
utiml: Utilities for multi-label learning
Adriano Rivolli

2016-04-07

Version: 0.1.0.9000

The utiml package is a framework to support multi-label processing, like Mulan on Weka. It is simple to use
and extend. This tutorial explain the main topics related with the utiml package. More details and examples
are available on utiml repository.

Note: Currently, just few one-agains-all transformation methods are available, but in the future we intend

remove this note and have a full range of multi-label classification methods. If you want to contribute with

your code or your tallent, read the last section about how to contribute.

1. Introduction

The general prupose of utiml is be an alternative to processing multi-label in R. The main methods available
on this package are organized in the groups:

• Classification methods
• Evaluation methods
• Pre-process utilities
• Sampling methods
• Threshold methods

The utiml package needs of the mldr package to handle multi-label datasets. It will be installed together
with the utiml1.

The installation process is similar to other packages available on CRAN:

install.packages("utiml")

After installed, you can now load the utiml package (The mldr package will be also loaded):

library("utiml")

The utiml brings a synthetic multi-label dataset called toyml, all examples illustrated in this tutorial use
it. To understand how to load your own dataset, we suggest the read of mldr documentation. The toyml

contains 100 instances, 10 features and 5 labels, its prupose is to be used for small tests and examples.

head(toyml)

In the following section, an overview of how to conduct a multi-label experiment are explained. Next, we
explores each group of methods and its particularity. Finally, how to extend the utiml is aborded and
illustrated, then the final considerations are made.

1You may also be interested in mldr.datasets

1

https://github.com/rivolli/utiml
https://cran.r-project.org/web/packages/mldr/index.html
https://cran.r-project.org/web/packages/mldr/index.html
https://cran.r-project.org/web/packages/mldr.datasets/index.html

2. Overview

After load the multi-label dataset some data processing may be necessary. The pre-processing methods
are utilities that manipulate the mldr datasets. Suppose that we want to normalize the attributes values
(between 0 and 1), we can do:

mytoy <- normalize_mldata(toyml)

Next, we want to stratification the dataset in two partitions (train and test), containing 65% and 35% of
instances respectively, then we can do:

ds <- create_holdout_partition(mytoy, c(train=0.65, test=0.35), "iterative")

Now, the ds object has two elements ds$train and ds$test, where the first will be used to create a model
and the second to test the model. For example, using the Binary Relevance multi-label method with the base
classifier Random Forest2, we can do:

brmodel <- br(ds$train, "RF", seed=123)

prediction <- predict(brmodel, ds$test)

The prediction is an object of class mlresult that contains the probability (also called confidence or score)
and the bipartitions values:

head(as.bipartition(prediction))

head(as.probability(prediction))

head(as.ranking(prediction))

A threshold strategy can be applied and generate a refined prediction:

newpred <- rcut_threshold(prediction, 2)

Now we can evaluate the model and compare if the use of MCUT threshold improve the results:

result <- multilabel_evaluate(ds$tes, prediction, "bipartition")

thresres <- multilabel_evaluate(ds$tes, newpred, "bipartition")

measures <- c("accuracy", "F1", "precision", "recall", "subset-accuracy")

round(cbind(Default=result, RCUT=thresres), 3)

3. Pre-processing

The pre processing methods were developed to facilitate some operation with the multi-label data. All
pre-processing methods receive a mldr dataset and return other mldr dataset. You can use them as needed.

Here, a overview of the pre-processing methods:

2Requires the randomForest package.

2

https://cran.r-project.org/web/packages/randomForest/

Fill sparce data

mdata <- fill_sparce_mldata(toyml)

Remove unique attributes

mdata <- remove_unique_attributes(toyml)

Remove the attributes "iatt8", "iatt9" and "ratt10"

mdata <- remove_attributes(toyml, c("iatt8", "iatt9", "ratt10"))

Remove labels with less than 10 positive or negative examples

mdata <- remove_skewness_labels(toyml, 10)

Remove the labels "y2" and "y3"

mdata <- remove_labels(toyml, c("y2", "y3"))

Remove the examples without any labels

mdata <- remove_unlabeled_instances(toyml)

Replace nominal attributes

mdata <- replace_nominal_attributes(toyml)

Normalize the predictive attributes between 0 and 1

mdata <- normalize_mldata(mdata)

4. Sampling

4.1 Subsets

If you want to create a specific or a random subset of a dataset, you can use the methods create_subset

and create_random_subset, respectively. In the first case, you should specify which rows and optionally
attributes, do you want. In the second case, you just define the number of instances and optionally the
number of attributes.

Create a subset of toyml dataset with the even instances and the first five attributes

mdata <- create_subset(toyml, seq(1, 100, 2), 1:5)

Create a subset of toyml dataset with the ten first instances and all attributes

mdata <- create_subset(toyml, 1:10)

Create a random subset of toyml dataset with 30 instances and 6 attributes

mdata <- create_random_subset(toyml, 30, 6)

Create a random subset of toyml dataset with 7 instances and all attributes

mdata <- create_random_subset(toyml, 7)

4.2 Holdout

To create two or more partitions of the dataset, we use the method create_holdout_partition. The
first argument is a mldr dataset, the second is the size of partitions and the third is the partition method.
The options are: random, iterative and stratified. The iterative is a stratification by label and the
stratified is a stratification by labelset. The return of the method is a list with the names defined by the
second parameter. See some examples:

3

Create two equal partitions using the 'iterative' method

toy <- create_holdout_partition(toyml, c(train=0.5, test=0.5), "iterative")

toy$train and toy$test is a mldr object

Create three partitions using the 'random' method

toy <- create_holdout_partition(toyml, c(a=0.4, b=0.3, c=0.3))

Use toya, toyb and toy$c

Create two partitions using the 'stratified' method

toy <- create_holdout_partition(toyml, c(0.6, 0.4), "stratified")

Use toy[[1]] and toy[[2]]

4.3 k-Folds

Finally, to run a k-fold cross validation we can use the create_kfold_partition. The return of this method
is an object of type kFoldPartition that will be used with the method partition_fold to create the
datasets:

Create 3-fold object

kfcv <- create_kfold_partition(toyml, k=3, "iterative")

result <- lapply(1:3, function (k) {

toy <- partition_fold(kfcv, k)

model <- br(toy$train, "RF")

predict(model, toy$test)

})

Create 5-fold object and use a validation set

kfcv <- create_kfold_partition(toyml, 5, "stratified")

result <- lapply(1:5, function (k) {

toy <- partition_fold(kfcv, k, has.validation=TRUE)

model <- br(toy$train, "RF")

list(

validation = predict(model, toy$validation),

test = predict(model, toy$test)

)

})

5. Classification Methods

The multi-label classification is a supervised learning task that seeks to learn and predict one or more labels
together. This task can be grouped in: problem transformation and algorithm adaptation. Next, we provide
more details about the methods and their specifities.

5.1 Transformation methods and Base Learners

The transformation methods require a base learner (binary or multi-class) and use their predictions to
compose the multi-label result. In the utiml package there are some default base learners that are accepted,
but if you need another you can easily developement your own3.

3see the section Create a new base Learner

4

Each base learner requires a specific package, you need to install manually this packages, because they are
not installed together with utiml. The follow base learners are supported:

Use Name Package Call

CART Classification and regression trees rpart rpart::rpart(. . .)
C5.0 C5.0 Decision Trees and Rule-Based Models C50 C50::C5.0(. . .)
J48 Java implementation of the C4.5 RWeka and rJava RWeka::J48(. . .)
KNN K Nearest Neighbor kknn kknn::kknn(. . .)
MAJORITY Majority class prediction - -
NB Naive Bayes e1071 e1071::naiveBayes(. . .)
RANDOM Random prediction - -
RF Random Forest randomForest randomForest::randomForest(. . .)
SVM Support Vector Machine e1071 e1071::svm(. . .)

To realize a classification first is necessary create a multi-label model, the available methods are:

Method Name Approach

br Binary Relevance (BR) one-agains-all
brplus BR+ one-agains-all; stacking
cc Classifier Chains one-agains-all; stacking
ctrl ConTRolled Label correlation exploitation (CTRL) one-agains-all; binary-ensemble
dbr Dependent Binary Relevance (DBR) one-agains-all; stacking
ebr Ensemble of Binary Relevance (EBR) one-agains-all; ensemble
ecc Ensemble of Classifier Chains (ECC) one-agains-all; ensemble; stacking
mbr Meta-Binary Relevance (MBR or 2BR) one-agains-all; stacking
ns Nested Stacking (NS) one-agains-all; stacking
prudent Pruned and Confident Stacking Approach (Prudent) one-agains-all; binary-ensemble; stacking
rdbr Recursive Dependent Binary Relevance (RDBR) one-agains-all; stacking

The first and second parameters of each multi-label method is always the same: The multi-label dataset and
the base classifier, respectively. However, they may have specific parameters, examples:

#Classifier chain with a specific chain

ccmodel <- cc(toyml, "J48", chain = c("y5", "y4", "y3", "y2", "y1"))

Ensemble with 5 models using 60% of sampling and 75% of attributes

ebrmodel <- ebr(toyml, "C5.0", m = 5, subsample=0.6, attr = 0.75)

Beyond the parameters of each multi-label methods, you can define the parameters for the base method, like
this:

Specific parameters for SVM

brmodel <- br(toyml, "SVM", gamma = 0.1, scale=FALSE)

Specific parameters for KNN

ccmodel <- cc(toyml, "KNN", c("y5", "y4", "y3", "y2", "y1"), k=5)

Specific parameters for Random Forest

ebrmodel <- ebr(toyml, "RF", 5, 0.6, 0.75, proximity=TRUE, ntree=100)

After build the model, To predict new data use the predict method. Here, some predict methods require
specific arguments and you can assign arguments for the base method too. For default, all base learner will

5

predict the probability of prediciton, then do not use these parameters. Instead of, use the probability

parameter defined by the multi-label prediction method.

Predict the BR model

result <- predict(brmodel, toyml)

Specific parameters for KNN

result <- predict(ccmodel, toyml, kernel="triangular", probability = FALSE)

Specific parameters for ebr predict method

result <- predict(ebrmodel, toyml, vote.schema = "avg", probability = TRUE)

An object of type mlresult is the return of predict method. It always contains the bipartitions and the
probabilities values. So you can use: as.bipartition, as.probability and as.ranking for specific values.

5.2 Algorithm adapatation

Any method available yet!

5.3 Seed and Multicores

Almost all multi-label methods can run in parallel, but it requires the installation of parallel package. The
train and prediction methods receive a parameter called cores that specify the number of cores used to run the
method. For some multi-label methods are not possible running in multi-core, then read the documentation
of each method, for more details4.

Running Binary Relevance method using 4 cores

brmodel <- br(toyml, "SVM", cores=4)

prediction <- predict(brmodel, toyml, cores=4)

If you need of reproducibility, you can set a specific seed:

Running Binary Relevance method using 4 cores

brmodel <- br(toyml, "SVM", cores=4, seed=1984)

prediction <- predict(brmodel, toyml, seed=1984, cores=4)

6. Thresholds

The threshold methods receive a mlresult object and return a new mlresult, except for scut that returns
the threshold values. These methods, change mainly the bipartitions values using the probabilities values.

Use a fixed threshold for all labels

newpred <- fixed_threshold(prediction, 0.4)

Use a specific threshold for each label

newpred <- fixed_threshold(prediction, c(0.4, 0.5, 0.6, 0.7, 0.8))

Use the MCut approch to define the threshold

newpred <- mcut_threshold(prediction)

4Base learner J48 do not work very well with multicore

6

Use the PCut threshold

newpred <- pcut_threshold(prediction, ratio=0.65)

Use the RCut threshold

newpred <- rcut_threshold(prediction, k=3)

Choose the best threshold values based on a Mean Squared Error

thresholds <- scut_threshold(prediction, toyml, cores = 5)

newpred <- fixed_threshold(prediction, thresholds)

#Predict only the labelsets present in the train data

newpred <- subset_correction(prediction, toyml)

7. Evaluation

To evaluate multi-label models you can use the method multilabel_evaluate. There are two ways of call
this method:

toy <- create_holdout_partition(toyml)

brmodel <- br(toy$train, "SVM")

prediction <- predict(brmodel, toy$test)

Using the test dataset and the prediction

result <- multilabel_evaluate(toy$test, prediction)

print(round(result, 3))

accuracy average-precision coverage F1

0.583 0.858 1.900 0.721

hamming-loss macro-AUC macro-F1 macro-precision

0.213 0.640 0.337 0.297

macro-recall margin-loss micro-AUC micro-F1

0.392 0.933 0.804 0.729

micro-precision micro-recall one-error precision

0.729 0.729 0.133 0.733

ranking-loss recall subset-accuracy

0.167 0.794 0.100

Build a confusion matrix

confmat <- multilabel_confusion_matrix(toy$test, prediction)

result <- multilabel_evaluate(confmat)

print(confmat)

Multi-label Confusion Matrix

##

Absolute Matrix:

Expected_1 Expected_0 TOTAL

Prediction_1 43 16 59

Predicion_0 16 75 91

TOTAL 59 91 150

##

7

Proportinal Matrix:

Expected_1 Expected_0 TOTAL

Prediction_1 0.287 0.107 0.393

Predicion_0 0.107 0.500 0.607

TOTAL 0.393 0.607 1.000

##

Label Matrix

TP FP FN TN Correct Wrong %TP %FP %FN %TN %Correct %Wrong

y1 0 0 6 24 24 6 0.00 0.00 0.20 0.80 0.80 0.20

y2 23 6 1 0 23 7 0.77 0.20 0.03 0.00 0.77 0.23

y3 0 1 6 23 23 7 0.00 0.03 0.20 0.77 0.77 0.23

y4 20 9 0 1 21 9 0.67 0.30 0.00 0.03 0.70 0.30

y5 0 0 3 27 27 3 0.00 0.00 0.10 0.90 0.90 0.10

MeanRanking MeanScore

y1 4.30 0.15

y2 1.47 0.72

y3 4.53 0.15

y4 1.63 0.69

y5 3.07 0.20

The confusion matrix summarizes a lot of data, and can be merged. For example, using a k-fold experiment:

kfcv <- create_kfold_partition(toyml, k=3)

confmats <- lapply(1:3, function (k) {

toy <- partition_fold(kfcv, k)

model <- br(toy$train, "RF")

multilabel_confusion_matrix(toy$test, predict(model, toy$test))

})

result <- multilabel_evaluate(merge_mlconfmat(confmats))

Its possible choose which measures will be computed:

Example-based measures

result <- multilabel_evaluate(confmat, "example-based")

print(names(result))

[1] "accuracy" "F1" "hamming-loss" "precision"

[5] "recall" "subset-accuracy"

Subset accuracy, F1 measure and hamming-loss

result <- multilabel_evaluate(confmat, c("subset-accuracy", "F1", "hamming-loss"))

print(names(result))

[1] "F1" "hamming-loss" "subset-accuracy"

Ranking and label-basedd measures

result <- multilabel_evaluate(confmat, c("label-based", "ranking"))

print(names(result))

8

[1] "average-precision" "coverage" "macro-AUC"

[4] "macro-F1" "macro-precision" "macro-recall"

[7] "margin-loss" "micro-AUC" "micro-F1"

[10] "micro-precision" "micro-recall" "one-error"

[13] "ranking-loss"

To see all the supported measures you can try

multilabel_measures()

[1] "accuracy" "all" "average-precision"

[4] "bipartition" "coverage" "example-based"

[7] "F1" "hamming-loss" "label-based"

[10] "macro-AUC" "macro-based" "macro-F1"

[13] "macro-precision" "macro-recall" "margin-loss"

[16] "micro-AUC" "micro-based" "micro-F1"

[19] "micro-precision" "micro-recall" "one-error"

[22] "precision" "ranking" "ranking-loss"

[25] "recall" "subset-accuracy"

8. How to Contribute

The utiml repository is available on (https://github.com/rivolli/utiml). If you want to contribute with the
development of this package, contact us and you will be very welcome.

Please, report any bugs or suggestions on CRAN mail or git hub page.

9

https://github.com/rivolli/utiml

	1. Introduction
	2. Overview
	3. Pre-processing
	4. Sampling
	4.1 Subsets
	4.2 Holdout
	4.3 k-Folds

	5. Classification Methods
	5.1 Transformation methods and Base Learners
	5.2 Algorithm adapatation
	5.3 Seed and Multicores

	6. Thresholds
	7. Evaluation
	8. How to Contribute

