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Abstract

Unmarked aims to be a complete environment for the statistical analysis of data from surveys
of unmarked animals. Currently, the focus is on hierarchical models that separately model a latent
state (or states) and an observation process. This vignette provides a brief overview of the package
— for a more thorough treatment see [2]

1 Overview of unmarked

Unmarked provides methods to estimate site occupancy, abundance, and density of animals (or
possibly other organisms/objects) that cannot be detected with certainty. Numerous models are
available that correspond to specialized survey methods such as temporally replicated surveys, dis-
tance sampling, removal sampling, and double observer sampling. These data are often associated
with metadata related to the design of the study. For example, in distance sampling, the study de-
sign (line- or point-transect), distance class break points, transect lengths, and units of measurement
need to be accounted for in the analysis. Unmarked uses S4 classes to store data and metadata in
a way that allows for easy data manipulation, summarization, and model specification. Table 1 lists
the currently implemented models and their associated fitting functions and data classes.

Model Fitting Function Data Citation
Occupancy occu unmarkedFrameOccu [4]

Royle-Nichols occuRN unmarkedFrameOccu [8]
Point Count pcount unmarkedFramePCount [6]

Distance-sampling distsamp unmarkedFrameDS [7]
Generalized distance-sampling gdistsamp unmarkedFrameGDS [1]
Arbitrary multinomial-Poisson multinomPois unmarkedFrameMPois [5]

Colonization-extinction colext unmarkedMultFrame [3]
Generalized multinomial-mixture gmultmix unmarkedFrameGMM [5]

Table 1: Models handled by unmarked.

Each data class can be created with a call to the constructor function of the same name as
described in the examples below.

2 Typical unmarked session

The first step is to import the data into R, which we do below using the read.csv function. Next, the
data need to be formatted for use with a specific model fitting function. This can be accomplished
with a call to the appropriate type of unmarkedFrame. For example, to prepare the data for a
single-season site-occupancy analysis, the function unmarkedFrameOccu is used.

2.1 Importing and formatting data

> library(unmarked)

> wt <- read.csv(system.file("csv","widewt.csv", package="unmarked"))
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> y <- wt[,2:4]

> siteCovs <- wt[,c("elev", "forest", "length")]

> obsCovs <- list(date=wt[,c("date.1", "date.2", "date.3")],

ivel=wt[,c("ivel.1", "ivel.2", "ivel.3")])

> wt <- unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs)

> summary(wt)

unmarkedFrame Object

237 sites

Maximum number of observations per site: 3

Mean number of observations per site: 2.81

Sites with at least one detection: 79

Tabulation of y observations:

0 1 <NA>

483 182 46

Site-level covariates:

elev forest length

Min. :-1.436125 Min. :-1.265352 Min. :0.1823

1st Qu.:-0.940726 1st Qu.:-0.974355 1st Qu.:1.4351

Median :-0.166666 Median :-0.064987 Median :1.6094

Mean : 0.007612 Mean : 0.000088 Mean :1.5924

3rd Qu.: 0.994425 3rd Qu.: 0.808005 3rd Qu.:1.7750

Max. : 2.434177 Max. : 2.299367 Max. :2.2407

Observation-level covariates:

date ivel

Min. :-2.90434 Min. :-1.7533

1st Qu.:-1.11862 1st Qu.:-0.6660

Median :-0.11862 Median :-0.1395

Mean :-0.00022 Mean : 0.0000

3rd Qu.: 1.30995 3rd Qu.: 0.5493

Max. : 3.80995 Max. : 5.9795

NA's :42 NA's :46

Alternatively, the convenience function csvToUMF can be used

> wt <- csvToUMF(system.file("csv","widewt.csv", package="unmarked"),

long = FALSE, type = "unmarkedFrameOccu")

If not all sites have the same numbers of observations, then manual importation of data in long
format can be tricky. csvToUMF seamlessly handles this situation.

> pcru <- csvToUMF(system.file("csv","frog2001pcru.csv", package="unmarked"),

long = TRUE, type = "unmarkedFrameOccu")

To help stabilize the numerical optimization algorithm, we recommend standardizing the covari-
ates.

> obsCovs(pcru) <- scale(obsCovs(pcru))

2.2 Fitting models

Occupancy models can then be fit with the occu() function:

> fm1 <- occu(~1 ~1, pcru)

> fm2 <- occu(~ MinAfterSunset + Temperature ~ 1, pcru)

> fm2

Call:

occu(formula = ~MinAfterSunset + Temperature ~ 1, data = pcru)

Occupancy:
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Estimate SE z P(>|z|)

1.54 0.292 5.26 1.42e-07

Detection:

Estimate SE z P(>|z|)

(Intercept) 0.2098 0.206 1.017 3.09e-01

MinAfterSunset -0.0855 0.160 -0.536 5.92e-01

Temperature -1.8936 0.291 -6.508 7.60e-11

AIC: 356.7591

Here, we have specified that the detection process is modeled with the MinAfterSunset and
Temperature covariates. No covariates are specified for occupancy here. See ?occu for more details.

2.3 Back-transforming parameter estimates

Unmarked fitting functions return unmarkedFit objects which can be queried to investigate the model
fit. Variables can be back-transformed to the unconstrained scale using backTransform. Standard
errors are computed using the delta method.

> backTransform(fm2, 'state')

Backtransformed linear combination(s) of Occupancy estimate(s)

Estimate SE LinComb (Intercept)

0.823 0.0425 1.54 1

Transformation: logistic

The expected probability that a site was occupied is 0.823. This estimate applies to the hypothetical
population of all possible sites, not the sites found in our sample. For a good discussion of population-
level vs finite-sample inference, see Royle and Dorazio [9] page 117. Note also that finite-sample
quantities can be computed in unmarked using empirical Bayes methods as demonstrated at the end
of this document.

Back-transforming the estimate of ψ was easy because there were no covariates. Because the
detection component was modeled with covariates, p is a function, not just a scalar quantity, and
so we need to be provide values of our covariates to obtain an estimate of p. Here, we request the
probability of detection given a site is occupied and all covariates are set to 0.

> backTransform(linearComb(fm2, coefficients = c(1,0,0), type = 'det'))

Backtransformed linear combination(s) of Detection estimate(s)

Estimate SE LinComb (Intercept) MinAfterSunset Temperature

0.552 0.051 0.21 1 0 0

Transformation: logistic

Thus, we can say that the expected probability of detection was 0.552 when time of day and
temperature are fixed at their mean value. A predict method also exists, which can be used to
obtain estimates of parameters at specific covariate values.

> newData <- data.frame(MinAfterSunset = 0, Temperature = -2:2)

> round(predict(fm2, type = 'det', newdata = newData, appendData=TRUE), 2)

Predicted SE lower upper MinAfterSunset Temperature

1 0.98 0.01 0.93 1.00 0 -2

2 0.89 0.04 0.78 0.95 0 -1

3 0.55 0.05 0.45 0.65 0 0

4 0.16 0.03 0.10 0.23 0 1

5 0.03 0.01 0.01 0.07 0 2

Confidence intervals are requested with confint, using either the asymptotic normal approximation
or profiling.

> confint(fm2, type='det')
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0.025 0.975

p(Int) -0.1946871 0.6142292

p(MinAfterSunset) -0.3985642 0.2274722

p(Temperature) -2.4638797 -1.3233511

> confint(fm2, type='det', method = "profile")

Profiling parameter 1 of 3 ... done.

Profiling parameter 2 of 3 ... done.

Profiling parameter 3 of 3 ... done.

0.025 0.975

p(Int) -0.1929210 0.6208837

p(MinAfterSunset) -0.4044794 0.2244221

p(Temperature) -2.5189984 -1.3789261

2.4 Model selection and model fit

Model selection and multi-model inference can be implemented after organizing models using the
fitList function.

> fms <- fitList('psi(.)p(.)' = fm1, 'psi(.)p(Time+Temp)' = fm2)

> modSel(fms)

nPars AIC delta AICwt cumltvWt

psi(.)p(Time+Temp) 4 356.76 0.00 1.0e+00 1.00

psi(.)p(.) 2 461.00 104.25 2.3e-23 1.00

> predict(fms, type='det', newdata = newData)

Predicted SE lower upper

1 0.98196076 0.01266193 0.9306044 0.99549474

2 0.89123189 0.04248804 0.7763166 0.95084836

3 0.55225129 0.05102660 0.4514814 0.64890493

4 0.15658708 0.03298276 0.1021713 0.23248007

5 0.02718682 0.01326263 0.0103505 0.06948653

The parametric bootstrap can be used to check the adequacy of model fit. Here we use a χ2

statistic appropriate for binary data.

> chisq <- function(fm) {

umf <- getData(fm)

y <- getY(umf)

y[y>1] <- 1

sr <- fm@sitesRemoved

if(length(sr)>0)

y <- y[-sr,,drop=FALSE]

fv <- fitted(fm, na.rm=TRUE)

y[is.na(fv)] <- NA

sum((y-fv)^2/(fv*(1-fv)), na.rm=TRUE)

}

> (pb <- parboot(fm2, statistic=chisq, nsim=100, parallel=FALSE))

Call:

parboot(object = fm2, statistic = chisq, nsim = 100, parallel = FALSE)

Parametric Bootstrap Statistics:

t0 mean(t0 - t_B) StdDev(t0 - t_B) Pr(t_B > t0)

1 356 20.7 15.7 0.099

t_B quantiles:

0% 2.5% 25% 50% 75% 97.5% 100%

t*1 301 314 325 332 343 373 401

t0 = Original statistic compuated from data

t_B = Vector of bootstrap samples

We fail to reject the null hypothesis, and conclude that the model fit is adequate.
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2.5 Derived parameters and empirical Bayes methods

The parboot function can be also be used to compute confidence intervals for estimates of derived
parameters, such as the proportion of sites occupied PAO =

∑
i
zi where zi is the true occurrence

state at site i, which is unknown at sites where no individuals were detected. The “colext” vignette
shows examples of using parboot to obtain confidence intervals for such derived quantities. An alter-
native way achieving this goal is to use empirical Bayes methods, which were introduced in unmarked

version 0.9-5. These methods estimate the posterior distribution of the latent variable given the data
and the estimates of the fixed effects (the MLEs). The mean or the mode of the estimated posterior
distibution is referred to as the empirical best unbiased predictor (EBUP), which in unmarked can
be obtained by applying the bup function to the estimates of the posterior distributions returned by
the ranef function. The following code returns the estimate of PAO and a 90% confidence interval.

> re <- ranef(fm2)

> EBUP <- bup(re, stat="mode")

> CI <- confint(re, level=0.9)

> rbind(PAO = c(Estimate = sum(EBUP), colSums(CI)) / 130)

Estimate 5% 95%

PAO 0.8076923 0.7384615 0.9923077

Note that this is similar, but slightly lower than the population-level estimate of ψ obtained above.
A plot method also exists for objects returned by ranef, but distributions of binary variables are

not so pretty. Try it out on a fitted abundance model instead.
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