
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

stm: R Package for Structural Topic Models

Margaret E. Roberts

UCSD
Brandon M. Stewart

Princeton
Dustin Tingley

Harvard

Abstract

This vignette demonstrates how to use the Structural Topic Model stm R package.
The Structural Topic Model allows researchers to flexibly estimate a topic model that
includes document-level meta-data. Estimation is accomplished through a fast variational
approximation. The stm package provides many useful features, including rich ways to
explore topics, estimate uncertainty, and visualize quantities of interest.

Keywords: structural topic model, text analysis, LDA, stm, R.

1. Introduction

Text data is ubiquitious in social science research: traditional media, social media, survey
data, and numerous other sources contribute to the massive quantity of text in the mod-
ern information age. The mounting availability of, and interest in, text data has been the
development of a variety of statistical approaches for analyzing this data. We focus on the
Structural Topic Model (STM), and its implementation in the stm R package, which provides
tools for machine-assisted reading of text corpora.1 Building off of the tradition of proba-
bilistic topic models, such as the Latent Dirichlet Allocation (LDA) (Blei et al. 2003), the
Correlated Topic Model (CTM) (Blei and Lafferty 2007), and other topic models that have
extended these (Mimno and McCallum 2008; Socher et al. 2009; Eisenstein et al. 2010; Rosen-

1We thank Antonio Coppola, Jetson Leder-Luis, Christopher Lucas, and Alex Storer for various assistance
in the construction of this package. We also thank the many package users who have written in with bug
reports and feature requests. We extend particular gratitude to users on Github who have contributed code
via pull requests including Ken Benoit, Patrick Perry, Chris Baker, Jeffrey Arnold, Thomas Leeper, Vincent
Arel-Bundock, Santiago Castro, Rose Hartman and Github user sw1. We gratefully acknowledge grant support
from the Spencer Foundation’s New Civics initiative, the Hewlett Foundation and The Eunice Kennedy Shriver
National Institute of Child Health & Human Development of the National Institutes of Health under Award
Number P2CHD047879. The content is solely the responsibility of the authors and does not necessarily
represent the official views of any of the funding institutions. Additional details and development version at
structuraltopicmodel.com

http://dx.doi.org/10.18637/jss.v000.i00
structuraltopicmodel.com

2 Structural Topic Models

Zvi et al. 2010; Quinn et al. 2010; Ahmed and Xing 2010; Grimmer 2010; Eisenstein et al.
2011; Gerrish and Blei 2012; Foulds et al. 2015; Paul and Dredze 2015), the Structural Topic
Model’s key innovation is that it permits users to incorporate arbitrary metadata, defined as
information about each document, into the topic model. With the STM, users can model the
framing of international newspapers (Roberts et al. 2016b), open-ended survey responses in
the American National Election Study (Roberts et al. 2014), online class forums (Reich et al.
2015), Twitter feeds and religious statements (Lucas et al. 2015), lobbying reports (Milner
and Tingley 2015) and much more.2

The goal of the Structural Topic Model is to allow researchers to discover topics and estimate
their relationship to document metadata. Outputs of the model can be used to conduct
hypothesis testing about these relationships. This of course mirrors the type of analysis that
social scientists perform with other types of data, where the goal is to discover relationships
between variables and test hypotheses. Thus the methods implemented in this paper help
to build a bridge between statistical techniques and research goals. The stm package also
provides tools to facilitate the work flow associated with analyzing textual data. The design
of the package is such that users have a broad array of options to process raw text data,
explore and analyze the data, and present findings using a variety of plotting tools.

The outline of this paper is as follows. In Section 2 we introduce the technical aspects of the
STM, including the data generating process and an overview of estimation. In Section 3 we
provide examples of how to use the model and the package stm, including implementing the
model and plots to visualize model output. Sections 4 and 5 cover settings to control details
of estimation. Section 6 demonstrates the superior performance of our implementation over
related alternatives. Section 7 concludes and the Appendix discusses several more advanced
features.

2. The Structural Topic Model

We begin by providing a technical overview of the STM model. Like other topic models, the
STM is a generative model of word counts. That means we define a data generating process
for each document and then use the data to find the most likely values for the parameters
within the model. Figure 1 provides a graphical representation of the model. The generative
model begins at the top, with document (D1, D2...), topic (T1, T2...), and word (w1, w2...)
distributions generating documents that have metadata associated with them (Xd, where d

indexes the documents). Within this framework (which is the same as other topic models
like LDA), a topic is defined as a mixture over words where each word has a probability
of belonging to a topic. And a document is a mixture over topics, meaning that a single
document can be composed of multiple topics. As such, the sum of the topic proportions
across all topics for a document is one, and the sum word probabilities for a given topic is
one.

Figure 1 and the statement below of the document generative process highlight the case where
topical prevalence and topical content can be a function of document metadata. Topical
prevalence refers to how much of a document is associated with a topic (described on the
left hand side) and topical content refers to the words used within a topic (described on

2A fast growing range of other papers also utilize the model in a variety of ways. We maintain a list of
papers using the software that we are aware of on our website structuraltopicmodel.com.

structuraltopicmodel.com

Journal of Statistical Software 3

the right hand side). Hence metadata that explain topical prevalence are referred to as
topical prevalence covariates, and variables that explain topical content are referred to as
topical content covariates. It is important to note, however, that the model allows using
topical prevalence covariates, a topical content covariate, both, or neither. In the case of no
covariates, the model reduces to a (fast) implementation of the Correlated Topic Model (Blei
and Lafferty 2007).

The generative process for each document (indexed by d) with vocabulary of size V for a
STM model with K topics can be summarized as:

1. Draw the document-level attention to each topic from a logistic-normal generalized
linear model based on a vector of document covariates Xd.

~θd|Xdγ,Σ ∼ LogisticNormal(µ = Xdγ,Σ) (1)

where Xd is a p-by-1 vector, γ is a p-by-K − 1 matrix of coefficients and Σ is K − 1-by-
K − 1 covariance matrix.

2. Form the document-specific distribution over words representing each topic (k) using
the baseline word distribution (m), the topic specific deviation κk, the covariate group
deviation κg and the interaction between the two κi.

βd,k ∝ exp(m+ κk + κgd + κi=(k,gd)) (2)

m, and each κk, κg and κi are V -length vectors containing one entry per word in the
vocabulary.

3. For each word in the document, (n ∈ 1, . . . , Nd):

• Draw word’s topic assignment based on the document-specific distribution over
topics.

zd,n|~θd ∼ Multinomial(~θd) (3)

• Conditional on the topic chosen, draw an observed word from that topic.

wd,n|zd,n, βd,k=zd,n ∼ Multinomial(βd,k=zd,n) (4)

Our approach to estimation builds on prior work in variational inference for topic models
(Blei and Lafferty 2007; Ahmed and Xing 2007; Wang and Blei 2013). We develop a partially-
collapsed variational Expectation-Maximization algorithm which upon convergence gives us
estimates of the model parameters. Regularizing prior distributions are used for γ, κ, and
(optionally) Σ, which help enhance interpretation and prevent overfitting. We note that
within the object that stm produces the names correspond with the notation used here (i.e.
the list element named theta contains θ, the N by K matrix where θi,j denotes the proportion
of document i allocated to topic j). Further technical details are provided in Roberts et al.
(2016b). In this paper, we provide brief interpretations of results, and we direct readers to
the companion papers (Roberts et al. 2013, 2014; Lucas et al. 2015) for complete applications.

4 Structural Topic Models

Generative Model

Estimation

EM Step 1:

EM Step 2:

Convergence

For Docs
similar to D1

Word Topic

Word Topic

+

+

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ?

.4 .4 .1 .1

.1 .2 .4 .3

.4 .4 .1 .1

.1 .2 .4 .3

.4 .2 .2 .2

Pr(w1):

? ? ? ?

.1 .1 .6 .2

"party …

government…

country"

z}|{ z}|{
Doc 1

D1

D1

D2

D2

T1

T1

T2

T2

T2

T2

T3 T4

T1 T3 T4

T3 T4T1

T2 T3 T4T1

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

w1 w2 w3 w4

w1 w2 w3 w4

θ1

θ1

w1

w2

w3

w4

w1

w2

w3

w4

T1

T2

T3

T4

T1

T2

T3

T4

X = 0

X = 0

X = 0

X = 0

X = 1

X = 1

X = 1

X = 1

D1(X = 1)

D2(X = 0)
θd βx

Figure 1: Heuristic description of generative process and estimation of the STM.

Journal of Statistical Software 5

3. Using the Structural Topic Model

In this section we demonstrate the basics of using the package.3 Figure 2 presents a heuristic
overview of the package, which parallels a typical workflow. For each step we list different
functions in the stm package that accomplish each task. First users ingest the data and prepare
it for analysis. Next a structural topic model is estimated. As we discuss below, the ability
to estimate the structural topic model quickly allows for the evaluation, understanding, and
visualization of results. For each of these steps we provide examples of some of the functions
that are in the package and discussed in this paper. All of the functions come with help files,
and examples, that can be accessed by typing ? and then the function’s name.4

3The stm package leverages functions from a variety of other packages. Key computations in the main
function use Rcpp (Eddelbuettel and Francois 2011), RcppArmadillo (Eddelbuettel and Sanderson 2014), Ma-

trixStats (Bengtsson 2017), slam (Hornik et al. 2016), lda (Chang 2015), splines (R Core Team 2016) and glmnet

(Friedman et al. 2010). Supporting functions use a wide array of other packages including: quanteda (Benoit
et al. 2017), tm (Feinerer et al. 2008), stringr (Wickham 2017), SnowballC (Bouchet-Valat 2014), , igraph

(Csardi and Nepusz 2006), huge (Zhao et al. 2012), clue (Hornik 2005), wordcloud (Fellows 2014), KernSmooth

(Wand 2015), geometry (Habel et al. 2015), Rtsne (Krijthe 2015) and others.
4We sometimes refer to generic functions such as plot.estimateEffect using their full name. We emphasize

for those new to R that these functions can be accessed by using the generic function (in this case plot) on an
object of the type estimateEffect.

6 Structural Topic Models

Ingest

Prepare

Estimate

textProcessor

readCorpus{
prepDocuments

plotRemoved{
stm{

Evaluate Understand Visualize

manyTopics

multiSTM

selectModel

permutationTest

searchK

findThoughts

estimateEffect

topicCorr

labelTopics

cloud

plotQuote

plot.estimateEffect

plot.STM

plot.topicCorr

Extensions

stmBrowser

stmCorrViz

...

Figure 2: Heuristic description of selected stm package features.

Journal of Statistical Software 7

3.1. Ingest: Reading and processing text data

The first step is to load data into R. The stm package represents a text corpus in three parts: a
documents list containing word indices and their associated counts,5 a vocab character vector
containing the words associated with the word indices, and a metadata matrix containing
document covariates. For illustration purposes, we print an example of two short documents
from a larger corpus below. The first document contains five words (which would appear at
positions 21, 23, 87, 98 and 112 of the vocab vector) and each word appears once except the
21st word which appears twice.

[[1]]

[,1] [,2] [,3] [,4] [,5]

[1,] 21 23 87 98 112

[2,] 2 1 1 1 1

[[2]]

[,1] [,2] [,3]

[1,] 16 61 90

[2,] 1 1 1

In this section, we describe utility functions for reading text data into R or converting from
a variety of common formats that text data may come in. Note that particular care must be
taken to ensure that documents and their vocabularies are properly aligned with the metadata.
In the sections below we describe some tools internal and external to the package that can be
useful in this process.

Reading in data from a “spreadsheet”

The stm provides a simple tool to quickly get started for a common use case: the researcher
has stored text data alongside covariates related to the text in a spreadsheet, such as a .csv
file that contains textual data and associated metadata. If the researcher reads this data into
a R data frame, then the stm package’s function textProcessor can conveniently convert
and processes the data to ready it for analysis in the stm package. For example, users would
first read in a .csv file that contains the textual data and associated metadata using native
R functions, or load a pre-prepared dataframe as we do below.6 Next, they would pass this
object through the textProcessor function.

To illustrate how to use the stm package, we will use a collection of blogposts about American
politics that were written in 2008, from the CMU 2008 Political Blog Corpus (Eisenstein and
Xing 2010).7 The blogposts were gathered from six different blogs: American Thinker, Digby,

5A full description of the sparse list format can be found in the help file for stm.
6Note that the model does not permit estimation when there are variables used in the model that have

missing values. As such, it can be helpful to subset data to observations that do not have missing values for
metadata that will be used in the STM model.

7The set of blogs is available at http://sailing.cs.cmu.edu/socialmedia/blog2008.html and docu-
mentation on the blogs is available at http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf. You
can find the cleaned version of the data we used for this vignette here: http://goo.gl/tsprNO or here
http://scholar.princeton.edu/sites/default/files/bstewart/files/poliblogs2008.csv. A link to a
saved workspace containing the models we use here is provided below.

http://sailing.cs.cmu.edu/socialmedia/blog2008.html
http://www.sailing.cs.cmu.edu/socialmedia/blog2008.pdf
http://goo.gl/tsprNO
http://scholar.princeton.edu/sites/default/files/bstewart/files/poliblogs2008.csv

8 Structural Topic Models

Hot Air, Michelle Malkin, Think Progress, and Talking Points Memo. Each blog has its own
particular political bent. The day within 2008 when each blog was written was also recorded.
Thus for each blogpost, there is metadata on the day it was written and the political ideology
of the blog for which it was written. In this case, each blog post is a row in a .csv file, with
the text contained in a variable called documents.

R> data <- read.csv("poliblogs2008.csv")

R> processed <- textProcessor(data$documents, metadata = data)

R> out <- prepDocuments(processed$documents, processed$vocab, processed$meta)

R> docs <- out$documents

R> vocab <- out$vocab

R> meta <-out$meta

In the next section we provide a link to a workspace with an estimated model that can be
used to follow the examples in this vignette.

Using the quanteda package

A useful external tool for handling text processing is the quanteda package (Benoit et al.
2017), which makes it easy to import text and associated meta-data, prepare the texts for
processing, and convert the documents into a document-term matrix. In quanteda, documents
can be added to a corpus object using the corpus constructor function, which holds both the
texts and the associated covariates in the form of document-level meta-data. The readtext

package (Benoit and Obeng 2017) contains very flexible tools for reading many formats of
texts, such as plain text, XML, and JSON formats and for easily creating a corpus from them.
The function dfm from the quanteda package creates a document term matrix that can be
supplied directly to the stm model fitting function. quanteda offers a much richer library of
functions than the built-in textProcessor function and so can be particularly useful when
more customization is required.

Reading in data from other text processing programs

Sometimes researchers will encounter data that is not in a spreadsheet format. The readCorpus
function is capable of loading data from a wide variety of formats, including the standard R

matrix class along with the sparse matrices from the packages slam and Matrix. Document
term matrices created by the popular package tm are inherited from the slam sparse matrix
format and thus are included as a special case.

Another program that is helpful for setting up and processing text data with document
metadata, is txtorg (Lucas et al. 2015). The txtorg program generates three separate files: a
metadata file, a vocabulary file, and a file with the original documents. The default export
format for txtorg is the ldac sparse matrix format popularized by David Blei’s implementation
of LDA. The readCorpus() function can read in data of this type using the “ldac” option.

Finally the corpus package (Perry et al. 2017) provides another fast method for creating a
corpus from raw text inputs.

Pre-processing text content

It is often useful to engage in some processing of the text data before modelling it. The most

www.txtorg.org

Journal of Statistical Software 9

common processing steps are stemming (reducing words to their root form), dropping punc-
tuation and stop word removal (e.g., the, is, at). The textProcessor function implements
each of these steps across multiple languages by using the tm package.8

3.2. Prepare: Associating text with metadata

After reading in the data, we suggest using the utility function prepDocuments to process the
loaded data to make sure it is in the right format. prepDocuments also removes infrequent
terms depending on the user-set parameter lower.thresh. The utility function plotRemoved

will plot the number of words and documents removed for different thresholds. For example,
the user can use:

R> plotRemoved(processed$documents, lower.thresh = seq(1, 200, by = 100))

R> out <- prepDocuments(processed$documents, processed$vocab,

+ processed$meta, lower.thresh = 15)

to evaluate how many words and documents would be removed from the dataset at each word
threshold, which is the minimum number of documents a word needs to appear in order for
the word to be kept within the vocabulary. Then the user can select their preferred threshold
within prepDocuments.

Importantly, prepDocuments will also re-index all metadata/document relationships if any
changes occur due to processing. If a document is completely removed due to pre-processing
(for example because it contained only rare words), then prepDocuments will drop the cor-
responding row in the metadata as well. After reading in and processing the text data, it is
important to inspect features of the documents and the associated vocabulary list to make
sure they have been correctly preprocessed.

From here, researchers are ready to estimate a structural topic model.

3.3. Estimate: Estimating the structural topic model

The data import process will output documents, vocabulary and metadata that can be used
for an analysis. In this section we illustrate how to estimate the STM. Next we move to a
range of functions to evaluate, understand, and visualize the fitted model object.

The key innovation of the STM is that it incorporates metadata into the topic modeling
framework. In STM, metadata can be entered in the topic model in two ways: topical
prevalence and topical content. Metadata covariates for topical prevalence allow the observed
metadata to affect the frequency with which a topic is discussed. Covariates in topical content
allow the observed metadata to affect the word rate use within a given topic–that is, how a
particular topic is discussed. Estimation for both topical prevalence and content proceeds via
the workhorse stm function.

Estimation with topical prevalence parameter

In this example, we use the ratings variable (blog ideology) as a covariate in the topic
prevalence portion of the model with the CMU Poliblog data described above. Each document

8The tm package has numerous additional features that are not included in textProcessor which is intended
only to wrap a useful set of common defaults.

10 Structural Topic Models

is modeled as a mixture of multiple topics. Topical prevalence captures how much each topic
contributes to a document. Because different documents come from different sources, it is
natural to want to allow this prevalence to vary with metadata that we have about document
sources.

We will let prevalence be a function of the “rating” variable, which is coded as either “Liberal”
or “Conservative,” and the variable “day.” which is an integer measure of days running from
the first to the last day of 2008. To illustrate, we now estimate a 20 topic STM model.
The user can then pass the output from the model, poliblogPrevFit, through the various
functions we discuss below (e.g., plot.STM) to inspect the results.

If a user wishes to specify additional prevalence covariates, she would do so using the standard
formula notation in R which we discuss at greater length below. A feature of the stm function
is that “prevalence” can be expressed as a formula that can include multiple covariates and
factorial or continuous covariates. For example, by using the formula setup we can enter
other covariates additively. Additionally users can include more flexible functional forms of
continuous covariates, including standard transforms like log(), as well as ns() or bs() from
the splines package. The stm package also includes a convenience function s(), which selects
a fairly flexible b-spline basis. In the current example we allow for the variable “date” to be
estimated with a spline. As we show later in the paper, interactions between covariates can
also be added using the standard notation for R formulas. In the example below, we enter in
the variables additively, by allowing for the day variable, an integer variable measuring which
day the blog was posted, to have a non-linear relationship in the topic estimation stage.

R> poliblogPrevFit <- stm(documents = out$documents, vocab = out$vocab,

+ K = 20, prevalence =~ rating + s(day),

+ max.em.its = 75, data = out$meta,

+ init.type = "Spectral")

The model is set to run for a maximum of 75 EM iterations (controlled by max.em.its)
using a seed we selected (seed). Convergence is monitored by the change in the approximate
variational lower bound. Once the bound has a small enough change between iterations, the
model is considered converged. To reduce compiling time, in this paper we do not run the
models and instead load a workspace with the models already estimated.9

R> load(url("http://goo.gl/VPdxlS"))

3.4. Evaluate: Model selection and search

Model initialization for a fixed number of number of topics

As with all mixed-membership topic models, the posterior is intractable and non-convex,
which creates a multimodal estimation problem that can be sensitive to initialization. Put
differently, the answers the estimation procedure comes up with may depend on starting

9We note that due to differences across versions of the software the code above may not exactly replicate
the models we use below. We have analyzed the poliblog data in other papers including Roberts et al. (2016a)
and Romney et al. (2015).

Journal of Statistical Software 11

values of the parameters (e.g., the distribution over words for a particular topic). There
are two approaches to dealing with this that the STM package facilitates. The first is to
use an initialization based on the method of moments, which is deterministic and globally
consistent under reasonable conditions (Arora et al. 2013; Roberts et al. 2016a). This is known
as a spectral initialization because it uses a spectral decomposition (non-negative matrix
factorization) of the word co-occurrence matrix. In practice we have found this intialization
to be very helpful. This can be chosen by setting init.type = "Spectral" in the stm

function. We use this option in the above example. This means that no matter the seed that
is set, the same results will be generated.10 When the vocabulary is larger than 10,000 words,
the function will temporarily subset the vocabulary size for the duration of the initialization.

The second approach is to initialize the model with a short run of a collapsed Gibbs sampler for
LDA. For completeness researchers can also initialize the model randomly, but this is generally
not recommended. In practice, we generally recommend using the spectral initialization as
we have found it to produce the best results consistently (Roberts et al. 2016a).11

Model selection for a fixed number of number of topics

When not using the spectral initialization, the analyst should estimate many models, each
from different initializations, and then evaluate each model according to some separate stan-
dard (we provide several below). The function selectModel automates this process to facili-
tate finding a model with desirable properties. Users specify the number of “runs,” which in
the example below is set to 20. selectModel first casts a net where “run” (below 10) models
are run for two EM steps, and then models with low likelihoods are discarded. Next, the
default returns the 20% of models with the highest likelihoods, which are then run until con-
vergence or the EM iteration maximum is reached. Notice that options for the stm function
can be passed to selectModels, such as max.em.its. If users would like to select a larger
number of models to be run completely, this can also be set with an option specified in the
help file for this function.

R> poliblogSelect <- selectModel(out$documents, out$vocab, K = 20,

+ prevalence =~ rating + s(day), max.em.its = 75,

+ data = out$meta, runs = 20, seed = 8458159)

In order to select a model for further investigation, users must choose one of the candidate
models’ outputs from selectModel. To do this, plotModels can be used to plot two scores:
semantic coherence and exclusivity for each model and topic.

Semantic coherence is a criterion developed by Mimno et al. (2011) and is closely related to
pointwise mutual information (Newman et al. 2010): it is maximized when the most probable
words in a given topic frequently co-occur together. Mimno et al. (2011) show that the metric
correlates well with human judgment of topic quality. Formally, let D(v, v′) be the number
of times that words v and v′ appear together in a document. Then for a list of the M most

10While the initialization is deterministic, we have observed in some circumstances it may not produce
exactly the same results across machines due to differences in numerical precision. It will, however, always
produce the same result within a machine for a given version of stm.

11Starting with version 1.3.0 the default initialization strategy was changed to Spectral from LDA. In order
to clarify

12 Structural Topic Models

probable words in topic k, the semantic coherence for topic k is given as

Ck =

M∑

i=2

i−1∑

j=1

log

(
D(vi, vj) + 1

D(vj)

)

(5)

In Roberts et al. (2014) we noted that attaining high semantic coherence was relatively easy
by having a few topics dominated by very common words. We thus propose to measure
topic quality through a combination of semantic coherence and exclusivity of words to topics.
We use the FREX metric (Bischof and Airoldi 2012; Airoldi and Bischof 2016) to measure
exclusivity in a way that balances word frequency.12 FREX is the weighted harmonic mean
of the word’s rank in terms of exclusivity and frequency.

FREXk,v =

(

ω

ECDF(βk,v/
∑K

j=1 βj,v)
+

1− ω

ECDF(βk,v)

)

−1

(6)

where ECDF is the empirical CDF and ω is the weight which we set to .7 here to favor
exclusivity.13

Each of these criteria are calculated for each topic within a model run. The plotModels

function calculates the average across all topics for each run of the model and plots these by
labeling the model run with a numeral. Often times users will select a model with desirable
properties in both dimensions (i.e., models with average scores towards the upper right side
of the plot). As shown in Figure 3, the plotModels function also plots each topic’s values,
which helps give a sense of the variation in these parameters. For a given model, the user can
plot the semantic coherence and exclusivity scores with the topicQuality function.

Next the user would want to select one of these models to work with. For example, the third
model could be extracted from the object that is outputted by selectModel.

R> selectedmodel <- poliblogSelect$runout[[3]]

Alternatively, as discussed in Section 8, the user can evaluate the stability of particular topics
across models.

Model search across numbers of topics

STM assumes a fixed user-specified number of topics. There is not a “right” answer to the
number of topics that are appropriate for a given corpus (Grimmer and Stewart 2013), but
the function searchK uses a data-driven approach to selecting the number of topics. The
function will perform several automated tests to help choose the number of topics including
calculating the held out likelihood (Wallach et al. 2009) and performing a residual analysis
(Taddy 2012). For example, one could estimate a STM model for 7 and 10 topics and compare
the results along each of the criteria. The default initialization is the spectral initialization
due to its stability. This function will also calculate a range of quantities of interest, including
the average exclusivity and semantic coherence.

12We use the FREX framework from Airoldi and Bischof (2016) to develop a score based on our model’s
parameters, but do not run the more complicated hierarchical Poisson convolution model developed in that
work.

13Both functions are also each documented with keyword internal and can be accessed by
?semanticCoherence and ?exclusivity.

Journal of Statistical Software 13

R> plotModels(poliblogSelect, pch=c(1,2,3,4), legend.position="bottomright")

−100 −80 −60 −40

9.
0

9.
2

9.
4

9.
6

9.
8

Semantic Coherence

E
xc

lu
si

vi
ty

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●●

● 1
2
3
4

12
34

Figure 3: Plot of selectModel results. Numerals represent the average for each model, and
dots represent topic specific scores.

R> storage <- searchK(out$documents, out$vocab, K = c(7, 10),

+ prevalence =~ rating + s(day), data = meta)

There is another more preliminary selection strategy based on work by Lee and Mimno (2014).
When initialization type is set to "Spectral" the user can specify K=0 to use the algorithm
of Lee and Mimno (2014) to select the number of topics. The core idea of the spectral
initialization is to approximately find the vertices of the convex hull of the word co-occurences.
The algorithm of Lee and Mimno (2014) projects the matrix into a low dimensional space using
t-distributed stochastic neighbor embedding (Van Der Maaten 2014) and then exactly solves
for the convex hull. This has the advantage of automatically selecting the number of topics.
The added randomness from the projection means that the algorithm is not deterministic like
the standard "Spectral" initialization type. Running it with a different seed can result in not
only different results but a different number of topics. We emphasize that this procedure has
no particular statistical guarantees and should not be seen as estimating the “true” number
of topics. However it can be useful place to start and has the computational advantage that
it only needs to be run once.

There are several other functions for evaluation shown in Figure 2, and we discuss these in
more detail in Appendix 8 so we can proceed with how to understand and visualize STM
results.

3.5. Understand: Interpreting the STM by plotting and inspecting results

After choosing a model, the user must next interpret the model results. There are many

14 Structural Topic Models

ways to investigate the output, such as inspecting the words associated with topics or the
relationship between metadata and topics. To investigate the output of the model, the stm

package provides a number of options.

1. Displaying words associated with topics (labelTopics, plot.STM(,type = "labels"),
sageLabels, plot.STM(,type = "perspectives")) or documents highly associated
with particular topics (findThoughts, plotQuote).

2. Estimating relationships between metadata and topics/topical content (estimateEffect).

3. Calculating topic correlations (topicCorr).

Understanding topics through words and example documents

We next describe two approaches for users to explore the topics that have been estimated.
The first approach is to look at collections of words that are associated with topics. The
second approach is to examine actual documents that are estimated to be highly associated
with each topic. Both of these approaches should be used. Below, we use the 20 topic model
estimated with the spectral initialization.

To explore the words associated with each topic we can use the labelTopics function. For
models where a content covariate is included sageLabels can also be used. Both these
functions will print words associated with each topic to the console. The function by default
prints several different types of word profiles, including highest probability words and FREX
words. FREX weights words by their overall frequency and how exclusive they are to the topic
(calculated as given in Equation 6).14 Lift weights words by dividing by their frequency in
other topics, therefore giving higher weight to words that appear less frequently in other topics.
For more information on lift, see Taddy (2013). Similar to lift, score divides the log frequency
of the word in the topic by the log frequency of the word in other topics. For more information
on score, see the lda R package, https://cran.r-project.org/package=lda. In order to
translate these results to a format that can easily be used within a paper, the plot.STM(,type
= "labels") function will print topic words to a graphic device. Notice that in this case, the
labels option is specified as the plot.STM function has several functionalities that we describe
below (the options for “perspectives” and “summary”).

R> labelTopics(poliblogPrevFit, c(3, 7, 20))

Topic 3 Top Words:

Highest Prob: obama, barack, campaign, biden, polit, will, debat

FREX: ayer, barack, obama, wright, biden, jeremiah, joe

Lift: oct, goolsbe, ayerss, ayr, bernadin, ayer, annenberg

Score: oct, obama, barack, ayer, wright, campaign, biden

Topic 7 Top Words:

Highest Prob: palin, governor, sarah, state, alaska, polit, senat

FREX: blagojevich, palin, sarah, rezko, alaska, governor, gov

14In practice when using FREX for labeling we regularize our estimate of the topic-specific distribution over
words using a James-Stein shrinkage estimator (Hausser and Strimmer 2009). More details are available in the
documentation.

https://cran.r-project.org/package=lda

Journal of Statistical Software 15

Lift: jindal, blagojevich, juneau, monegan, blago, burri, wasilla

Score: monegan, palin, blagojevich, sarah, alaska, rezko, governor

Topic 20 Top Words:

Highest Prob: bush, presid, administr, said, hous, white, report

FREX: cheney, tortur, cia, administr, interrog, bush, perino

Lift: addington, fratto, perino, mcclellan, feith, plame, cheney

Score: addington, bush, tortur, perino, cia, cheney, administr

To examine documents that are highly associated with topics the findThoughts function
can be used. This function will print the documents highly associated with each topic.15

Reading these documents is helpful for understanding the content of a topic and interpreting
its meaning. Using syntax from data.table (Dowle and Srinivasan 2017) the user can also use
findThoughts to make complex queries from the documents on the basis of topic proportions.

In our example, for expositional purposes, we restrict the length of the document to the first
200 characters.16 We see that Topic 3 describes discussions of the Obama campaign during
the 2008 presidential election. Topic 20 discusses the Bush administration.

To print example documents to a graphics device, plotQuote can be used. The results are
displayed in Figure 4.

R> thoughts3 <- findThoughts(poliblogPrevFit, texts = shortdoc,

+ n = 2, topics = 3)$docs[[1]]

R> thoughts20 <- findThoughts(poliblogPrevFit, texts = shortdoc,

+ n = 2, topics = 20)$docs[[1]]

Estimating metadata/topic relationships

Estimating the relationship between metadata and topics is a core feature of the stm package.
These relationships can also play a key role in validating the topic model’s usefulness (Grimmer
2010; Grimmer and Stewart 2013). While stm estimates the relationship for theK−1 simplex,
the workhorse function for extracting the relationships and associated uncertainty on all K
topics is estimateEffect. This function simulates a set of parameters which can then be
plotted (which we discuss in great detail below). Typically, users will pass the same model of
topical prevalence used in estimating the STM to the estimateEffect function. The syntax
of the estimateEffect function is designed so users specify the set of topics they wish to use
for estimation, and then a formula for metadata of interest. Different estimation strategies
and standard plot design features can be used by calling the plot.estimateEffect function.

estimateEffect can calculate uncertainty in several ways. The default is“Global”, which will
incorporate estimation uncertainty of the topic proportions into the uncertainty estimates us-
ing the method of composition. If users do not propagate the full amount of uncertainty, e.g.,
in order to speed up computational time, they can choose uncertainty = "None", which will
generally result in narrower confidence intervals because it will not include the additional esti-
mation uncertainty. Calling summary on the estimateEffect object will generate a regression
table.

15The theta object in the stm model output has the posterior probability of a topic given a document that
this function uses.

16This uses the object shortdoc contained in the workspace loaded above, which is the first 200 characters
of original text.

16 Structural Topic Models

R> par(mfrow = c(1, 2),mar = c(.5, .5, 1, .5))

R> plotQuote(thoughts3, width = 30, main = "Topic 3")

R> plotQuote(thoughts20, width = 30, main = "Topic 20")

Topic 3

As noted here and elsewhere,
the words 'William Ayers'

appeared nowhere in
yesterday's debate, despite

the fact that the McCain
campaign hinted for days

that McCain would go hard at
Obama's association

Here's video of the ad we
reported on below that the

Obama campaign is running in
Ohio responding to the earlier

Swift−Boating spot tying Obama
to former Weatherman Bill

Ayers... With all our pr

Topic 20

Report: Bush 'Personally
Directed' Gonzales To Strong−
Arm Ashcroft At His BedsideIn

his May 2007 testimony,
describing the infamous

strong−arming of John Ashcroft
done by Andy Card and Alberto

Waxman calls for release
of FBI interviews with Bush
and Cheney. In a letter to
Attorney General Michael

Mukasey today, Rep. Henry
Waxman (D−CA), the Chairman

of the Hous e Committee on
Oversight

Figure 4: Example documents highly associated with topics 3 and 20.

Journal of Statistical Software 17

R> out$meta$rating <- as.factor(out$meta$rating)

R> prep <- estimateEffect(1:20 ~ rating + s(day), poliblogPrevFit,

+ meta = out$meta, uncertainty = "Global")

R> summary(prep, topics=1)

Call:

estimateEffect(formula = 1:20 ~ rating + s(day), stmobj = poliblogPrevFit,

metadata = out$meta, uncertainty = "Global")

Topic 1:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.473e-02 1.244e-02 5.201 2.01e-07 ***

ratingLiberal 5.739e-04 2.563e-03 0.224 0.8228

s(day)1 -7.332e-03 2.384e-02 -0.308 0.7585

s(day)2 -3.222e-02 1.393e-02 -2.313 0.0207 *

s(day)3 -3.308e-03 1.730e-02 -0.191 0.8484

s(day)4 -2.836e-02 1.408e-02 -2.014 0.0440 *

s(day)5 -2.423e-02 1.489e-02 -1.627 0.1038

s(day)6 -9.638e-03 1.446e-02 -0.667 0.5050

s(day)7 4.901e-05 1.472e-02 0.003 0.9973

s(day)8 4.293e-02 1.894e-02 2.267 0.0234 *

s(day)9 -9.945e-02 1.774e-02 -5.606 2.12e-08 ***

s(day)10 -2.240e-02 1.666e-02 -1.344 0.1789

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.6. Visualize: Presenting STM results

The functions we described previously to understand STM results can be leveraged to visualize
results for formal presentation. In this section we focus on several of these visualization tools.

Summary visualization

Corpus level visualization can be done in several different ways. The first relates to the
expected proportion of the corpus that belongs to each topic. This can be plotted using
plot.STM(,type = "summary"). An example from the political blogs data is given in Fig-
ure 5. We see, for example, that the Sarah Palin/Vice President topic (7) is actually a
relatively minor proportion of the discourse. The most common topic is a general topic full of
words that bloggers commonly use, and therefore is not very interpretable. The words listed
in the figure are the top three words associated with the topic.

In order to plot features of topics in greater detail, there are a number of options in the
plot.STM function, such as plotting larger sets of words highly associated with a topic or
words that are exclusive to the topic. Furthermore, the cloud function will plot a standard

18 Structural Topic Models

R> plot(poliblogPrevFit, type = "summary", xlim = c(0, .3))

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Top Topics

Expected Topic Proportions

Topic 17: global, warm, univers
Topic 7: palin, governor, sarah
Topic 13: iran, nuclear, world
Topic 6: elect, vote, voter
Topic 5: oil, energi, will
Topic 10: democrat, senat, bill
Topic 16: one, will, film
Topic 15: terrorist, attack, israel
Topic 14: will, american, america
Topic 20: bush, presid, administr
Topic 12: iraq, war, militari
Topic 1: obama, poll, mccain
Topic 18: mccain, john, said
Topic 11: law, court, state
Topic 19: clinton, hillari, will
Topic 8: tax, money, million

Topic 9: media, time, report
Topic 3: obama, barack, campaign

Topic 2: peopl, think, polit
Topic 4: get, one, like

Figure 5: Graphical display of estimated topic proportions.

Journal of Statistical Software 19

word cloud of words in a topic17 and the plotQuote function provides an easy to use graphical
wrapper such that complete examples of specific documents can easily be included in the
presentation of results.

Metadata/topic relationship visualization

We now discuss plotting metadata/topic relationships, as the ability to estimate these relation-
ships is a core advantage of the STMmodel. The core plotting function is plot.estimateEffect,
which handles the output of estimateEffect.

First, users must specify the variable that they wish to use for calculating an effect. If
there are multiple variables specified in estimateEffect, then all other variables are held at
their sample median. These parameters include the expected proportion of a document that
belongs to a topic as a function of a covariate, or a first difference type estimate, where topic
prevalence for a particular topic is contrasted for two groups (e.g., liberal versus conservative).
estimateEffect should be run and the output saved before plotting when it is time intensive
to calculate uncertainty estimates and/or because users might wish to plot different quantities
of interest using the same simulated parameters from estimateEffect.18 The output can then
be plotted.

When the covariate of interest is binary, or users are interested in a particular contrast, the
method = "difference" option will plot the change in topic proportion shifting from one
specific value to another. Figure 6 gives an example. For factor variables, users may wish to
plot the marginal topic proportion for each of the levels ("pointestimate").

We see Topic 1 is strongly used by conservatives compared to liberals, while Topic 7 is close
to the middle but still conservative-leaning. Topic 10, the discussion of Bush, was largely
associated with liberal writers, which is in line with the observed trend of conservatives
distancing from Bush after his presidency.

Notice how the function makes use of standard labeling options available in the native plot()
function. This allows the user to customize labels and other features of their plots. We note
that in the package we leverage generics for the plot functions. As such, one can simply use
plot instead of writing out the full extension.

When users have variables that they want to treat continuously, users can choose between
assuming a linear fit or using splines. In the previous example, we allowed for the day variable
to have a non-linear relationship in the topic estimation stage. We can then plot its effect
on topics. In Figure 7, we plot the relationship between time and the vice presidential topic,
topic 7. The topic peaks when Sarah Palin became John McCain’s running mate at the end
of August in 2008.

Topical content

We can also plot the influence of a topical content covariate. A topical content variable allows
for the vocabulary used to talk about a particular topic to vary. First, the STM must be
fit with a variable specified in the content option. In the below example, ratings serves this
purpose. It is important to note that this is a completely new model, and so the actual

17This uses the wordcloud package (Fellows 2014).
18The help file for this function describes several different ways for uncertainty estimate calculation, some

of which are much faster than others.

20 Structural Topic Models

R> plot(prep, covariate = "rating", topics = c(3, 7, 20),

+ model = poliblogPrevFit, method = "difference",

+ cov.value1 = "Liberal", cov.value2 = "Conservative",

+ xlab = "More Conservative ... More Liberal",

+ main = "Effect of Liberal vs. Conservative",

+ xlim = c(-.1, .1), labeltype = "custom",

+ custom.labels = c('Obama', 'Sarah Palin','Bush Presidency'))

●

−0.10 −0.05 0.00 0.05 0.10

Effect of Liberal vs. Conservative

More Conservative ... More Liberal

●Obama

●Sarah Palin

●Bush Presidency

Figure 6: Graphical display of topical prevalence contrast.

Journal of Statistical Software 21

R> plot(prep, "day", method = "continuous", topics = 7,

+ model = z, printlegend = FALSE, xaxt = "n", xlab = "Time (2008)")

R> monthseq <- seq(from = as.Date("2008-01-01"),

+ to = as.Date("2008-12-01"), by = "month")

R> monthnames <- months(monthseq)

R> axis(1,at = as.numeric(monthseq) - min(as.numeric(monthseq)),

+ labels = monthnames)

●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Time (2008)

E
xp

ec
te

d
To

pi
c

P
ro

po
rt

io
n

January March May June July September November

Figure 7: Graphical display of topic prevalence. Topic 7 prevalence is plotted as a smooth
function of day, holding rating at sample median, with 95% confidence intervals.

22 Structural Topic Models

topics may differ in both content and numbering compared to the previous example where no
content covariate was used.

R> poliblogContent <- stm(out$documents, out$vocab, K = 20,

+ prevalence =~ rating + s(day), content =~ rating,

+ max.em.its = 75, data = out$meta, init.type = "Spectral")

Next, the results can be plotted using the plot.STM(,type = "perspectives") function.
This functions shows which words within a topic are more associated with one covariate value
versus another. In Figure 8, vocabulary differences by ratings is plotted for topic 11. Topic 11
is related to Guantanamo. Its top FREX words were “tortur, detaine, court, justic, interrog,
prosecut, legal”. However, Figure 8 lets us see how liberals and conservatives talk about this
topic differently. In particular, liberals emphasized “torture”whereas conservatives emphasize
typical court language such as “illegal” and “law.” 19

R> plot(poliblogContent, type = "perspectives", topics = 11)

law

court

right

case
state

illeg

constitut

will

rule

legal

justic

govern

tortur

said

use

depart

investigattorney

offic

Liberal
(Topic 11)

Conservative
(Topic 11)

Figure 8: Graphical display of topical perspectives.

This function can also be used to plot the contrast in words across two topics.20 To show this
we go back to our original model that did not include a content covariate and we contrast
topic 12 (Iraq war) and 20 (Bush presidency). We plot the results in Figure 9.

19At this point you can only have a single variable as a content covariate, although that variable can have
any number of groups. It cannot be continuous. Note that the computational cost of this type of model rises
quickly with the number of groups and so it may be advisable to keep it small.

20This plot calculates the difference in probability of a word for the two topics, normalized by the maximum
difference in probability of any word between the two topics.

Journal of Statistical Software 23

R> plot(poliblogPrevFit, type = "perspectives", topics = c(12, 20))

iraq

war

militari

iraqi

troop

forc

will

afghanistan

americansecur

year

withdraw

bush

presid

administr

said
hous

white

report

torturoffici
former
intellig
say

Topic 20Topic 12

Figure 9: Graphical display of topical contrast between topics 12 and 20.

Plotting covariate interactions

Another modification that is possible in this framework is to allow for interactions between
covariates such that one variable may “moderate” the effect of another variable. In this
example, we re-estimated the STM to allow for an interaction between day (entered linearly)
and ratings. Then in estimateEffect() we include the same interaction. This allows us in
plot.estimateEffect to have this interaction plotted. We display the results in Figure 10 for
topic 20 (Bush administration). We observe that conservatives never wrote much about this
topic, whereas liberals discussed this topic a great deal, but over time the topic diminished
in salience.

R> poliblogInteraction <- stm(out$documents, out$vocab, K = 20,

+ prevalence =~ rating * day, max.em.its = 75,

+ data = out$meta, init.type = "Spectral")

We have chosen to enter the day variable here linearly for simplicity; however, we note that
you can use the software to estimate interactions with non-linear varaibles such as splines.
However, plot.estimateEffect only supports interactions with at least one binary effect
modification covariate.

More details are available in the help file for this function.21.

21An additional option is the use of local regression (loess). In this case, because multiple covariates are not
possible a separate function is required, plotTopicLoess, which contains a help file for interested users.

24 Structural Topic Models

R> prep <- estimateEffect(c(20) ~ rating * day, poliblogInteraction,

+ metadata = out$meta, uncertainty = "None")

R> plot(prep, covariate = "day", model = poliblogInteraction,

+ method = "continuous", xlab = "Days", moderator = "rating",

+ moderator.value = "Liberal", linecol = "blue", ylim = c(0, .12),

+ printlegend = F)

R> plot(prep, covariate = "day", model = poliblogInteraction,

+ method = "continuous", xlab = "Days", moderator = "rating",

+ moderator.value = "Conservative", linecol = "red", add = T,

+ printlegend = F)

R> legend(0, .08, c("Liberal", "Conservative"),

+ lwd = 2, col = c("blue", "red"))

●

0 100 200 300

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Days

E
xp

ec
te

d
To

pi
c

P
ro

po
rt

io
n

Liberal
Conservative

Figure 10: Graphical display of topical content. This plots the interaction between time (day
of blog post) and rating (liberal versus conservative). Topic 20 prevalence is plotted as linear
function of time, holding the rating at either 0 (Liberal) or 1 (Conservative). Were other
variables included in the model, they would be held at their sample medians.

Journal of Statistical Software 25

3.7. Extend: Additional tools for interpretation and visualization

There are multiple other ways to visualize results from an STM model. Topics themselves may
be nicely presented as a word cloud. For example, Figure 11 uses the cloud function to plot
a word cloud of the words most likely to occur in blog posts related to the vice presidential
candidates topic in the 2008 election.

In addition, the Structural Topic Model permits correlations between topics. Positive corre-
lations between topics indicate that both topics are likely to be discussed within a document.
These can be visualized using plot.topicCorr(). The user can specify a correlation thresh-
old. If two topics are correlated above that threshold, then those two topics are considered to
be linked. After calculating which topics are correlated with one another, plot.topicCorr
produces a layout of topic correlations using a force-directed layout algorithm, which we
present in Figure 12. We can use the correlation graph to observe the connection between
such as topics 12 (Iraq War) and 20 (Bush administration). plot.topicCorr has several
options that are described in the help file.

R> mod.out.corr <- topicCorr(poliblogPrevFit)

Finally, there are several add-on packages that take output from a structural topic model and
produce additional visualizations. In particular, the stmBrowser package contains functions
to write out the results of a structural topic model to a d3 based web browser.22 The browser
facilitates comparing topics, analyzing relationships between metadata and topics, and reading
example documents. The stmCorrViz package provides a different d3 visualization environ-
ment that focuses on visualizing topic correlations using a hierarchial clustering approach
that groups topics together.23 The function toLDAvis enables export to the LDAvis package
(Sievert and Shirley 2015) which helps view topic-word distributions. Additional packages
from R community that leverage output from the STM package are welcome.

22Available at https://github.com/mroberts/stmBrowser.
23Available at http://cran.r-project.org/web/packages/stmCorrViz/index.html.

https://github.com/mroberts/stmBrowser
http://cran.r-project.org/web/packages/stmCorrViz/index.html

26 Structural Topic Models

R> cloud(poliblogPrevFit, topic = 7, scale = c(2,.25))

fire
chicago

experiexecut

blago

appoint
jindal

former

emanuel

even

first

get

deal

involv
candid

new

st
at

e

famili

pick

tic
ke

t

question
politician

mayor

bridg

daley

will

charg

just

presidentelect

run

year
washington feder

of
fic

i

ethic

elect

choic

sarah

blagojevich

polit
name

report

serv

illinoi

palin

alaskan

now

in
di

ct
spitzer

w
ee

k

fitzgerald
resign

may

po
w

er

convent

nation

presid

rahm

day

make
alaska

two

republican

jackson

ted

staff

vice

sa
y

nowher

ask work

one

se
at

democrat

also

offic

special

job

senat
biden

like

rezko

kennedi

rak

scandal

investig time

york
m

at
e

rod

reform

interview

sa
id

steven

citi

gov

governor

pu
bl

ic

select co
rr

up
t

Figure 11: Word cloud display of vice President topic.

Journal of Statistical Software 27

R> plot(mod.out.corr)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7
Topic 8

Topic 9

Topic 10

Topic 11

Topic 12

Topic 13

Topic 14

Topic 15

Topic 16

Topic 17
Topic 18

Topic 19
Topic 20

Figure 12: Graphical display of topic correlations.

28 Structural Topic Models

Customizing Visualizations

The plotting functions invisibly return the calculations necessary to produce the plots. Thus
by saving the result of a plot function to an object, the user can gain access to the necessary
data to make plots of their own. We also provide the thetaPosterior function which allows
the user to simulate draws of the document-topic proportions from the variational posterior.
This can be used to include uncertainty in any calculation that the user might want to perform
on the topics.

4. Changing basic estimation defaults

In this section, we explain how to change default settings in the stm package’s estimation
commands. We start by discussing how to chose among different methods for initializing
model parameters. We then discuss how to set and evaluate convergence criteria. Next we
describe a method for accelerating convergence when the analysis includes tens of thousands
of documents or more. Finally we discuss some variations on content covariate models which
allow the user to control model complexity.

4.1. Initialization

As with most topic models, the objective function maximized by STM is multimodal. This
means that the way we choose the starting values for the variational EM algorithm can affect
our final solution. We provide four methods of initialization that are accessed using the ar-
gument init.type: Latent Dirichlet Allocation via collapsed Gibbs sampling (init.type =

"LDA"); a Spectral algorithm for Latent Dirichlet Allocation (init.type = "Spectral");
random starting values (init.type = "Random"); and user-specified values (init.type=
"Custom").

LDA is the default option and uses several passes of collapsed Gibbs sampling to initialize
the algorithm. The exact parameters for this initialization can be set using the argument
control. The spectral option initializes using a moment-based estimator for LDA due to
Arora et al. (2013). Finally, the random algorithm draws the initial state from a Dirichlet
distribution. The random initialization strategy is included primarily for completeness; in
general, the other two strategies should be preferred. Roberts et al. (2016a) provides details
on these initialization methods and provides a study of their performance. In general, the
spectral initialization outperforms LDA which in turn outperforms random initialization.

Each time the model is run, the random seed is saved in the output object under settings$seed.
This can be passed to the seed argument of stm to replicate the same starting values.

4.2. Convergence criteria

Estimation in the STM proceeds by variational EM. Convergence is controlled by relative
change in the variational objective. Denoting by ℓt the approximate variational objective at
time t, convergence is declared when the quantity (ℓt− ℓt−1)/abs(ℓt−1) drops below tolerance.
The default tolerance is 1e-5 and can be changed using the emtol argument.

The argument max.em.its sets the maximum number of iterations. If this threshold is reached
before convergence is reached a message will be printed to the screen. The default of 500

Journal of Statistical Software 29

R> plot(poliblogPrevFit$convergence$bound, type = "l",

+ ylab = "Approximate Objective",

+ main = "Convergence")

0 10 20 30 40−
23

20
00

00
−

23
00

00
00

−
22

80
00

00
−

22
60

00
00

Convergence

Index

A
pp

ro
xi

m
at

e
O

bj
ec

tiv
e

Figure 13: Graphical display of convergence.

iterations is simply a general guideline. A model that fails to converge can be restarted using
the model argument in stm. See the documentation for stm for more information.

The default is to have the status of iterations print to the screen. The verbose option turns
printing to the screen on and off.

During the E-step, the algorithm prints one dot for every 1% of the corpus it completes and
announces completion along with timing information. Printing for the M-Step depends on
the algorithm being used. For models without content covariates or other changes to the
topic-word distribution, M-step estimation should be nearly instantaneous. For models with
content covariates, and the algorithm is set to print dots to indicate progress. The exact
interpretation of the dots differs with the choice of model (see the help file for more details).

By default every 5th iteration will print a report of top topic and covariate words. The
reportevery option sets how often these reports are printed.

Once a model has been fit, convergence can easily be assessed by plotting the variational
bound as in Figure 13.

4.3. Accelerating convergence

When the number of documents is large, convergence in topic models can be slow. This
is because each iteration requires a complete pass over all the documents before updating

30 Structural Topic Models

the global parameters. To accelerate convergence we can split the documents into several
equal-sized blocks and update the global parameters after each block.24 The option ngroups

specifies the number of blocks, and setting it equal to an integer greater than one turns on
this functionality.

Note that increasing the ngroups value can dramatically increase the memory requirements
of the function because a sufficient statistics matrix for β must be maintained for every
block. Thus as the number of blocks is increased we are trading off memory for computa-
tional efficiency. While theoretically this approach should theoretically increase the speed of
convergence it needn’t do so in any particular case.

4.4. SAGE

The Sparse Additive Generative (SAGE) model conceptualizes topics as sparse deviations
from a corpus-wide baseline (Eisenstein et al. 2011). While computationally more expensive,
this can sometimes produce higher quality topics . Whereas LDA tends to assign many rare
words (words that appear only a few times in the corpus) to a topic, the regularization of
the SAGE model ensures that words load onto topics only when they have sufficient counts
to overwhelm the prior. In general, this means that SAGE topics have fewer unique words
that distinguish one topic from another, but those words are more likely to be meaningful.
Importantly for our purposes, the SAGE framework makes it straightforward to add covariate
effects into the content portion of the model.

Covariate-Free SAGE While SAGE topics are enabled automatically when using a co-
variate in the content model, they can also be used even without covariates. To activate
SAGE topics simply set the option LDAbeta = FALSE.

Covariate-Topic Interactions By default when a content covariate is included in the
model, we also include covariate-topic interactions. In our political blog corpus for example
this means that the probability of observing a word from a Conservative blog in Topic 1
is formed by combining the baseline probability, the Topic 1 component, the Conservative
component and the Topic 1 - Conservative interaction component.

Users can turn off interactions by specifying the option interactions = FALSE. This can be
helpful in settings where there isn’t sufficient data to make reasonably inferences about all
the interaction parameters. It also reduces the computational intensity of the model.

5. Alternate priors

In this section we review options for altering the prior structure in the stm function. We
highlight the alternatives and provide intuition for the properties of each option. We chose
default settings that we expect will perform the best in the majority of cases and thus changing
these settings should only be necessary if the defaults are not performing well.

24This is related to and inspired by the work of Hughes and Sudderth (2013) on memoized online variational
inference for the Dirichlet Process mixture model. This is still a batch algorithm because every document in
the corpus is used in the global parameter updates, but we update the global parameters several times between
the update of any particular document.

Journal of Statistical Software 31

5.1. Changing estimation of prevalence covariate coefficients

The user can choose between two options: "Pooled" and "L1". The difference between these
two is that the "L1" option can induce sparsity in the coefficients (i.e., many are set exactly
to zero) while the "Pooled" estimator is computationally more efficient. "Pooled" is the
default option and estimates a model where the coefficients on topic prevalence have a zero-
mean Normal prior with variance given a Half-Cauchy(1,1) prior. This provides moderate
shrinkage towards zero but does not induce sparsity. In practice we recommend the default
"Pooled" estimator unless the prevalence covariates are very high dimensional (such as a
factor with hundreds of categories).

You can also choose gamma.prior = "L1" which uses the glmnet package (Friedman et al.
2010) to allow for grouped penalties between the L1 and L2 norm. In these settings we
estimate a regularization path and then select the optimal shrinkage parameter using a user-
tunable information criterion. By default selecting the L1 option will apply the L1 penalty
by selecting the optimal shrinkage parameter using AIC. The defaults have been specifically
tuned for the STM but almost all the relevant arguments can be changed through the control
argument. Changing the gamma.enet parameter by specifying control = list(gamma.enet

= .5) allows the user to choose a mix between the L1 and L2 norms. When set to 1 (as by
default) this is the lasso penalty, when set to 0 it is the ridge penalty. Any value in between
is a mixture called the elastic net. Using some version of gamma.prior = "L1" is particularly
computationally efficient when the prevalence covariate design matrix is highly sparse, for
example because there is a factor variable with hundreds or thousands of levels.

5.2. Changing the covariance matrix prior

The sigma.prior argument is a value between 0 and 1; by default, it is set to 0. The update
for the covariance matrix is formed by taking the convex combination of the diagonalized
covariance and the MLE with weight given by the prior (Roberts et al. 2016b). Thus by
default we are simply maximizing the likelihood. When sigma.prior = 1 this amounts to
setting a diagonal covariance matrix. This argument can be useful in settings where topics
are at risk of becoming too highly correlated. However, in extensive testing we have come
across very few cases where this was needed.

5.3. Changing the content covariate prior

The kappa.prior option provides two sparsity promoting priors for the content covariates.
The default is kappa.prior = "L1" and uses glmnet and the distributed multinomial formu-
lation of Taddy (2015). The core idea is to decouple the update into a sequence of independent
L1-regularized poisson models with plugin estimators for the document level shared effects.
See Roberts et al. (2016b) for more details on the estimation procedure. The regularization
parameter is set automatically as detailed in the stm help file.

To maintain backwards compatability we also provide estimation using a scale mixture of
Normals where the precisions τ are given improper Jeffreys priors 1/τ . This option can be
accessed by setting kappa.prior = "Jeffreys". We caution that this can be much slower
than the default option.

There are over twenty additional options accessed through the control argument and doc-
umented in stm for altering additional components of the prior. Essentially every aspect of

32 Structural Topic Models

the priors for the content covariate and prevalence covariate specifications can be specified.

6. Performance and design

The primary reason to use the stm is the rich feature set summarized in Figure 2. However, a
key part of making the tool practical for every day use is increasing the speed of estimation.
Due to the non-conjugate model structure, bayesian inference for the Structural Topic Model
is challenging and computationally intensive. Over the course of developing the stm package
we have continually introduced new methods to make estimating the model faster. In this
section, we demonstrate large performance gains over the closest analog accessible through R

and then detail some of the approaches that make those gains possible.

6.1. Benchmarks

Without the inclusion of covariates, STM reduces to a logistic-normal topic model, often
called the Correlated Topic Model (CTM) (Blei and Lafferty 2007). The topicmodels package
in R provides an interface to David Blei’s original C code to estimate the CTM (Grün and
Hornik 2011). This provides us with the opportunity to produce a direct comparison to a
comparable model. While the generative models are the same, the variational approximations
to the posterior are actually distinct, with the Blei code using a different approach to the
nonconjugacy problem, which builds off of later work by Blei’s group (Wang and Blei 2013).

In order to provide a direct comparison we use a set of 5000 randomly sampled documents from
the poliblog2008 corpus described above. This set of documents is included as poliblog5k
in the stm package. We want to evaluate both the speed with which the model estimates as
well as the quality of the solution. Due to the differences in the variational approximation
the objective functions are not directly comparable so we use an estimate of the expected
per-document held-out log-likelihood. With the built-in function make.heldout we construct
a dataset in which 10% of documents have half of their words removed. We can then evaluate
the quality of inferred topics on the same evaluation set across all models.

R> set.seed(2138)

R> heldout <- make.heldout(poliblog5k.docs, poliblog5k.voc)

We arbitrarily decided to evaluate performance using K = 100 topics.

The function CTM in the topicmodels package uses different default settings than the original
Blei code. Thus we present results using both sets of settings. We start by converting our
document format to the simple triplet matrix format used by the topicmodels package:

R> slam <- convertCorpus(heldout$documents, heldout$vocab, type="slam")

We then estimate the model with both sets of defaults

R> mod1 <- CTM(slam, k = 100)

R> control_CTM_VEM <- list(estimate.beta = TRUE, verbose = 1,

+ seed = as.integer(2138), nstart = 1L, best = TRUE,

+ var = list(iter.max = 20, tol = 1e-6),

+ em = list(iter.max = 1000, tol = 1e-3),

Journal of Statistical Software 33

CTM CTM (alt) STM STM (alt)

of Iterations 38 18 30 7
Total Time 4527.1 min 142.6 min 14.3 min 5.3 min

Time Per Iteration* 119.1 min 7.9 min 0.5 min 0.8 min
Heldout Log-Likelihood -7.11 -7.10 -6.81 -6.86

Table 1: Performance Benchmarks. Models marked with “(alt)” are alternate specifications
with different convergence thresholds as defined in text. *Time per iteration was calculated
by dividing the total run time by the number of iterations. For CTM this is a good estimate
of the average time per iteration, whereas for STM this distributes the cost of initialization
across the iterations.

+ initialize = "random",

+ cg = list(iter.max = -1, tol = 1e-6))

R> mod2 <- CTM(slam, k = 100, control = control_CTM_VEM)

For the STM we estimate two versions, one with default convergence settings and one with
emtol = 1e-3 to match the Blei convergence tolerance. In both cases we use the spectral
initialization method which we generally recommend.

R> stm.mod1 <- stm(heldout$documents, heldout$vocab, K = 100,

+ init.type = "Spectral")

R> stm.mod2 <- stm(heldout$documents, heldout$vocab, K = 100,

+ init.type = "Spectral", emtol = 1e-3)

We report the results in Table 1. The results clearly demonstrate the superior performance of
the stm implementation of the correlated topic model. Better solutions (as measured by higher
heldout log-likelihood) are found with fewer iterations and a faster runtime per iteration. In
fact, comparing comparable convergence thresholds the stm is able to run completely to
convergence before the CTM has made a single pass through the data.25

These results are particularly surprising given that the variational approximation used by
STM is more involved than the one used in Blei and Lafferty (2007) and implemented in
topicmodels. Rather than use a set of univariate Normals to represent the variational dis-
tribution, STM uses a Laplace approximation to the variational objective as in Wang and
Blei (2013) which requires a full covariance matrix for each document. Nevertheless, through
a series of design decisions which we highlight next we have been able to speed up the code
considerably.

6.2. Design

In Blei and Lafferty (2007) and topicmodels, the inference procedure for each document
involves iterating over four blocks of variational parameters which control the mean of the
topic proportions, the variance of the topic proportions, the individual token assignments and

25To even more closely mirror the CTM code we ran STM using a random initialization (which we don’t
typically recommend). Under default initialization settings the expected heldout log-likelihood was -6.86; better
than the CTM implementation and consistent with the alternative convergence threshold spectral initialization.
It took 56 minutes and 180 iterations to converge, averaging less than 19 seconds per iteration. Despite taking
many more iterations, this is still dramatically faster in total time than the CTM.

34 Structural Topic Models

an ancillary parameter which handles the nonconjugacy. Two of these parameter blocks have
no closed form updates and require numerical optimization. This in turn makes the sequence
of updates very slow.

By contrast in STM we combine the Laplace approximate variational inference scheme of
Wang and Blei (2013) with a partially collapsed strategy inspired by Khan and Bouchard
(2009) in which we analytically integrate out the token-level parameters. This allows us to
perform one numerical optimization which optimizes the variational mean of the topic propor-
tions (λ) and then solves in closed form for the variance and the implied token assignments.
This removes iteration between blocks of parameters within each document dramatically
speeding convergence. Details can be found in Roberts et al. (2016b).

We use quasi-Newton methods to optimize λ, initializing at the previous iteration’s estimate.
This process of warm-starting the optimization process means that the cost of inference per
iteration often drops considerably as the model approaches convergence (e.g., in the example
above the first iteration takes close to 45 seconds but quickly drops down to 30 seconds).
Because this optimization step is the main bottleneck for performance we code the objective
function, gradient in the fast C++ library Armadillo using the RcppArmadillo package (Ed-
delbuettel and Sanderson 2014). After computing the optimal λ we calculate the variance of
the variational posterior by analytically computing the hessian (also implemented in C++)
and efficiently inverting it via the Cholesky decomposition.

The stm implementations also benefit from better model initialization strategies. topicmodels

only allows for a model to be initialized randomly or by a pre-existing model. By contrast
stm provides two powerful and fast initialization strategies as described above in Section 4.1.

Numerous optimizations have been made to address models with covariates as well. Of par-
ticular note is the use of the distributed multinomial regression framework (Taddy 2015) in
settings with content covariates and an L1 penalty. This approach can often be orders of
magnitude faster than the alternative.

6.3. Access to Underlying Functions

We also provide the function optimizeDocument which performs the E-step optimization
for a single document so that users who may wish to extend the package can access the
core optimization functionality.26 For users who simply want to find topic proportions for
previously unseen documents we have the easier to use fitNewDocuments function. In order
to use fitNewDocuments the vocabularies between the new documents and old must be aligned
which can be accomplished through the helper function alignCorpus.

7. Conclusion

The stm package provides a powerful and flexible environment to perform text analysis that
integrates both document metadata and topic modeling. In doing so it allows researchers
understand which variables are linked with different features of text within the topic modeling
framework. This paper provides an overview of how to use some of the features of the stm

package, starting with ingestion, preparation, and estimation, and leading up to evaluation,

26For example, this function would be helpful in developing new approaches to modeling the metadata or
implementations that parallelize over documents.

Journal of Statistical Software 35

understanding, and visualization. We encourage users to consult the extensive help files for
more details and additional functionality. On our website structuraltopicmodel.com we
also provide the companion papers that illustrate the application of this method. We invite
users to write their own add-on packages, like stmBrowser and stmCorrViz.

Furthermore, there are always gains in efficiency to be had, both in theoretical optimality
and in applied programming practice. The STM is undergoing constant streamlining and
revision towards faster, more optimal computation. This includes an ongoing project on
parallel computation of the STM. As corpus sizes increase, the STM will also increase in the
capacity to handle more documents and more varied metadata.

8. Appendix: Additional evaluation tools

In this appendix we discuss several more advanced features of the stm package. Topic es-
timation is fundamentally imprecise, as estimation in topic model space requires both an a
priori number of topics input by the user, and furthermore an optimization in a space with
multiple solutions. Due to the intractability underlying the computation of topic models, we
rely on external analytics of our model to understand its unique tradeoffs between competing
parameters. The stm package contains a variety of tools that can be used to evaluate the
quality of the model as well as the user’s choice of number of topics and of metadata selected
for inclusion.

8.1. Held-out likelihood estimation

Sometimes users will want to compare model specifications to see how well each model does
in predicting words within the document. The stm package contains two different functions to
aid with held-out likelihood estimation. We use the document-completion held-out likelihood
method which is the estimation of the probability of words appearing within a document when
those words have been removed from the document in the estimation step (Asuncion et al.
2009; Wallach et al. 2009; Hoffman et al. 2013). Similar to cross-validation, when some of the
data is removed from estimation and then later used for validation, the held-out likelihood
helps the user assess the model’s prediction performance.

We provide two different functions for the user to complete heldout likelihood estimation. The
first, make.heldout, produces a document set where some of the words within the documents
have been removed. The user can then run a STM model on the documents with missing
words. The second, eval.heldout, evaluates the heldout likelihood for missing words based
on the model run on the heldout documents.

If users want to fit a previously unseen document that was not part of a heldout set created
using make.heldout they can use the fitNewDocuments function.

8.2. Residuals checks

Users can also test the assumptions of the model within the package through the function
residuals. This function implements residual checks described in Section 4.2 of Taddy
(2012), testing for overdispersion of the variance of the multinomial within the data generating
process of STM. As described in Taddy (2012), if the residuals are overdispersed, it could be
that more topics are needed to soak up some of the extra variance. While no fool-proof

structuraltopicmodel.com

36 Structural Topic Models

method has been developed to choose the number of topics, both the residual checks and
held-out likelihood estimation are useful indicators of the number of topics that should be
chosen.27

8.3. Checks for multi-modality

Another diagnostic that should be completed while running the STM when not using the
spectral based initializations is checking to see how multi-modal the model of interest is. We
provide a suite of methods to assess multi-modality, and we refer the reader to Roberts et al.
(2016a) for an explanation of all of them. The function multiSTM aligns topics across models.
The function plot.MultimodDiagnostic plots the effects across topics and models. Both
enable the researcher to investigate how different solutions lead to different inferences about
the data.

8.4. Post-estimation permutation checks

Any statistical procedure can be abused and STM is no different. One concern is that users
will simply search out covariate topic relationships that are the strongest. A related concern
is that by combining the measurement model with the estimation of an effect, the user is
“baking in” the conclusion. In the appendix of Roberts et al. (2014) we address this concern
using both a simulation and a permutation test approach. We have built in a function for
conducting permuation tests using binary prevalence covariates.28 The permutationTest

function takes a formula containing a single binary covariate (and optionally other controls)
and runs a permutation test where, rather than using the true assignment, the covariate is
randomly assigned to a document with probability equal to its empirical probability in the
data.

After each shuffle of the covariate the same STM model is estimated at different starting
values using the same initialization procedure as the original model, and the effect of the
covariate across topics is calculated. Next the function records two quantities of interest
across this set of “runs” of the model. The first quantity reports the absolute maximum effect
of the permuted covariate across all topics. The second quantity reports the effect of the
(permuted) covariate on the topic in each additional STM run which is estimated to be the
topic closest to the topic of interest. The object returned from permutationTest can then
be passed to plot.STMpermute for plotting.

27In addition to these functions one can also explore if there words that are extremely highly associated with
a single topic via the checkBeta function.

28Future work could extend this to other types of covariates.

Journal of Statistical Software 37

References

Ahmed A, Xing E (2010). “Timeline: A dynamic hierarchical Dirichlet process model for
recovering birth/death and evolution of topics in text stream.” In Proceedings of the 26th
International Conference on Conference on Uncertainty in Artificial Intelligence (UAI), pp.
20–29.

Ahmed A, Xing EP (2007). “On tight approximate inference of logistic-normal admixture
model.” In M Meila, X Shen (eds.), Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning Research,
pp. 19–26. PMLR, San Juan, Puerto Rico. URL http://proceedings.mlr.press/v2/

ahmed07a.html.

Airoldi EM, Bischof JM (2016). “Improving and Evaluating Topic Models and Other Models
of Text.” Journal of the American Statistical Association, 111(516), 1381–1403. doi:10.

1080/01621459.2015.1051182. http://dx.doi.org/10.1080/01621459.2015.1051182,
URL http://dx.doi.org/10.1080/01621459.2015.1051182.

Arora S, Ge R, Halpern Y, Mimno D, Moitra A, Sontag D, Wu Y, Zhu M (2013). “A Practical
Algorithm for Topic Modeling with Provable Guarantees.” In S Dasgupta, D McAllester
(eds.), Proceedings of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 280–288. PMLR, Atlanta, Georgia, USA.
URL http://proceedings.mlr.press/v28/arora13.html.

Asuncion A, Welling M, Smyth P, Teh YW (2009). “On Smoothing and Inference for Topic
Models.” In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09, pp. 27–34. AUAI Press, Arlington, Virginia, United States. ISBN
978-0-9749039-5-8. URL http://dl.acm.org/citation.cfm?id=1795114.1795118.

Bengtsson H (2017). matrixStats: Functions that Apply to Rows and Columns of Matrices
(and to Vectors). R package version 0.52.2, URL https://CRAN.R-project.org/package=

matrixStats.

Benoit K, Obeng A (2017). readtext: Import and Handling for Plain and Formatted Text
Files. R package version 0.50, URL https://CRAN.R-project.org/package=readtext.

Benoit K, Watanabe K, Nulty P, Obeng A, Wang H, Lauderdale B, Lowe W (2017). quanteda:
Quantitative Analysis of Textual Data. R package version 0.9.9-65, URL http://quanteda.

io.

Bischof J, Airoldi E (2012). “Summarizing topical content with word frequency and exclusiv-
ity.” In J Langford, J Pineau (eds.), Proceedings of the 29th International Conference on
Machine Learning (ICML-12), ICML ’12, pp. 201–208. Omnipress, New York, NY, USA.
ISBN 978-1-4503-1285-1.

Blei DM, Lafferty JD (2007). “A correlated topic model of Science.” The Annals of Applied
Statistics, 1(1), 17–35. doi:10.1214/07-AOAS114. URL http://dx.doi.org/10.1214/

07-AOAS114.

http://proceedings.mlr.press/v2/ahmed07a.html
http://proceedings.mlr.press/v2/ahmed07a.html
http://dx.doi.org/10.1080/01621459.2015.1051182
http://dx.doi.org/10.1080/01621459.2015.1051182
http://dx.doi.org/10.1080/01621459.2015.1051182
http://dx.doi.org/10.1080/01621459.2015.1051182
http://proceedings.mlr.press/v28/arora13.html
http://dl.acm.org/citation.cfm?id=1795114.1795118
https://CRAN.R-project.org/package=matrixStats
https://CRAN.R-project.org/package=matrixStats
https://CRAN.R-project.org/package=readtext
http://quanteda.io
http://quanteda.io
http://dx.doi.org/10.1214/07-AOAS114
http://dx.doi.org/10.1214/07-AOAS114
http://dx.doi.org/10.1214/07-AOAS114

38 Structural Topic Models

Blei DM, Ng A, Jordan M (2003). “Latent Dirichlet Allocation.” Journal of Machine Learning
Research, 3, 993–1022.

Bouchet-Valat M (2014). SnowballC: Snowball Stemmers Based on the C Libstemmer UTF-8
Library. R package version 0.5.1, URL http://CRAN.R-project.org/package=SnowballC.

Chang J (2015). lda: Collapsed Gibbs Sampling Methods for Topic Models. R package version
1.4.2, URL https://CRAN.R-project.org/package=lda.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695(5), 1–9.

Dowle M, Srinivasan A (2017). data.table: Extension of ‘data.frame‘. R package version
1.10.4, URL https://CRAN.R-project.org/package=data.table.

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, Articles, 40(8), 1–18. ISSN 1548-7660. doi:10.18637/jss.v040.i08.
URL https://www.jstatsoft.org/v040/i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063.

Eisenstein J, Ahmed A, Xing E (2011). “Sparse Additive Generative Models of Text.” In
Proceedings of the 28th International Conference on Machine Learning, pp. 1041–1048.

Eisenstein J, O’Connor B, Smith N, Xing E (2010). “A latent variable model for geographic
lexical variation.” In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pp. 1277–1287. Association for Computational Linguistics.

Eisenstein J, Xing E (2010). The CMU 2008 Political Blog Corpus. Carnegie Mellon Univer-
sity.

Feinerer I, Hornik K, Meyer D (2008). “Text Mining Infrastructure in R.” Journal of Statistical
Software, Articles, 25(5), 1–54. ISSN 1548-7660. doi:10.18637/jss.v025.i05. URL
https://www.jstatsoft.org/v025/i05.

Fellows I (2014). wordcloud: Word Clouds. R package version 2.5, URL http://CRAN.

R-project.org/package=wordcloud.

Foulds J, Kumar S, Getoor L (2015). “Latent topic networks: A versatile probabilistic pro-
gramming framework for topic models.” In International Conference on Machine Learning,
pp. 777–786.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, Articles, 33(1), 1–22. ISSN
1548-7660. doi:10.18637/jss.v033.i01. URL https://www.jstatsoft.org/v033/i01.

Gerrish S, Blei D (2012). “How They Vote: Issue-Adjusted Models of Legislative Behavior.”
In Advances in Neural Information Processing Systems 25, pp. 2762–2770.

Grimmer J (2010). “A Bayesian hierarchical topic model for political texts: Measuring ex-
pressed agendas in Senate press releases.” Political Analysis, 18(1), 1–35.

http://CRAN.R-project.org/package=SnowballC
https://CRAN.R-project.org/package=lda
https://CRAN.R-project.org/package=data.table
http://dx.doi.org/10.18637/jss.v040.i08
https://www.jstatsoft.org/v040/i08
http://dx.doi.org/10.18637/jss.v025.i05
https://www.jstatsoft.org/v025/i05
http://CRAN.R-project.org/package=wordcloud
http://CRAN.R-project.org/package=wordcloud
http://dx.doi.org/10.18637/jss.v033.i01
https://www.jstatsoft.org/v033/i01

Journal of Statistical Software 39

Grimmer J, Stewart BM (2013). “Text as Data: The Promise and Pitfalls of Automatic
Content Analysis Methods for Political Texts.” Political Analysis, 21(3), 267–297.

Grün B, Hornik K (2011). “topicmodels: An R Package for Fitting Topic Models.” Journal
of Statistical Software, Articles, 40(13), 1–30. ISSN 1548-7660. doi:10.18637/jss.v040.
i13. URL https://www.jstatsoft.org/v040/i13.

Habel K, Grasman R, Stahel A, Stahel A, Sterratt DC (2015). geometry: Mesh Generation
and Surface Tesselation. R package version 0.3-6, URL http://CRAN.R-project.org/

package=geometry.

Hausser J, Strimmer K (2009). “Entropy inference and the James-Stein estimator, with
application to nonlinear gene association networks.” Journal of Machine Learning Research,
10(Jul), 1469–1484.

Hoffman MD, Blei DM, Wang C, Paisley JW (2013). “Stochastic variational inference.”
Journal of Machine Learning Research, 14(1), 1303–1347.

Hornik K (2005). “A CLUE for CLUster Ensembles.” Journal of Statistical Software,
Articles, 14(12), 1–25. ISSN 1548-7660. doi:10.18637/jss.v014.i12. URL https:

//www.jstatsoft.org/v014/i12.

Hornik K, Meyer D, Buchta C (2016). slam: Sparse Lightweight Arrays and Matrices. R
package version 0.1-40, URL https://CRAN.R-project.org/package=slam.

Hughes MC, Sudderth E (2013). “Memoized Online Variational Inference for Dirich-
let Process Mixture Models.” In CJC Burges, L Bottou, M Welling, Z Ghahra-
mani, KQ Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 1133–1141. Curran Associates, Inc. URL http://papers.nips.cc/paper/

4969-memoized-online-variational-inference-for-dirichlet-process-mixture-models.

pdf.

Khan ME, Bouchard G (2009). “Variational EM Algorithms for Correlated Topic Models.”
Technical report, University of British Columbia.

Krijthe JH (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut
Implementation. R package version 0.13, URL https://github.com/jkrijthe/Rtsne.

Lee M, Mimno D (2014). “Low-dimensional Embeddings for Interpretable Anchor-based
Topic Inference.” In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1319–1328. Association for Computational Linguistics,
Doha, Qatar. URL http://www.aclweb.org/anthology/D14-1138.

Lucas C, Nielsen R, Roberts M, Stewart B, Storer A, Tingley D (2015). “Computer Assisted
Text Analysis for Comparative Politics.” Political Analysis, 23(2), 254–277.

Milner HV, Tingley DH (2015). Sailing the Water’s Edge: Domestic Politics and American
Foreign Policy. Princeton University Press.

Mimno D, McCallum A (2008). “Topic models conditioned on arbitrary features with
Dirichlet-multinomial regression.” In Proceedings of the Twenty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-08), pp. 411–418. AUAI Press.

http://dx.doi.org/10.18637/jss.v040.i13
http://dx.doi.org/10.18637/jss.v040.i13
https://www.jstatsoft.org/v040/i13
http://CRAN.R-project.org/package=geometry
http://CRAN.R-project.org/package=geometry
http://dx.doi.org/10.18637/jss.v014.i12
https://www.jstatsoft.org/v014/i12
https://www.jstatsoft.org/v014/i12
https://CRAN.R-project.org/package=slam
http://papers.nips.cc/paper/4969-memoized-online-variational-inference-for-dirichlet-process-mixture-models.pdf
http://papers.nips.cc/paper/4969-memoized-online-variational-inference-for-dirichlet-process-mixture-models.pdf
http://papers.nips.cc/paper/4969-memoized-online-variational-inference-for-dirichlet-process-mixture-models.pdf
https://github.com/jkrijthe/Rtsne
http://www.aclweb.org/anthology/D14-1138

40 Structural Topic Models

Mimno D, Wallach HM, Talley E, Leenders M, McCallum A (2011). “Optimizing Semantic
Coherence in Topic Models.” In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pp. 262–272. Association for Computational
Linguistics, Stroudsburg, PA, USA. ISBN 978-1-937284-11-4. URL http://dl.acm.org/

citation.cfm?id=2145432.2145462.

Newman D, Lau JH, Grieser K, Baldwin T (2010). “Automatic evaluation of topic coherence.”
In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 100–108. Association for
Computational Linguistics.

Paul M, Dredze M (2015). “SPRITE: Generalizing topic models with structured priors.”
Transactions of the Association of Computational Linguistics, 3(1), 43–57.

Perry PO, Porter M, Boulton R, Strapparava C, Valitutti A, Unicode, Inc (2017). corpus: Text
Corpus Analysis. R package version 0.9.1, URL https://CRAN.R-project.org/package=

corpus.

Quinn K, Monroe B, Colaresi M, Crespin M, Radev D (2010). “How to analyze political
attention with minimal assumptions and costs.” American Journal of Political Science,
54(1), 209–228.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reich J, Tingley D, Leder-Luis J, Roberts ME, Stewart BM (2015). “Computer Assisted
Reading and Discovery for Student Generated Text in Massive Open Online Courses.”
Journal of Learning Analytics, 2(1), 156–184.

Roberts M, Stewart B, Tingley D (2016a). “Navigating the local modes of big data: The case
of topic models.” In Computational Social Science: Discovery and Prediction. Cambridge
University Press, New York.

Roberts ME, Stewart BM, Airoldi E (2016b). “A model of text for experimentation in the
social sciences.” Journal of the American Statistical Association, 111(515), 988–1003.

Roberts ME, Stewart BM, Tingley D, Airoldi EM (2013). “The Structural Topic Model and
Applied Social Science.” Advances in Neural Information Processing Systems Workshop on
Topic Models: Computation, Application, and Evaluation.

Roberts ME, Stewart BM, Tingley D, Lucas C, Leder-Luis J, Gadarian SK, Albertson B,
Rand DG (2014). “Structural Topic Models for Open-Ended Survey Responses.” American
Journal of Political Science, 58(4), 1064–1082.

Romney D, Stewart B, Tingley D (2015). “Plain Text? Transparency in Computer-Assisted
Text Analysis.” Qualitative & Multi-Method Research.

Rosen-Zvi M, Chemudugunta C, Griffiths T, Smyth P, Steyvers M (2010). “Learning author-
topic models from text corpora.”ACM Transactions on Information Systems (TOIS), 28(1),
4.

http://dl.acm.org/citation.cfm?id=2145432.2145462
http://dl.acm.org/citation.cfm?id=2145432.2145462
https://CRAN.R-project.org/package=corpus
https://CRAN.R-project.org/package=corpus
https://www.R-project.org/

Journal of Statistical Software 41

Sievert C, Shirley K (2015). LDAvis: Interactive Visualization of Topic Models. R package
version 0.3.2, URL https://CRAN.R-project.org/package=LDAvis.

Socher R, Gershman S, Perotte A, Sederberg P, Blei D, Norman K (2009). “A bayesian
analysis of dynamics in free recall.” Advances in neural information processing systems,
22, 1714–1722.

Taddy M (2013). “Multinomial Inverse Regression for Text Analysis.” Journal of the American
Statistical Association, 108(503), 755–770.

Taddy M (2015). “Distributed multinomial regression.” Ann. Appl. Stat., 9(3), 1394–1414.
doi:10.1214/15-AOAS831. URL http://dx.doi.org/10.1214/15-AOAS831.

Taddy MA (2012). “On Estimation and Selection for Topic Models.” In Proceedings of the
15th International Conference on Artificial Intelligence and Statistics.

Van Der Maaten L (2014). “Accelerating t-sne using Tree-based Algorithms.” The Journal of
Machine Learning Research, 15(1), 3221–3245.

Wallach HM, Murray I, Salakhutdinov R, Mimno D (2009). “Evaluation Methods for Topic
Models.” In Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 1105–1112. ACM.

Wand M (2015). KernSmooth: Functions for Kernel Smoothing Supporting Wand and
Jones (1995). R package version 2.23-15, URL http://CRAN.R-project.org/package=

KernSmooth.

Wang C, Blei DM (2013). “Variational Inference in Nonconjugate Models.” The Journal of
Machine Learning Research, 14(1), 1005–1031.

Wickham H (2017). stringr: Simple, Consistent Wrappers for Common String Operations.
R package version 1.2.0, URL http://CRAN.R-project.org/package=stringr.

Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L (2012). “The Huge Package for
High-dimensional Undirected Graph Estimation in R.” The Journal of Machine Learning
Research, 13(1), 1059–1062.

https://CRAN.R-project.org/package=LDAvis
http://dx.doi.org/10.1214/15-AOAS831
http://dx.doi.org/10.1214/15-AOAS831
http://CRAN.R-project.org/package=KernSmooth
http://CRAN.R-project.org/package=KernSmooth
http://CRAN.R-project.org/package=stringr

42 Structural Topic Models

Affiliation:

Margaret E. Roberts
Department of Political Science
University of California, San Diego
Social Sciences Building 301
9500 Gillman Drive, 0521, La Jolla, CA, 92093-0521
E-mail: meroberts@ucsd.edu
URL: http://www.margaretroberts.net

Brandon M. Stewart
Department of Sociology
Princeton University
149 Wallace Hall, Princeton, NJ 08544
E-mail: bms4@princeton.edu
URL: brandonstewart.org

Dustin Tingley
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: dtingley@gov.harvard.edu
URL: http://scholar.harvard.edu/dtingley

Journal of Statistical Software http://www.jstatsoft.org/

published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:meroberts@ucsd.edu
http://www.margaretroberts.net
mailto:bms4@princeton.edu
brandonstewart.org
mailto:dtingley@gov.harvard.edu
http://scholar.harvard.edu/dtingley
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

	Introduction
	The Structural Topic Model
	Using the Structural Topic Model
	Ingest: Reading and processing text data
	Reading in data from a ``spreadsheet''
	Using the quanteda package
	Reading in data from other text processing programs
	Pre-processing text content

	Prepare: Associating text with metadata
	Estimate: Estimating the structural topic model
	Estimation with topical prevalence parameter

	Evaluate: Model selection and search
	Model initialization for a fixed number of number of topics
	Model selection for a fixed number of number of topics
	Model search across numbers of topics

	Understand: Interpreting the STM by plotting and inspecting results
	Understanding topics through words and example documents
	Estimating metadata/topic relationships

	Visualize: Presenting STM results
	Summary visualization
	Metadata/topic relationship visualization
	Topical content
	Plotting covariate interactions

	Extend: Additional tools for interpretation and visualization
	Customizing Visualizations

	Changing basic estimation defaults
	Initialization
	Convergence criteria
	Accelerating convergence
	SAGE

	Alternate priors
	Changing estimation of prevalence covariate coefficients
	Changing the covariance matrix prior
	Changing the content covariate prior

	Performance and design
	Benchmarks
	Design
	Access to Underlying Functions

	Conclusion
	Appendix: Additional evaluation tools
	Held-out likelihood estimation
	Residuals checks
	Checks for multi-modality
	Post-estimation permutation checks

	References

