization problem actually covers a much wider class of problems than
those expressible as in Equation 1. Variables can be separated into those which are constrained
to a semidefinite cone, S, a quadratic cone, Q, or a linear cone, L. The objective function
is a sum of the corresponding inner products of each set of variables. The linear constraint
is simply a sum of variables of linear functions of each set. This more general version of the

4 sdpt3r - SQLP in R

conic linear optimization problem is

minimize
Xs,Xq ,Xl

∑ns
j=1〈Cs

j , X
s
j〉+

∑nq

i=1〈C
q
i , X

q
i 〉+ 〈Cl, Xl〉

subject to ∑ns
j=1 (As

j)
Tsvec(Xs

j) +
∑nq

i=1 (Aq
i)

T
Xq
i + (Al)

T
Xl = b

Xs
j ∈ Ssj ∀ j

Xq
i ∈ Qqi ∀ i

(2)

Here, svec takes the upper triangular elements of a matrix (including the diagonal) in a
column-wise fashion and vectorizes them. In general for an n× p matrix X = [xij], svec(X)

will have the following form [x11, x12, x22, x13, ..., x(n−1)p, xnp]
T. Recall that matrices in S are

symmetric, so it is sufficient to constrain only the upper triangular elements of the matrix
Xs. For this formulation, As

j , A
q
i and Al are the constraint matrices of the appropriate size.

Some important problems in statistics can be formulated to fit this form of the optimization
problem.

The nearest correlation matrix

First addressed by ? in dealing with correlations between stock prices, difficulty arises when
data is not available for all stocks on each day, which is unfortunately a common occur-
rence. To help address this situation, correlations are calculated for pairs of stocks only when
data is available for both stocks on any given day. The resulting correlation matrix is only
approximate in that it is not necessarily positive semidefinite.

This problem was cast by ? as

minimize
X

||R−X||F
subject to

diag(X) = 1
X ∈ Sn

where R is the approximate correlation matrix and || · ||F denotes the Frobenius norm. Unfor-
tunately, the Frobenius norm in the objective function prevents the problem being formatted
as a conic linear optimization problem.

Since the matrix X is constrained to have unit diagonal and be symmetric, and the matrix R is
an approximate correlation matrix, meaning it will also have unit diagonal and be symmetric,
we can re-write the objective function as

||R−X||F = 2 ∗ ||svec(R)− svec(X)|| = 2 ∗ ||e||

Now, introduce a variable e0 such that e0 ≥ ||e||, and define e∗ = [e0; e]. The vector e∗ is
now restricted to be in the quadratic cone Qn(n+1)/2+1. This work leads to the formulation
of ?

Adam Rahman 5

minimize
e∗, X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e

∗

diag(X) = 1
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

Here, [X,Y] denotes column binding of the two matrices Xn×p and Yn×m to form a matrix
of size n× (p+m). By minimizing e0, we indirectly minimize e = svec(R)− svec(X), since
recall we have e0 ≥ ||e||, which is the goal of the original objective function.

To see this as a conic linear optimization problem, notice that e0 can be written as 〈Cq, Xq〉
by letting Cq = [1;0n(n+1)/2] and Xq = e∗. Since the matrix X (i.e. Xs) does not appear in
the objective function, the matrix Cs is an n× n matrix of zeros.

Re-writing the first constraint as

svec(X) + [0, In(n+1)/2] e
∗ = svec(R)

we can easily define the constraint matrices and right hand side of the first constraint as

As
1 = In(n+1)/2

Aq
1 = [0, In(n+1)/2]

b1 = svec(R)

The second constraint is identical to the constraint from the Max-Cut problem, where each
diagonal element of X is constrained to be equal to 1. Define b2 = 1, and for the kth diagonal
element of X, define the matrix Ak as

Ak = [aij] =

{
1, i = j = k

0, otherwise

yielding 〈Ak,X〉 = xkk. To write this as (As
2)

TXs, define

As
2 = [svec(A1), ..., svec(An)]

Since e∗ does not appear in the second constraint, Aq
2 = 0n(n+1)/2+1.

The final step is to combine the individual constraint matrices from each constraint to form
one constraint matrix for each variable, which is done by defining As = [As

1, As
2], Aq =

[Aq
1, Aq

2]. We also concatenate both right hand side vectors to form a single vector by
defining b = [b1; b2]. Here, the notation [X;Y] is used to denote two matrices Xp×m and
Yq×m bound vertically to form a matrix of size (p+q)×m. With this, the nearest correlation
matrix problem is written as a conic linear optimization.

6 sdpt3r - SQLP in R

2.2. Semidefinite quadratic linear programming

While Equation 2 allows for additional variables to be present, it can be made more general
still to allow even more problems to be solved. We will refer to this general form as a
semidefinite quadratic linear programming (SQLP) problem.

The first generality afforded by an SQLP is the addition of an unconstrained variable Xu,
which, as the name suggests, is not bound to a cone, but instead, it is “constrained” to
the reals in the appropriate dimension. The second generalization is to allow for what are
known as log-barrier terms to exist in the objective function. In general, a barrier function
in an optimization problem is a term that approaches infinity as the point approaches the
boundary of the feasible region. As we will see, these log-barrier terms appear as log terms
in the objective function.

Recall that for any linear optimization problem, there exists two formulations - the primal
formulation and the dual formulation. For the purposes of a semidefinite quadratic linear
programming problem, the primal problem will always be defined as a minimization, and the
associated dual problem will therefore be a maximization

The primal problem

The primal formulation of the SQLP problem is

minimize
Xs

j ,X
q
i ,X

l,Xu

∑ns
j=1[〈Cs

j , X
s
j〉 − vsj log det X

s
j] +

∑nq

i=1[〈C
q
i , X

q
i 〉 − vqi log γ(Xq

i)]

+ 〈Cl, Xl〉 −
∑nl

k=1 v
l
k log Xl

k + 〈Cu, Xu〉
subject to ∑ns

j=1A
s
j(X

s
j) +

∑nq

i=1A
q
iX

q
i + AlXl + AuXu = b

Xs
j ∈ Ssj ∀ j

Xq
i ∈ Qqi ∀ i

Xl ∈ Lnl

Xu ∈ Rnu

(3)

For each j, Cs
j and Xs

j are symmetric matrices of dimension sj , restricted to the cone of
positive semidefinite matrices of the same dimension. Similarly, for all i, Cq

i and Xq
i are real

vectors of dimension qi, restricted to the the quadratic cone of dimension qi. For a vector
u = [u0; ũ] in a second order cone, define γ(u) =

√
u20 − ũTũ. Finally, Cl and Xl are vectors of

dimension nl, restricted to linear cone of the same dimension, and Cu and Xu are unrestricted
real vectors of dimension nu.

As before, the matrices Aq
i , A

l, and Au are constraint matrices in qi, nl, and nu dimensions
respectively, each corresponding to their respective quadratic, linear, or unrestricted block.
As
j is defined to be a linear map from Ssj to Rm defined by

A
sj
j (Xs

j) = [〈As
j,1,X

s
j〉; . . . ; 〈As

j,m,X
s
j〉]

where As
j,1 . . .A

s
j,m ∈ Ssj are constraint matrices associated with the jth semidefinite variable

Xs
j .

Adam Rahman 7

The dual problem

The dual problem associated with the semidefinite quadratic linear programming formulation
is

maximize
Zs
j ,Z

q
i ,Z

l,y
bTy +

∑ns
j=1[v

s
j log det Z

s
j + sj v

s
j (1− log vsj)]

+
∑nq

i=1[v
q
i log γ(Zqi) + vqi (1− log vqi)]

+
∑nl

k=1[v
l
k log Zlk + vlk (1− log vlk)]

subject to

(As
j)
Ty + Zsj = Cs

j , Zsj ∈ Ssj , j = 1, . . . , ns

(Aq
i)

T
y + Zqi = Cq

i , Zqi ∈ Qqi , i = 1, . . . , nq

(Al)
T
y + Zl = Cl, Zl ∈ Lnl

(Au)Ty = Cu, y ∈ Rm

(4)

where (As
j)
T is defined to be the adjoint operator of As

j , where (As
j)
Ty =

∑m
k=1 ykA

s
j,k.

Equations 3 and 4 represent the most general form of the linear conic optimization problem
that can be solved using sdpt3r.

Optimal design of experiments

Consider the problem of estimating a vector x from measurements y given by the relationship

y = Ax + ε, ε ∼ N (0, 1).

The variance-covariance matrix of such an estimator is proportional to (ATA)−1. A reasonable
goal during the design phase of an experiment would therefore be to minimize (ATA)−1 in
some way.

There are many different ways in which (ATA)−1 might be made minimal. For example, min-
imization of the trace of (ATA)−1 (A-Optimality), minimization of the maximum eigenvalue
of (ATA)−1 (E-Optimality), minimization of the determinant of (ATA)−1 (D-Optimilaity),
and maximization of the trace of ATA (T-Optimality) all have their merits.

Perhaps the most commonly used of these optimality criteria is D-Optimality, which is equiv-
alent to maximizing the determinant of ATA. Typically, the rows of A = [a1, ...,aq]

T are
chosen from M possible test vectors ui ∈ Rp, i = 1, ...M , which are known in advance. That
is,

ai ∈ {u1, ...,uM}, i = 1, ..., q

Given that the matrix A is made up of these test vectors ui, ? write the matrix ATA as

ATA = q
M∑
i=1

λiuiui
T (5)

where λi is the fraction of rows in A that are equal to the vector ui. Then, ? write the
D-optimal experimental design problem as a minimum determinant problem

8 sdpt3r - SQLP in R

minimize
λ

log det (
∑M

i=1 λiuiui
T)−1

subject to
λi ≥ 0, i = 1, ...,m∑M

i=1 λi = 1

Due to the inequality constraint, this primal formulation cannot be interpreted as an SQLP
of the form of Equation 3. By defining Z = u diag(λ) uT, the dual problem is (?)

maximize
Z, zl, λ

log det (Z)

subject to
−
∑p

i=1 λi(uiui
T) + Z = 0, Z ∈ Sn
−λ+ zl = 0, zl ∈ Rp+

1Tλ = 1, λ ∈ Rp

Keeping in mind that this is a dual configuration, and thus follows Equation 4, we proceed
with writing the D-Optimal design problem as an SQLP by first considering the objective
function. The objective function depends only on the determinant of the matrix variable Z,
which is the log-barrier. This indicates that the variable vs in Equation 4 is equal to 1 in this
formulation, while vq and vl are both zero. Since λ does not appear in the objective function,
the vector b is equal to 0.

The constraint matrices A are easy to define in the case of the dual formulation, as they
multiply the vector y in Equation 4, so therefore multiply λ in our case. In the first constraint,
each λi is multiplied by the matrix formed by −uiuTi , so define Ai to be

Ai = −uiuTi , i = 1, ..., p.

Then, the constraint matrix is As = [svec(A1), ..., svec(Ap)]. In the second constraint con-
taining the linear variable zl, the constraint matrix is Al = −Ip, and in the third constraint
containing only the unconstrained variable λ, the constraint matrix is Au = 1T. Since there
is no quadratic variable, Aq = 0.

Finally, define the right hand side of each constraint

Cs = 0n×n
Cl = 0p×1

Cu = 1

which fully specifies the D-Optimal design problem as an SQLP.

In the next section, we will demonstrate using R how these definitions can be translated for
use in the main function of sdpt3 so an SQLP problem can be solved.

3. Examples using R

In this section, we introduce the main function call available in sdpt3r and use the work done
in Section 2 to demonstrate how an SQLP can be converted to a form solvable by sdpt3r.
Using three numerical examples, we will also demonstrate the output provided by sdpt3r.

Adam Rahman 9

For sdpt3r, each optimization variable will be referred to as a block in the space in which it
is restricted. For instance, if we have an optimization variable X ∈ Sn, we will refer to this
as a semidefinite block of size n. It is important to note that it is possible to have multiple
blocks from the same space, that is, it is possible to have both X ∈ Sn as well as Y ∈ Sm in
the same problem.

3.1. Input variables

The main function call in sdpt3r is sqlp, which takes the following input variables

blk A matrix object describing the block structure of the optimization variables.
At A matrix object containing constraint matrices As, Aq, Al, and Au

for the primal-dual problem.
b A vector containing the right hand side of the equality constraints, b,

in the primal problem, or equivalently the constant vector in the dual.
C A matrix object containing the constant C matrices in the primal objective

function or equivalently the corresponding right hand side of the equality
constraints in the dual problem.

X0, y0, Z0 Matrix objects containing an initial iterate for the X, y, and Z variables for
the SQLP problem. If not provided, an initial iterate is computed internally.

OPTIONS A list object providing additional parameters for use in sqlpr.
If not provided, default values are used.

The input variable blk describes the block structure of the problem. Letting L be the total
number of semidefinite, quadratic, linear, and unrestricted blocks in the SQLP problem, define
blk to be an L× 2 matrix object, with the first column describing the type of block, and the
second denoting the size of the optimization variable, summarized in Table 1.

Block Type Column 1 Column 2

semidefinite s sj
quadratic q qi
linear l nl
unrestricted u nu

Table 1: Structure of blk.

The input variable At corresponds to the constraint matrices in Equation 3, and C the constant
matrices in the objective function. The size of these input variables depends on the block
they are representing, summarized in Table 2 for each block type.

Block Type
semidefinite quadratic linear unrestricted

At s̄j ×m qj ×m nl ×m nu ×m
C sj × sj qj × 1 nl × 1 nu × 1

Table 2: Size of At and C for each block type.

Note that in Table 2, s̄j = sj(sj + 1)/2. The size of At in the semidefinite block reflects the
upper-triangular input format that has been discussed previously. In a semidefinite block,

10 sdpt3r - SQLP in R

the optimization variable X is necessarily symmetric and positive semidefinite, it is therefore
more efficient to consider only the upper-triangular portion of the corresponding constraint
matrix.

It is important to note that both input variables At and C are matrices of matrices, a constraint
matrix and a constant matrix for each optimization variable. While blk does not have this
same requirement, we will nonetheless use the same structure to initialize blk as we do At

and C for the sake of consistency.

In general, the user need not supply initial iterates X0, y0, and Z0 for a solution to be found
using sqlp. The infeasible starting point generated internally by sqlp tends to be sufficient
to find a solution. If the user wishes to provide a starting point however, the size parameters
in Table 3 must be met for each block.

Block Type
semidefinite quadratic linear unrestricted

X0 sj × sj qj × 1 nl × 1 nu × 1
y0 sj × 1 qj × 1 nl × 1 nu × 1
Z0 sj × sj qj × 1 nl × 1 nu × 1

Table 3: Required size for initial iterates X0, y0, and Z0.

The user may choose to depart from the default values of several parameters which could
affect the optimization by specifying alternative values in the OPTIONS list. A complete list
of all parameters that can be altered can be found in Appendix A.

An important example is the specification of the parbarrier parameter in OPTIONS, which
specifies the presence of a log-barrier in the objective function. The default case in OPTIONS

assumes that the parameters vsj , vqi , vlk in Equation 3 are all 0. If this, however, is not the
case, then the user must specify an L× 1 matrix object in OPTIONS$parbarrier to store the
values of these parameters (including zeros). If the jth block is a semidefinite block containing
p variables, parbarrierj = [vsj1, ..., v

s
jn]. If the jth block is a quadratic block containing

p variables, parbarrierj = [vqj1, ..., v
q
jn]. If the jth block is a linear block parbarrierj =

[vl1, ..., v
l
nl

]. Finally, if the jth block is the unrestricted block, then parbarrierj = [0, ..., 0],
where 0 is repeated nu times. Section 3.4 contains an example where OPTIONS$parbarrier

is specified.

When executed, sqlp simultaneously solves both the primal and dual problems, meaning
solutions for both problems are returned. The relevance of each output therefore depends on
the problem being solved. Both solutions are accessible through the following list of output
variables

Adam Rahman 11

pobj the value of the primary objective function
dobj the value of the dual objective function

X A matrix object containing the optimal matrix X for the primary problem
y A vector object containing the optimal vector y for the dual problem
Z A matrix object containing the optimal matrix Z for the dual problem

The examples in subsequent subsections will demonstrate the output provided by sqlp.

3.2. The Max-Cut problem

Recall that the maximum cut of a graph G with adjacency matrix B can be found as the
solution to

Minimize 〈C,X〉
subject to

diag(X) = 1
X ∈ Sn

where C = −(diag(B1)−B)/4. In Section 2, we wrote this in the form of an SQLP

Minimize 〈C,X〉
subject to

〈Ak,X〉 = 1, k = 1, . . . , n
X ∈ Sn

where we defined Ak as

Ak = [aij] =

{
1, i = j = k

0, otherwise

To convert this to a form usable by sqlp, we begin by noting that we have one optimization
variable, X. Therefore, with L = 1, we initialize the required input variables as follows

R> blk <- matrix(list(),nrow=1,ncol=2)

R> At <- matrix(list(),nrow=1,ncol=1)

R> C <- matrix(list(),nrow=1,ncol=1)

This initializes blk, At, and C as a matrix of matrices. While not required mathematically
in this problem, this is the format required for all problems solved using sqlp, and will be
required for any problem with more than one optimization variable.

This initialization has the advantage of allowing blk to contain character and numerical
values, without using the overhead of a data frame. Having X constrained to the space of
semidefinite matrices of size n, we specify blk as

R> blk[[1,1]] <- "s"

R> blk[[1,2]] <- n

With the objective function in the form 〈C,X〉, we define the input C as

12 sdpt3r - SQLP in R

R> one <- matrix(1,nrow=n,ncol=1)

R> C[[1,1]] <- -(diag(B %*% one) - B)/4

where B is the adjacency matrix for a graph on which we would like to find the maximum
cut, such as the one in Figure 1.

B =

0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0

Figure 1: A graph object and associated adjacency matrix for which we would like to find the
maximum cut.

The matrix At is constructed using the upper triangular portion of the Ak matrices. To do
this in R, the function svec is made available in sdpt3r.

R> #Construct Ak matrices

R> A <- matrix(list(),nrow=1,ncol=n)

R> for(k in 1:n){

R> A[[k]] <- matrix(0,nrow=n,ncol=n)

R> diag(A[[k]])[k] <- 1

R> }

R> #Combine to form At

R> At[[1,1]] <- svec(blk[1,],A)

Having each of the diagonal elements of X constrained to be 1, b is a n× 1 matrix of ones

R> b <- matrix(1,nrow=n,ncol=1)

With all the input variables now defined, we can now call sqlp to solve the Max-Cut problem

R> sqlp(blk, At, C, b)

A numerical example and the maxcut function

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns all
of the input variables required for use in sqlp. If we wish to find to the maximum cut of the

Adam Rahman 13

graph in Figure 1, given the adjacency matrix B we can compute the input variables for sqlp
using maxcut

R> out <- maxcut(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

$pobj

[1] -14.67622

$X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597

V2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459

V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876

V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925

V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417

V6 0.857 0.929 0.394 -0.469 0.864 1.000 -0.508 -0.394 -1.000 0.098

V7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907

V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876

V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098

V10 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have defined C =
−(diag(B1) − B)/4 since we require the primal formulation to be a minimization problem.
The original formulation given in ? frames the Max-Cut problem as a maximization problem
with C = (diag(B1) −B)/4. Therefore, the approximate value of the maximum cut for the
graph in Figure 1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrix X is actually a correlation matrix by
considering its eigenvalues - we can see it clearly is symmetric, with unit diagonal and all
elements in [-1,1].

R> eigen(X)

$values

[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08

[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. ? show that the set
of feasible solutions for the Max-Cut problem is in fact the set of correlation matrices. So

14 sdpt3r - SQLP in R

while we may not be interested in X as an output for solving the Max-Cut problem, it is
nonetheless interesting to see that it is in fact in the set of feasible solutions.

3.3. Nearest correlation matrix

Recall that the nearest correlation matrix is found as the solution to

minimize
e∗, X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e

∗

diag(X) = 1
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

In Section 2.1 we wrote this as the following SQLP

minimize
e∗, X

〈C, e∗〉

subject to

(As)Tsvec(X) + (Aq)Te∗ = b
X ∈ Sn
e∗ ∈ Qn(n+1)/2+1

for C = [1,0n(n+1)/2], and

As = [As
1, A

s
2]

Aq = [Aq
1, A

q
2]

b = [b1; b2]

where

As
1 = In2

Aq
1 = [0, In2]

As
2 = [svec(A1), . . . , svec(An)]

Aq
2 = 0n2

b1 = svec(R)
b2 = 1T

and A1, . . . ,An are given by

Ak = [aij] =

{
1, i = j = k

0, otherwise

To be solved using sqlp, we first define blk. There are two optimization variables in the
formulation of the nearest correlation matrix - X is an n × n matrix constrained to be in a
semidefinite cone, and y is an n(n+ 1)/2 + 1 length vector constrained to be in a quadratic
cone, so

Adam Rahman 15

R> blk <- matrix(list(),nrow=2,ncol=2)

R> blk[[1,1]] <- "s"

R> blk[[1,2]] <- n

R> blk[[2,1]] <- "q"

R> blk[[2,2]] <- n * (n + 1) / 2 + 1

Note that X does not appear in the objective function, so the C entry corresponding to the
block variable X is an n× n matrix of zeros, which defines C as

R> C <- matrix(list(),nrow=2,ncol=1)

R> C[[1,1]] <- matrix(0,nrow=n,ncol=n)

R> C[[2,1]] <- rbind(1, matrix(0,nrow=n2,ncol=1))

Next comes the constraint matrix for X

R> At <- matrix(list(),nrow=2,ncol=1)

R>

R> #Constraint Matrix for Upper Triangular Elements of X

R> A1s <- diag(1,nrow=n2,ncol=n2)

R>

R> #Construct Ak matrices

R> Aks <- matrix(list(),nrow=1,ncol=n)

R> for(k in 1:n){

R> Aks[[k]] <- matrix(0,nrow=n,ncol=n)

R> diag(Aks[[k]])[k] <- 1

R> }

R>

R> A2s <- svec(blk[1,],Aks)

R>

R> #Combined Constraint Matrix for X

R> At[[1,1]] <- cbind(A1s,A2s)

then the constraint matrix for e∗.

R> A1q<- matrix(0,nrow=n,ncol=n2+1)

R>

R> A2q1 <- matrix(0,nrow=n2,ncol=1)

R> A2q2 <- diag(1,nrow=n2,ncol=n2)

R> A2q <- cbind(A211, A212)

R>

R> At[[2,1]] <- rbind(A1q, A2q)

and the right hand side vector b

R> b <- rbind(svec(blk[1,],R),matrix(1,n,1))

16 sdpt3r - SQLP in R

The nearest correlation matrix problem is now solved by

R> sqlp(blk, At, C, b)

A numerical example and the nearcorr function

To demonstrate the nearest correlation matrix problem, we will modify an existing correlation
matrix by exploring the effect of changing the sign of just one of the pairwise correlations. In
the context of stock correlations, we make use of tools available in the R package quantmod
(?) to access stock data from five tech firms (Microsoft, Apple, Amazon, Alphabet/Google,
and IBM) beginning in 2007.

R> library(quantmod)

R> getSymbols(c("MSFT", "AAPL", "AMZN", "GOOGL", "IBM"))

R> stock.close <- as.xts(merge(MSFT, AAPL, AMZN, GOOGL,IBM))[,c(4,10,16,22,28)]

The correlation matrix for these five stocks is

R> stock.corr <- cor(stock.close)

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 -0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close -0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Next, consider the effect of having a positive correlation between Microsoft and Apple

R> stock.corr[1,2] <- -1 * stock.corr[1,2]

R> stock.corr[2,1] <- stock.corr[1,2]

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close 0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Unfortunately, this correlation matrix is not positive semidefinite

R> eigen(stock.corr)$values

Adam Rahman 17

[1] 2.8850790 1.4306393 0.4902211 0.3294150 -0.1353544

Given the approximate correlation matrix stock.corr, the built-in function nearcorr pro-
vides the input variables required for the problem to be solved using sqlp

R> out <- nearcorr(stock.corr)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> foo <- sqlp(blk,At,C,b)

Since this is a minimization problem, and thus a primal formulation of the SQLP, the output
X from sqlp will provide the optimal solution to the problem - that is, X will be the nearest
correlation matrix to stock.corr.

foo$X

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.25388359 0.86150833 0.5600734 0.3126420

[2,] 0.2538836 1.00000000 -0.09611382 0.3808981 0.6643566

[3,] 0.8615083 -0.09611382 1.00000000 0.6115212 0.3480430

[4,] 0.5600734 0.38089811 0.61152116 1.0000000 0.5935021

[5,] 0.3126420 0.66435657 0.34804303 0.5935021 1.0000000

The matrix above is symmetric with unit diagonal and all entries in [−1, 1]. By checking the
eigenvalues,

eigen(X)

$values

[1] 2.846016e+00 1.384062e+00 4.570408e-01 3.128807e-01 9.680507e-11

we can see that X is indeed a correlation matrix.

3.4. D-optimal experimental design

Recall from Section 2.2 that the D-Optimal experimental design problem was stated as the
following dual SQLP

maximize
Z, zl, λ

log det (Z)

subject to
−
∑p

i=1 λi(uiui
T) + Z = 0, Z ∈ Sn
−λ+ zl = 0, zl ∈ Rp+

1Tλ = 1, λ ∈ Rp

18 sdpt3r - SQLP in R

which we wrote as

maximize
Z, zl, λ

log det (Z)

subject to

(As)Tλ + Z = Cs, Z ∈ Sn

(Al)
T
λ + zl = Cq, zl ∈ Rp+

(Au)Tλ = Cu, λ ∈ Rp

where b = 0, and

As = −[svec(A1), . . . , svec(Ap)]
Al = −Ip
Au = 1T

Cs = 0n×n
Cl = 0p×1

Cu = 1

Here, A1, . . . ,Ap are given by

Ai = uiui
T, i = 1, . . . , p

To convert this to a form usable by sdpt3r, we initialize our input variables by noting we have
three blocks - X, zl, and λ

R> blk <- matrix(list(),nrow=3,ncol=2)

R> At <- matrix(list(),nrow=3,ncol=1)

R> C <- matrix(list(),nrow=3,ncol=1)

As before, we declare the three blocks in blk. The first block is semidefinite containing
the matrix Z, the second a linear block containing zl, and the third an unrestricted block
containing λ

R> blk[[1,1]] <- "s"

R> blk[[1,2]] <- n

R> blk[[2,1]] <- "l"

R> blk[[2,2]] <- p

R> blk[[3,1]] <- "u"

R> blk[[3,2]] <- 1

Next, by noting the variable λ does not appear in the objective function, we specify b as a
vector of zeros

R> b <- matrix(0,nrow=p,ncol=1)

Next, looking at the right-hand side of the constraints, we define the matrices C

R> C[[1,1]] <- matrix(0,nrow=n,ncol=n)

R> C[[2,1]] <- matrix(0,nrow=p,ncol=1)

R> C[[3,1]] <- 1

Adam Rahman 19

Finally, we construct At for each variable

R> A <- matrix(list(),nrow=p,ncol=1)

$>

R> for(k in 1:p){

R> A[[k]] <- -uk %*% t(uk)

R> }

R>

R> At[[1,1]] <- svec(blk[1,], A)

R> At[[2,1]] <- diag(-1,nrow=p,ncol=p)

R> At[[3,1]] <- matrix(1,nrow=1,ncol=p)

The final hurdle necessary to address in this problem is the existence of the log-barrier. Recall
that it is assumed that vs, vq, and vl in Equation 4 are all zero in OPTIONS. In this case, we
can see that is not true, as we have a log term containing Z in the objective function, meaning
vs is equal to one. To pass this to sqlp, we define the OPTIONS$parbarrier variable as

R> OPTIONS$parbarrier <- matrix(list(),nrow=3,ncol=1)

R> OPTIONS$parbarrier[[1]] <- 1 #for vs

R> OPTIONS$parbarrier[[2]] <- 0 #for vq

R> OPTIONS$parbarrier[[3]] <- 0 #for vl

The D-Optimal experimental design problem can now be solved using sqlp

R> sqlp(blk, At, C, b, OPTIONS)

A numerical example and the doptimal function

To demonstrate the output generated from a D-optimal experimental design problem, we
consider a simple 3 × 25 matrix containing the known test vectors u1, ...,u25 (the data is
available in the sqlp package). To generate the required input for sqlp, we use the function
doptimal, which takes as input an n × p matrix U containing the known test vectors, and
returns the input necessary for sqlp. The output we are interested in is y, corresponding to
λ in our formulation, the percentage of each ui necessary to achieve maximum information
in the experiment.

R> data(DoptDesign)

R> out <- doptimal(DoptDesign)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk,At,C,b,OPTIONS)

20 sdpt3r - SQLP in R

$y

[,1]

[1,] 0.000

[2,] 0.000

[3,] 0.000

[4,] 0.000

[5,] 0.000

[6,] 0.000

[7,] 0.154

[8,] 0.000

[9,] 0.000

[10,] 0.000

[11,] 0.000

[12,] 0.000

[13,] 0.319

[14,] 0.000

[15,] 0.000

[16,] 0.240

[17,] 0.000

[18,] 0.000

[19,] 0.000

[20,] 0.000

[21,] 0.000

[22,] 0.000

[23,] 0.287

[24,] 0.000

[25,] 0.000

The information matrix ATA is a linear combination of the test vectors ui, weighted by the
optimal vector y above.

4. Additional problems

The sdpt3r package considerably broadens the set of optimization problems that can be solved
in R. In addition to those problems presented in detail in Section 3, there are a large number
of well known problems that can also be formulated as an SQLP.

Each problem presented will be described briefly, with appropriate references for the interested
reader, and presented mathematically in its classical form, not as an SQLP as in Equation
3 or 4. Accompanying each problem will be an R helper function, which will produce the
input variables blk, At, C, and b so that the problem can be solved using sqlp. Each helper
function is made available to the user in the sdpt3r package.

4.1. Minimum volume ellipsoids

The problem of finding the ellipsoid of minimum volume containing a set of points v1, ...,vn
is stated as the following optimization problem (?)

Adam Rahman 21

maximize
B, d

log det(B)

subject to
||Bx + d|| ≤ 1, ∀]vex ∈ [v1, ...,vn]

The function minelips takes as input an n× p matrix V containing the points around which
we would like to find the minimum volume ellipsoid, and returns the input variables necessary
to solve the problem using sqlp.

R> out <- minelips(V)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> OPTIONS <- out$OPTIONS

R> sqlp(blk,At,C,b,OPTIONS)

4.2. Distance weighted discrimination

Given two sets of points in a matrix X ∈ Rn with associated class variables [-1,1] in Y =
diag(y), distance weighted discrimination (?) seeks to classify the points into two distinct
subsets by finding a hyperplane between the two sets of points. Mathematically, the distance
weighted discrimination problem seeks a hyperplane defined by a normal vector, ω, and
position, β, such that each element in the residual vector r̄ = YXTω + βy is positive and
large. Since the class labels are either 1 or -1, having the residuals be positive is equivalent
to having the points on the proper side of the hyperplane.

Of course, it may be impossible to have a perfect separation of points using a linear hyperplane,
so an error term ξ is introduced. Thus, the perturbed residuals are defined to be

r = YXTω + βy + ξ

Distance Weighted Discrimination (?) solves the following optimization problem to find the
optimal hyperplane.

minimize
r, ω, β, ξ

∑n
i=1(1/ri) + C1Tξ

subject to
r = YXTω + βy + ξ

ωTω ≤ 1
r ≥ 0
ξ ≥ 0

where C > 0 is a penalty parameter to be chosen.

The function dwd takes as input two n × p matrices X1 and X2 containing the points to be
separated, as well as a penalty term C ≥ 0 penalizing the movement of a point on the wrong
side of the hyperplane to the proper side, and returns the input variables necessary for sqlp

to solve the distance weighted discrimination problem.

22 sdpt3r - SQLP in R

R> out <- dwd(X1,X2,C)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.3. Max-kCut

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph G = (V,E) and
an integer k, does a cut exist of at least size k. For a given (weighted) adjacency matrix B
and integer k, the Max-kCut problem is formulated as the following primal problem

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij ≥ 1/(k − 1) ∀ i 6= j
X ∈ Sn

Here, C = −(1− 1/k)/2 ∗ (diag(B1)−B). The Max-kCut problem is slightly more complex
than the Max-Cut problem due to the inequality constraint. In order to turn this into a
standard SQLP, we must replace the inequality constraints with equality constraints, which
we do by introducing a slack variable xl, allowing the problem to be restated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij − xl = 1/(k − 1) ∀ i 6= j

X ∈ Sn
xl ∈ Ln(n+1)/2

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the
input variables necessary for the problem to be solved using sqlp.

R> out <- maxkcut(B,k)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.4. Graph partitioning problem

The graph partitioning problem can be formulated as the following primal optimization prob-
lem

Adam Rahman 23

minimize
X

tr(CX)

subject to
tr(11TX) = α
diag(X) = 1

Here, C = −(diag(B1)−B), for an adjacency matrix B, and α is any real number.

The function gpp, takes as input a weighted adjacency matrix B and a real number alpha

and returns the input necessary to solve the problem using sqlp.

R> out <- gpp(B,alpha)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.5. The Lovasz number

The Lovasz Number of a graph G, denoted ϑ(G), is the upper bound on the Shannon capacity
of the graph. For an adjacency matrix B = [Bij] the problem of finding the Lovasz number
is given by the following primal SQLP problem

minimize
X

tr(CX)

subject to
tr(X) = 1
Xij = 0 if Bij = 1
X ∈ Sn

The function lovasz takes as input an adjacency matrix B, and returns the input variables
necessary for the Lovasz number to be found using sqlp.

R> out <- lovasz(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.6. Toeplitz approximation

Given a symmetric matrix F, the Toeplitz approximation problem seeks to find the nearest
symmetric positive definite Toeplitz matrix. In general, a Toeplitz matrix is one with constant
descending diagonals, i.e.

24 sdpt3r - SQLP in R

T =

a b c d e
f a b c d
g f a b c
h g f a b
i h g f a

is a general Toeplitz matrix. The problem is formulated as the following optimization problem

maximize
X

−yn+1

subject to [
I 0
0 −β

]
+

∑n
k=1 yk

[
0 γkek

γke
T
k −2qk

]
+ yn+1B ≥ 0

[y1, ..., yn]T + yn+1B ≥ 0

where B is an (n+1)×(n+1) matrix of zeros, and B(n+1)(n+1) = 1, q1 = −tr(F), qk = sum of

kth diagonal upper and lower triangular matrix, γ1 =
√
n, γk =

√
2 ∗ (n− k + 1), k = 2, ..., n,

and β = ||F||2F .

The function toep takes as input a symmetric matrix F for which we would like to find the
nearest Toeplitz matrix, and returns the input variables required to solve the problem using
sqlp.

R> out <- toep(F)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.7. The educational testing problem

The educational testing problem arises in measuring the reliability of a student’s total score
in an examination consisting of a number of sub-tests (?). In terms of formulation as an
optimization problem, the problem is to determine how much can be subtracted from the
diagonal of a given symmetric positive definite matrix S such that the resulting matrix remains
positive semidefinite (?).

The Educational Testing Problem (ETP) is formulated as the following dual problem

maximize
d

1Td

subject to
A− diag(d) � 0

d ≥ 0

where d = [d1, d2, ..., dn] is a vector of size n and diag(d) denotes the corresponding n× n
diagonal matrix. In the second constraint, having each element in d be greater than or equal
to 0 is equivalent to having diag(d) � 0.

Adam Rahman 25

The corresponding primal problem is

minimize
X

tr(AX)

subject to
diag(X) ≥ 1

X � 0

The function etp takes as input an n × n positive definite matrix A, and returns the input
variables required to solve the educational testing problem using sqlp.

R> out <- etp(A)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.8. Logarithmic Chebyshev approximation

For a p× n (p > n) matrix B and p× 1 vector f , the Logarithmic Chebyshev Approximation
problem is stated as the following optimization problem (?)

minimize
x, t

t

subject to
1/t ≤ (xTBi·)/fi ≤ t, i = 1, ..., p

where Bi· denotes the ith row of the matrix B. Note that we require each element of B·j/f
to be greater than or equal to 0 for all j.

The function logcheby takes as input a matrix B and vector f, and returns the input variables
necessary to solve the Logarithmic Chebyshev Approximation problem using sqlp.

R> out <- logcheby(B,f)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

4.9. Linear matrix inequality problems

We consider three distinct linear matrix inequality problems, all written in the form of a dual
optimization problem. The first linear matrix inequality problem we will consider is defined
by the following optimization equation for some n× p matrix B known in advance

26 sdpt3r - SQLP in R

maximize
η, Y

−η

subject to
BY + YBT � 0

−Y � −I
Y − ηI � 0

Y11 = 1, Y ∈ Sn

The function lmi1 takes as input a matrix B, and returns the input variables blk, At, C, and
b for sqlp.

R> out <- lmi1(B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

The second linear matrix inequality problem is

maximize
P, d

−tr(P)

subject to

A1P + PA1
T + B ∗ diag(d) ∗BT � 0

A2P + PA2
T + B ∗ diag(d) ∗BT � 0

−d � 0∑p
i di = 1

Here, the matrices B, A1, and A2 are known in advance.

The function lmi2 takes the matrices A1, A2, and B as input, and returns the input variables
necessary for sqlp.

R> out <- lmi2(A1,A2,B)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

The final linear matrix inequality problem originates from a problem in control theory (?)
and requires three matrices be known in advance, A, B, and G

maximize
η, P

η

subject to [
AP + PAT 0

BP 0

]
+ η

[
0 0
0 I

]
�
[
−G 0
0 0

]

Adam Rahman 27

The function lmi3 takes as input the matrices A, B, and G, and returns the input variables
necessary to solve the problem using sqlp.

R> out <- lmi3(A,B,G)

R> blk <- out$blk

R> At <- out$At

R> C <- out$C

R> b <- out$b

R> sqlp(blk,At,C,b)

5. Concluding remarks

In Section 2, we introduced the problem of conic linear optimization. Using the Max-Cut,
Nearest Correlation Matrix, and D-Optimal Experimental Design problems as examples, we
demonstrated the increasing generality of the problem, culminating in a general form of the
conic linear optimization problem, known as the semidefinite quadratic linear program, in
Section 2.2.

In Section 3, we introduced the R package sdpt3r, and the main function call available in the
package, sqlp. The specifics of the necessary input variables, the optional input variables,
and the output variables provided by sqlp were presented. Using the examples from Section
2, we showed how a problem written as a semidefinite quadratic linear program could be
solved in R using sdpt3r.

Finally, in Section 4, we presented a number of additional problems that can be solved using
the sdpt3r package, and presented the helper functions available so these problems could be
easily solved using sqlp.

The sdpt3r package significantly broadens the range of problems that can be solved using R.
Here, we discussed a number of problems that can be solved using sdpt3r, including important
problems in the statistical sciences, graph theory, classification, control theory, and general
matrix theory. The sqlp function in sdpt3r is in fact even more general, and users may apply
it to any other conic linear optimization problem that can be written in the form of Equation
3 or 4 by specifying the input variables blk, At, C, and b for their particular problem.

28 sdpt3r - SQLP in R

A. OPTIONS

vers specifies the search direction
0, HKM if semidefinite blocks present, NT otherwise (default)
1, HKM direction
2, NT direction

predcorr TRUE, use Mehrotra prediction-correction (default)
FALSE, otherwise

gam step-length (default 0)
expon exponent used to decrease sigma (default 1)
gaptol tolerance for duality gap as a fraction of the objective function (default 1e− 8)
inftol tolerance for stopping due to infeasibility (default 1e-8)
steptol tolerance for stopping due to small steps (default 1e-6)
maxit maximum number of iterations (default 100)

stoplevel 0, continue until successful completion, maximum iteration, or numerical failure
1, automatically detect termination, restart if small steps is cause (default)
2, automatically detect termination

scale_data TRUE, scale data prior to solving
FALSE, otherwise (default)

rmdepconstr TRUE, remove nearly dependent constraints
FALSE, otherwise (default)

parbarrier declare the existence of a log barrier term
default value is 0 (i.e. no log barrier)

Affiliation:

Adam Rahman
Department of Statistics and Actuarial Science
Faculty of Mathematics
University of Waterloo
200 University Ave W, Waterloo, Ontario, Canada
E-mail: a45rahma@uwaterloo.ca

mailto:a45rahma@uwaterloo.ca

	Introduction
	Conic linear optimization
	A separable set of variables
	The nearest correlation matrix

	Semidefinite quadratic linear programming
	The primal problem
	The dual problem
	Optimal design of experiments

	Examples using R
	Input variables
	The Max-Cut problem
	A numerical example and the maxcut function

	Nearest correlation matrix
	A numerical example and the nearcorr function

	D-optimal experimental design
	A numerical example and the doptimal function

	Additional problems
	Minimum volume ellipsoids
	Distance weighted discrimination
	Max-kCut
	Graph partitioning problem
	The Lovasz number
	Toeplitz approximation
	The educational testing problem
	Logarithmic Chebyshev approximation
	Linear matrix inequality problems

	Concluding remarks
	OPTIONS

