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The aim of trackdem is to obtain unbiased, automated estimates of population densities and
body size distributions, using video material or image sequences as input. It is meant to assist
in evolutionary and ecological studies, which often rely on accurate estimates of population size,
population structure and/or individual behaviour. The package trackdem includes a set of functions
to convert a short video into an image sequence, background detection, particle identification and
linking, and the training of an artifical neural network for noise filtering.

This vignette provides a step-by-step introduction on the usage of all functions to analyse
image sequences of moving organisms. No movie files are required as all functions are illustrated
by simulated image sequences.

Contents

1 Simulate image sequences 2

2 Preparing and loading movie files into R 2

3 Identification of moving particles 3

4 Particle tracking 8

5 Choice of maximum cost (L) and frame search range (R) 10

6 Noise removal using artificial neural networks 12

7 Robustness checks 14

8 Batch analysis 15

9 Merge track objects 17

10 Creation of image sequence 17

1



1 Simulate image sequences

The package trackdem contains functions to simulate an image sequence, which makes it straight-
forward to illustrate the functionality of the package or test its limitations. We use this for the
first part of the tutorial, Section 10 discusses working with actual video files.

The following code simulates movement trajectories of particles we will later identify and track.
The code simulates 15 individuals across 30 frames, with a displacement speed of 0.01 (in pixels,
parameter h), and directional correlation of 0.9 (parameter rho), which sets the correlation pa-
rameter for the angle of displacement. Particle sizes are set with sizes, and are randomly drawn
by default. By default, particles are allowed to move in a rectangle domain. Use domain=”circle”
to use a circular domain of radius 1. Images are saved as .png files in the path specified with
argument path.

> require(trackdem)

> dir.create("images")

> set.seed(1000)

> ## Create image sequences

> traj <- simulTrajec(path="images",

+ nframes=30,nIndividuals=15,domain="square",

+ h=0.01,rho=0.9,

+ sizes=runif(15,0.004,0.006))

Random static or moving noise can be added, using staticNoise=TRUE, or movingNoise=TRUE.
Static noise creates non-moving grey spots; moving noise results in the creation of randomly moving
particles, that remain for a random number of frames, and then disappear. Static noise is filtered
out by background detection; moving noise can be filtered out with machine learning (see Section
6). Parameters used to generate this static and moving noise can be set as a list in parsStatic and
parsMoving. See ?simulTrajec for more information. The above created image sequences can now
be viewed in the working folder (see Fig. 1), and analyzed as described below. When using video
material, image sequences can be created from movie files using trackdem, or using own software.
See Section 10 for more detailed information.

2 Preparing and loading movie files into R

Next, we load the sequence into R, continuing with our simulated sequence:

> dir <- "images"

> allFullImages <- loadImages (dirPictures=dir,nImages=1:30)

> allFullImages

Trackdem color image

Images with size: 480 x 480 pixels.

Total of 30 images, with 3 color layers.

> class(allFullImages)

[1] "TrDm" "colorimage" "array"

With argument nImages you can choose which color images to load. By default, images 1-30
(in the specified dirPictures) will be loaded. If you want to specify which images should be loaded,
you can also use argument filenames, to provide a character string containing all image names you
are interested in. By default, the full images are loaded. If you want a specific region of interest,
specify the x and y coordinates, using argument xranges (e.g. xranges=100:500) and yranges. The
function returns a four dimensional array, with a size of the of Ny rows × Nx columns × 3 colors
× nImages. All functions in trackdem return objects of class ’TrDm’. Use plot() to see the images:
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> plot(allFullImages,frame=1)

Figure 1: First frame of loaded (simulated) image sequence.

3 Identification of moving particles

We can now proceed with motion detection. The first step is to identify the background containing
all motionless pixels. The package trackdem provides three different methods for background detec-
tion. By default, the mean pixel values over all frames, per color, is calculated (method=”mean”).
Alternatives are method=”powerroot” and method=”filter” (see ?createBackground).

> ## Detect background

> stillBack <- createBackground(allFullImages,method="mean")

> class(stillBack)

[1] "TrDm" "colorimage" "array"

> stillBack

Trackdem color image

Images with size: 480 x 480 pixels.

Total of 1 image, with 3 color layers.

createBackground returns an array with size Ny rows × Nx columns × 3 colors. We can now
assess the created background and whether the function succeeded by plotting the object stillBack.
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> plot(stillBack)

Figure 2: Example of background obtained using function createBackground, and method=”mean”

Above, we did not simulate any static noise, resulting in the detected white background. When
we simulate trajectories containing static noise and a circular domain, we can confirm that the
background image succesfully detects the static noise and circle:

> dir.create('imagesNoise')

> trajNoise <- simulTrajec(path="imagesNoise",

+ nframes=30,nIndividuals=20,domain='circle',

+ h=0.01,rho=0.9,staticNoise=TRUE,

+ sizes=runif(20,0.004,0.006))

> dir <- "imagesNoise"

> allFullImagesNoise <- loadImages (dirPictures=dir,nImages=1:30)

> stillBackNoise <- createBackground(allFullImagesNoise,method="mean")

> plot(stillBackNoise)
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Figure 3: Example of background obtained using function createBackground, and method=”mean”,
including static noise and a circular domain.

Continuing with the sequence without noise, we now subtract the background from all images,
which will identify all moving particles. By default, the original color images are used from the
global environment. The argument colorimages can be used to specify a different set of images.

> allImages <- subtractBackground(bg=stillBack)

> allImages

Trackdem subtracted background image.

Images with size: 480 x 480 pixels.

Total of 30 images, with 3 color layers.

The procedure produces a four dimensional array (Ny rows × Nx columns × 3 colors × nIm-
ages), containing the difference in color intensity between all original frames and the background.
As explained in the manuscript, it is important that the background is stable and that only focal
particles move. If this is not the case, for instance in more complex field conditions, more ad-
vanced background detection methods may be required. The function subtractBackground allows
the input of objects not created by createBackground, for instance when the user wishes to supply
a custom background. When doing so, make sure that the dimensions of the created background
object equal either Ny rows × Nx columns × 3 colors, or Ny rows × Nx columns × 3 colors × nIm-
ages, otherwise an error is returned. Using a four dimensional background implies that a dynamic
background model can be used, that is different for each frame. When using short videos with a
stable background, one of the three available background detection methods in createBackground
will suffice.
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Next, we identify particles, where the first step is thresholding. All pixel values larger than
a threshold (or smaller, depending on the particle color compared to the background color) will
be labeled as particles. To find an appropriate threshold value, use the function findThreshold
(e.g. findThreshold(allImages)). This function opens an interactive interface, making use of the
R-package shiny (Fig. 4). The graph on the left shows the original image. The graph on the right
shows the binary image in which all pixels are either labeled as 0 (white) or 1 (black), depending
on a threshold. Set whether particles are darker or lighter than the background and use the slider
to test a threshold. Note that when using simulated trajectories, in which focal particles are red,
the first color channel does not distuingish between background and particles. Select another color
channel to find appropriate threshold values.

Figure 4: Graphical user interface to help users find the most appropriate threshold value.

When an appropriate threshold value is found, click on ’Done’ to go back to R. Continue
with identifyParticles, and use the chosen threshold value. Set the argument select=”dark” when
particles are darker compared to the background. Light particles are selected with select=”light”,
and select=”both” selects both light and dark particles. In addition to supplying a threshold value,
two other options for thresholding exist: automatic thresholding and thresholding based on a
quantile. See Section ?? for more details.

Subsequently, all connecting pixels are labeled. Finally, pixels larger of smaller than user-
defined values are removed (set with argument pixelRange). This can be used as a first noise filter
when users know the size range of their study organisms (in pixels).

> ## Identify moving particles

> partIden <- identifyParticles(sbg=allImages,threshold=-0.1,

+ pixelRange=c(1,500),

+ autoThres=FALSE)
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Particle Identification:

Particle Identification: Thresholding (1 of 5)

Particle Identification: Labeling (2 out of 5)

Particle Identification: Size filtering (3 out of 5)

Particle Identification: Particle statistics (4 out of 5)

Particle Identification: Finalizing (5 out of 5)

> summary(partIden)

Summary of identified particles (unlinked):

Average number of identified particles: 14.87 ( sd = 0.35 )

Coefficient of variation: 0.02

Range of particles for each frame ( 1- 30 ): 14 - 15

Threshold values: -0.1 -0.1 -0.1

identifyParticles() returns a dataframe with identified particles for each frame, use summary()
to obtain some summary statistics. Identified particles can be plotted as open circles on the original
image with:

> plot(partIden,frame=10)

Figure 5: Identified moving particles shown as open circles using identifyParticles
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4 Particle tracking

The next step is to reconstruct trajectories for each particle. In short, the tracking consists of two
steps. First, particles in subsequent frames are linked, based on their size and distance. Second,
trajectories that are not overlapping in time and likely involve the same particle, are merged, to
fill gaps.

> records <- trackParticles(partIden,L=60,R=3)

In this function, you can set the maximum ”cost” for a particle or trajectory to link to another
particle/trajectory in the next frame. The cost function depends on the size difference, the distance,
and the difference between the predicted and observed location (based on the velocity), and returns
the cost for linking particle i to particle j. If costs are lager than used-specified L, a particle is not
linked to a particle, but to a dummy particle. This results in the start or end of a track segment.
With argument R, the maximum number of frames is set to which particles after frame N can be
linked. This means that if a particle cannot be linked to a particle in frame N + 1 (because there
are no particles, or costs are to high), algorithm tries to find a match in the subsequent frames, up
to R frames.

To extract the outcomes, summary() can be used:

> summary(records, incThres=1)

Summary of Linked particles:

ID Size SD size Total movement Red Green Blue

[1,] 1 12 1.2410600 176.6328 1 1e-06 1e-06

[2,] 2 15 1.1351237 161.3262 1 1e-06 1e-06

[3,] 3 12 0.8840866 178.8258 1 1e-06 1e-06

[4,] 4 8 1.0288929 151.4242 1 1e-06 1e-06

[5,] 5 11 1.2415230 137.5649 1 1e-06 1e-06

[6,] 6 10 2.0083160 173.7386 1 1e-06 1e-06

[7,] 7 7 0.9498941 150.4324 1 1e-06 1e-06

[8,] 8 7 0.9371024 201.2269 1 1e-06 1e-06

[9,] 9 12 0.9994251 152.1046 1 1e-06 1e-06

[10,] 10 12 0.9965458 185.1116 1 1e-06 1e-06

[11,] 11 9 0.7849153 191.7548 1 1e-06 1e-06

[12,] 12 7 1.2015316 173.8985 1 1e-06 1e-06

[13,] 13 9 1.1126973 156.3268 1 1e-06 1e-06

[14,] 14 14 1.9182813 189.2680 1 1e-06 1e-06

[15,] 15 10 1.9895045 153.7332 1 1e-06 1e-06

Total of 15 Identified particles.

Particles have a total area of 0.0673 %

Minimum presence is set at 1 frames

The number of tracked segments is an estimate for the number of moving particles. A particle
is only considered to be of interest when it is present in at least z frames. Users can define the
value for z using the argument incThres, or use the default automatic algorithm which is based
on k-means clustering. This sets the minimum number of frames that a tracked particle should be
present. The logic behind this is that short tracks are more likely to represent noise.

Calculated statistics are stored in summary(object). For example, to extract some basic statis-
tics:

> # population count

> summary(records,incThres=1)$N

[1] 15
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> # median body sizes

> summary(records,incThres=1)$particles[,"Size"]

[1] 12 15 12 8 11 10 7 7 12 12 9 7 9 14 10

> # total displacement (in pixels)

> summary(records,incThres=1)$particles[,"Total movement"]

[1] 176.6328 161.3262 178.8258 151.4242 137.5649 173.7386 150.4324 201.2269

[9] 152.1046 185.1116 191.7548 173.8985 156.3268 189.2680 153.7332

> # area covered by particles as a fraction of the total area

> summary(records,incThres=1)$area

[1] 0.06727431

> # minimum number of frames that a tracked particle

> # should be present (value z)

> summary(records,incThres=1)$presence

[1] 1

More detailed information can be extracted by looking at the reconstructed trajectories directly.
The created object contains three arrays: 1) the x and y coordinates of each created trajectory for
each frame, 2) the particle sizes of each trajectory for each frame, and 3) the RGB color values of
each trajectory for each frame.

> ## x and y coordinates for each trajectory (rows), per frame (columns)

> dim(records$trackRecord)

[1] 15 30 2

> ## particle sizes (in pixels) for each trajectory (rows), per frame (columns)

> dim(records$sizeRecord)

[1] 15 30

> ## RGB color values for each trajectory (rows), per frame (columns)

> dim(records$colorRecord)

[1] 15 30 3

Using plot(), these results can be visualized in four different ways (argument type). By
default, size distributions and track segments are plotted (type = NULL). Alternatively, you
can plot only size distributions (type=”sizes”) or only trajectories on the original colorimages
(type=”trajectories”). Here, use argument frame to choose which frame should be plotted (by
default, the first frame is used, showing the start location for each path). Finally, an AVI anima-
tion can be created (type=”animation”). When doing so, a temporary directory (called ’images’) is
made to save .png plots of each image. Using libav, these are combined into an AVI file and saved
in path. To use this option, as with using createImageSeq, libav is required (see Section 10).

The following code compares the simulated trajectories with the estimated trajectories:

> ## Plot reconstructed trajectories

> plot(records,type="trajectories",incThres=1)

> ## Add simulated trajectories

> for (i in 1:length(unique(traj$id))) {

+ lines(traj$x[traj$id==i],traj$y[traj$id==i],col="grey",

+ lty=2,lwd=2)

+ }
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Figure 6: Comparison of particle movement according to simulated trajectories (grey dashed lines)
and as obtained using trackdem (colored lines).

5 Choice of maximum cost (L) and frame search range (R)

To reconstruct trajectories using the function trackParticles, users need to specify a maximum
”cost” L. If costs are larger than L, a particle is not linked to a particle, but to a dummy particle.
This results in the start or end of a track segment. The choice of L will depend on the particle
density and the quality of the movie. If L is set too low, particles are too often linked to dummy
particles instead of the correct particle. This will results in an increased number of shorter track
segments, possibly leading to an overestimation in number of particles. In contrast, with L values
that are too high, particles will be wrongly linked to other particles. In the case of good quality
movies, with not much false positives and overlapping particles, the risk of choosing an L value
that is too high is not very large: if all particles are visible in each frame, they will all successfully
be linked to the right particles in the next frame, even if L is unrealistically high. However, if there
is more noise and disappearing particles, an L value too high will result in wrong links.

This is illustrated in Fig. 7. Here we simulated two image sequences, that differ in particle
density. In the case of low densities (and no disappearing particles, as in the simulated sequence),
the choice of L and R does not have a large effect on the outcome, as long as L is not set too low.
At high densities, in contrast, particles will overlap more. This will result in an underestimation,
without merging track segments (by increasing R).

In the case of applications to recorded videos that may contain noise and disappearances, L
values too high can result in the reconstruction of wrong trajectories. See Fig. 8 for an example
where we set L unrealistically high, at 200. To find the best choices for L and R, we recommend
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users to plot reconstructed trajectories.
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Figure 7: Effect of user-defined L and R. Two image sequences were simulated; one with a low
density (left) and one with a high density (right). The number of particles was estimated for
different L values, and for different R values (indicated by the different colors). Dotted horizontal
lines show the simulated number of particles.

Figure 8: Effect of user-defined L that is set unrealistically high. Whenever particles are not
detected in one frame, they are wrongly linked to another particle, that is clearly not the correct
particle.
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6 Noise removal using artificial neural networks

In the case of no noise and 100% detection, the obtained tracked object using trackParticles()
gives the complete and accurate trajectories of all particles (Fig. 6). However, when false positives
are present (due to e.g. debris, air bubbles, or reflection), a trained artifical neural network can
be used as a filter. Also, in the case of a multi-species system, machine learning may be used to
distinguish between species. We explain the use of this artificial neural network by simulating an
image sequence containing randomly moving noise. Use the following code to simulate the image
sequence, and identify all moving particles (including noise):

> dir.create("images")

> traj <- simulTrajec(path="images",

+ nframes=30,nIndividuals=20,domain="square",

+ h=0.01,rho=0.9,staticNoise=FALSE,movingNoise=TRUE,

+ parsMoving = list(density = 20, duration = 10, size =1,

+ speed = 10, colRange = c(0, 1)),

+ sizes=runif(20,0.004,0.006))

> ## Run trackdem

> allFullImages <- loadImages (dirPictures="images/",

+ nImages=1:30)

> stillBack <- createBackground(allFullImages)

> allImages <- subtractBackground(bg=stillBack)

> partIden <- identifyParticles(sbg=allImages,

+ threshold=-0.1,select="dark",

+ pixelRange=c(1,500))

In the created image sequence, all focal particles are red, and all noise particles have a random
color. Use plot() and summary() to see the output, as described above. Such an image sequence
will require further noise filtering as described below.

A neural net requires data, which is then divided into training, validation and test data. To
create the required datasets, the following function allows users to manually select false and true
positives:

> mId <- manuallySelect(particles=partIden,frame=10)
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Figure 9: Graphical user interface to manually select false and true positives using function
manuallySelect. Blue circles indicate identified particles. In this case, most identified parti-
cles are correct (red particles, in this example), but there are several false positives (represented
by other colors).

This will open a graphical user interface in which all identified particles are shown in blue, for
a chosen frame (argument frame) (Fig. 9). Users can select false and true positives. To do so,
click on ’True positives’ (correctly identified particles) or ’False positives’ (noise). Subsequently,
click on the correctly or wrongly identified particles. Try to select as many particles as possible,
and when done, click on ’Done’. It returns a list of all true and false positives, and a data frame
combining the true and false positives with the previously identified particles.

One frame is probably insufficient to create a dataset big enough to train an artifical neural
net; the following code can be used to select the three frames that have most identified particles,
and create a dataset based on manual identification in those three frames:

> # select the nframes with the most identified particles

> nframes <- 3

> frames <- order(tapply(partIden$patchID,partIden$frame,length),

+ decreasing=TRUE)[1:nframes]

> mId <- manuallySelect(particles=partIden,frames=frames)

Now, an artifical neural network can be trained:

> finalNN <- testNN(dat=mId,repetitions=10,maxH=4,prop=c(6,2,2))

With maxH you can set the maximum number of hidden neurons in each layer, and by rep-
etitions, you can set the number of repetitions for the training. By default, the input dataset is
randomly divided in a training, validation and test dataset, with ratio 8:1:1, respectively. Use
prop, to change this, by providing a vector containing the ratios. By default, a predefined set of
explanatory variables is used, including variables as particle size, perimeter-area ratio, coordinates
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of the central pixel, color intensities of the central pixels and neighbors, average R, G, B values and
associated variances. Use predictors to use a different set, by supplying a character string contain-
ing the names of these predictors (note that they must correspond to column names in the object
obtained with manuallySelect). A principal component analysis can be performed (pca=TRUE
by default) on the predictors, which ensures that only the variables explaining a high proportion
of the total variance are used (by default 0.95, change with argument thr). The results can be
evaluated:

> finalNN

Trained neural network with 1 layer(s).

> summary(finalNN)

Summary of trained neural network:

Confusion table:

Predicted

Actual 0 1

0 6 0

1 0 8

F-score: 1

10 repetitions.

1 hidden layer(s).

Now we update the identified particle object, and re-track our particles, this time using the
trained neural net to filter noise.

> partIdenNN <- update(partIden,finalNN) # update with neural net

> recordsNN <- trackParticles(partIdenNN,L=60,R=3)

> summary(recordsNN)

7 Robustness checks

We advise to always check the output of trackdem to verify that the right settings have been used
and results can be trusted. In our experience, the following set of robustness checks will reveal most
commonly encountered problems, if any, and we recommend users always perform these checks:

� Plot the detected background image using plot(backgroundimage). If particles of interest are
still visible in the background image, this could suggest that there is too little movement.
Try if other background methods work better, and/or increase the number of frames.

� Look at the identified particles per frame, after running identifyParticles(). This will help
users to diagnose problems with the chosen threshold and size range. If focal particles have
not been detected, try a less conservative threshold (use findThreshold() to find the optimal
threshold). If for instance small particles are overlooked, lower the minimum particle size.

� Look at reconstructed trajectories after running trackParticles(). Plot the output using
plot(recordsObject,type=’trajectories’,incThres=z), and visualize the trajectories for differ-
erent values of z. Particularly ensure that there are no wrong links, indicating that L is set too
high (see Section ??). Create an animation (plot(recordsObject,type=’animation’,incThres=z))
as a final check.

� Compare estimates to manual counts. Always obtain manual counts on a (random) subset
of the videos, especially when applying it to a new video set up, and compare those to the
automated estimates.
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� When applying trackdem to many videos at once using the same settings (see Section 8), we
recommend that users do the above checks for a subset of the videos. This could be done by
creating the suggested plots for all videos by adding relevant lines of code to the loop. These
can subsequently be inspected manually. See Section 8 for an example on how this could be
done.

8 Batch analysis

After a user is satisfied with the output of a single image sequence, the settings from this single
image sequence can be supplied to conduct a batch analysis. This will apply the same settings for
all directories containing image sequences in path. For instance, we create three images sequences
in three folders in a new directory we call ”batchTest”:

> # simulate 3 image sequences

> wd <- getwd()

> folders <- paste0(rep("images",3),1:3)

> populations <- c(15,25,50)

> dir.create("./batchTest")

> setwd("./batchTest")

> for(i in 1:length(folders)){

+ dir.create(folders[i])

+ set.seed(i)

+ traj <- simulTrajec(path=folders[i],

+ nframes=30,nIndividuals=populations[i],

+ h=0.01,rho=0.9,sizes=runif(populations[i],0.004,0.006))

+ }

We can then do a batch analysis on these sequences with our previous setup stored in ”records”
and can be viewed as:

> attributes(records)$settings

$nImages

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30

$BgMethod

[1] "mean"

$threshold

[1] -0.1 -0.1 -0.1

$pixelRange

[1] 1 500

$qthreshold

NULL

$select

[1] "dark"

$autoThres

[1] FALSE

$perFrame
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[1] FALSE

$frames

NULL

$R

[1] 3

$L

[1] 60

$weight

[1] 1 1 1

Alternatively, settings can be provided manually (see ?runBatch). To run the batch analysis,
use:

> setwd(wd)

> batchpath <- "./batchTest"

> results <- runBatch(path=batchpath,settings=records,incThres=10)

Directory Count

1 images1 15

2 images2 25

3 images3 50

By default, this creates a data frame containing the image sequence names, and the number
of estimated particles. To return all information gathered in records, use saveAll. This however
may be memory hungry and slow down the analysis. Another method to run a batch analysis is to
create your own loop. This gives you more flexibility, in the section of code below, any statistic of
interest can be calculated or saved to the hard drive. This can especially be useful on systems with
low memory or when non-standard statistics are being calculated from for instance the returned
coordinates.

> ## Manual batch analysis

> results <- data.frame(movie=folders,n=NA)

> setwd("./batchTest")

> for (i in 1:length(folders)) {

+ direc <- folders[i]

+ allFullImages <- loadImages (dirPictures=direc,nImages=1:30)

+ stillBack <- createBackground(allFullImages,method="mean")

+ allImages <- subtractBackground(bg=stillBack)

+ partIden <- identifyParticles(sbg=allImages,

+ threshold=-0.1, # chosen threshold

+ pixelRange=c(1,500)) # min and max size

+ records <- trackParticles(partIden,L=60,R=3)

+ ## save the population count to view in R after the run

+ results$n[i] <- summary(records,incThres=10)$N

+

+ ## Check output

+ pdf(paste0(direc,'.pdf'))

+ plot(partIden,frame=1)

+ plot(records,type='trajectories',incThres=10)

+ dev.off()

+

+ ## save the recorded size per particle per frame to the HD
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+ ## access in R with readRDS later

+ saveRDS(records$sizeRecord,file=paste0("sizeRecord_",folders[i],".rds"))

+

+ ## clean previous large objects - this may speed up the run if these

+ ## are large

+ rm("allFullImages","stillBack","allImages")

+ }

9 Merge track objects

Whenever longer image sequences need to be analyzed which require too much memory to load
into R, it is possible to cut the sequence into shorter fragments. They can subsequently be linked
with the function mergeTracks. This function requires two objects as returned by trackParticles.
Particles in the last frame of the first object are linked to particles in the first frame of the second
object, based on locations and sizes. Note that to plot the results, users now need to define which
colorimages to use.

> dir.create("images")

> set.seed(100)

> ## Create image sequence

> traj <- simulTrajec(path="images",

+ nframes=60,nIndividuals=20,domain="square",

+ h=0.01,rho=0.9,movingNoise=FALSE,

+ sizes=runif(20,0.004,0.006))

> dir <- "images"

> ## Load and analyze images 1-30

> allFullImages1 <- loadImages (dirPictures=dir,nImages=1:30)

> stillBack1 <- createBackground(allFullImages1)

> allImages1 <- subtractBackground(bg=stillBack1)

> partIden1 <- identifyParticles(sbg=allImages1,

+ pixelRange=c(1,500),

+ threshold=-0.1)

> records1 <- trackParticles(partIden1,L=20,R=2)

> rm(list = c("allFullImages1", "stillBack1", "allImages1",

+ "partIden1"))

> gc()

> ## Load and analyze images 31-60

> allFullImages2 <- loadImages (dirPictures=dir,nImages=31:60)

> stillBack2 <- createBackground(allFullImages2)

> allImages2 <- subtractBackground(bg=stillBack2)

> partIden2 <- identifyParticles(sbg=allImages2,

+ pixelRange=c(1,500),

+ threshold=-0.1)

> records2 <- trackParticles(partIden2,L=20,R=2)

> ## Merge tracked objects

> records <- mergeTracks(records1,records2)

> plot(records,colorimages=allFullImages2,type="trajectories")

>

10 Creation of image sequence

In our example, we have used a simulated image sequence. However, when interested in live
organisms, a few additional steps will be required. The first step is to record a short movie
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on the population. Note that since trackdem is based on movement detection, it is crucial that
particles of interest move. Furthermore, it is recommended to use a stable background, and strong
(background) illumination. A video of approximately four seconds will generally suffice, and can
be of any extension supported by libav (e.g. .MTS, .MP4 or .AVI; see below).

Second, the movie must be converted into an image sequence. This can be done using the
function createImageSeq, as explained below. This requires the installation of Python 2.7 (not
3.6), libav and ExifTool. Note that installing Python 2.7 and ExifTool are required only if you
want to use trackdem to create image sequences. Libav, in constrast, is also required to create
animations, as explained in Section 4. All other functions run without the need to download
additional software.

Ubuntu users can paste the following commands in a terminal to install libav and ExifTool
(Python 2.7 should be included by default):

> # sudo apt-get update

> # sudo apt-get install libav-tools

> # sudo apt-get install libimage-exiftool-perl

This has been tested on Ubuntu 16.04.

Mac users can paste the following commands in a terminal to install libav:

> ## Make sure that homebrew is installed, see: https://brew.sh/

>

> ## Install libav

> # brew install libav

ExifTool can be downloaded from http://www.sno.phy.queensu.ca/~phil/exiftool/install.

html; follow the installation instructions for the OS X Package. The newest Python 2.7 release, if
not installed yet, can be downloaded from https://www.python.org/downloads/mac-osx/. This
has been tested on MacOS 10.12.5 Sierra.

Windows users can download libav from http://builds.libav.org/windows/. Download
the latest nightly-gpl release (http://builds.libav.org/windows/nightly-gpl/?C=M&amp;O=
D), and extract all files to a chosen location. Next, download the file named libgcc s sjlj-1.dll
from http://builds.libav.org/windows/, and place it within the libav directory, in ’/usr/bin’.
ExifTool can be downloaded from http://www.sno.phy.queensu.ca/~phil/exiftool/install.

html. For ExifTool, download the stand-alone executable and place the exiftool(-k).exe file in
a chosen directory. For convenience, you can change the name to exiftool.exe, as described in
the installation instructions. Finally, Python 2.7 can be downloaded from https://www.python.

org/downloads/windows/. Follow the instructions for installation. This procedure was tested on
Windows 7 and Windows 10.

Once all required software is installed, the function createImageSeq automatically converts each
video into an image sequence. First, place all movies that need to be converted in one directory.
Second, create a directory in which the image sequences should be saved. By default, directory
names ’Movies’ and ’ImageSequences’ are used, and can be set with arguments moviepath and
imagepath. If the directories containing the movies and image sequences are not located in the
working directory (which can be set with setwd()), provide the full path to the locations. The
function creates a temporary Python file (tmp.py) in path (which is by default set to the working
directory). Per video, a directory within imagepath is created, containing .png images. The function
will create directories that contain both the movie name and the recording date (if stored in the
raw movie file). Videos that are already converted and saved in imagepath will be skipped. To
convert a movie again to an image sequence, first manually delete the directory containing the
images.
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> createImageSeq(imagepath="ImageSequences", moviepath="Movies",

+ fps=15, nsec=2, ext="MTS",libavpath=NULL,

+ exiftoolpath=NULL, pythonpath=NULL)

With arguments fps the number of images per second can be set, and nsec defines the time
frame at the center of each movie file that is used. For instance, in a 10 seconds movie file, a nsec
of 2, will convert the portion of the movie after second 4 to second 6 into an image sequence. Make
sure that the extension set with ext matches the extension of the videos (e.g. AVI or MP4).

With arguments libavpath, exiftoolpath and pythonpath users can set the location of the required
executable files. Linux and Mac users can leave these arguments empty. Windows users will need
to specify the location, or add the path variables to the Environmental Variables. For exam-
ple, use libavpath=’C:/Users/USERNAME/libav/usr/bin/avconv.exe’, where USERNAME is your
username, or if libav is located elsewhere, supply the directory where you placed it. For ExifTool,
use for instance exiftoolpath=’exiftool(-k).exe’ (if saved in the working directory), and for Python
use pythonpath=’C:/Python27/python.exe’. How to add the path variables to the Environmental
Variables will depend on the version of Windows. See for instance this webpage for an explanation.

Alternatively, users can skip this step, and convert a video into a image sequence using other
software. Once this is done, you can continue with loadImages, as described in Section 2.
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