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1 Introduction

The aim of this tutorial is to show how to implement the method to calculate
dissimilarities between communities presented in [De Cáceres et al., 2013].
This method allows incorporating both the structure and the composition
of the community in the dissimilary measurement. The functions needed to
carry out computations have been included in package vegclust so we start
by loading the package:

> library(vegclust)

2 Post-fire vegetation regeneration data

In order to illustrate the method we will use a stratified vegetation data set
containing data from 96 stands. The data was obtained to investigate pat-
terns vegetation regeneration three years after the impact of a wildfire. Data
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were collected in 2012 by Miquel De Caceres and Albert Petit in Horta de
Sant Joan (Catalonia, Spain). The R object is of class stratifiedvegdata
(actually a list).

> data(medreg)

> class(medreg)

[1] "stratifiedvegdata" "list"

> length(medreg)

[1] 96

The dataset contains 96 stands (list elements), each of them a data.frame
where rows correspond to broad plant functional groups (Pine trees, Oak
trees, Tall shrubs and small trees, Scrubs and small shrubs and Grass) and
columns correspond to vegetation strata (1 to 7). The upper heights of the
vegetation strata are the following (in cm.) vector:

> strataUp = c(20,50,100,300,600,1200,2400)

And the width (range of heights) of each stratum is:

> strataWidths = c(20,30,50,200,300,600,1200)

Species abundance values are percentage cover values estimated using cover
classes:

> medreg[[1]]

1 2 3 4 5 6 7

Pine trees 0.0 0.0 0 0 0 0 0

Quercus trees 12.5 25.0 0 0 0 0 0

Tall shrubs and small trees 0.0 62.5 25 0 0 0 0

Scrubs and small shrubs 12.5 37.5 0 0 0 0 0

Grass 50.0 0.0 0 0 0 0 0

The data is read as follows. Shrubs reaching stratum 3 (50 - 100 cm) had
a cumulative cover of 25%, while shrubs reaching only stratum 2 (20 - 50
cm) had a cumulative cover of 62.5%. Thus, the observers grouped plants
according to their height and functional group, and estimated the cover for
those groups of plants.
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3 Cummulative abundance profiles

The cumulative abundance profile (CAP) is a function that takes a value of
size as input (here the size is a vegetation stratum) and returns the cum-
mulative abundance of organisms (here the cumulative cover value) whose
size is equal to or larger than the input value. In our case, the CAP function
is the cummulative cover of plants reaching the current stratum or higher
strata. Calculations are made using function CAP() of vegclust:

> medreg.CAP <- CAP(medreg)

Note that a different CAP is calculated for each functional group and plot.
The structure of the resulting R object is very similar to the stratified data:

> class(medreg.CAP)

[1] "CAP" "list"

> length(medreg.CAP)

[1] 96

If we inspect the first element of the list, we can see the difference between
the original data and the cumulative abundance profile.

> medreg.CAP[[1]]

1 2 3 4 5 6 7

Pine trees 0.0 0.0 0 0 0 0 0

Quercus trees 37.5 25.0 0 0 0 0 0

Tall shrubs and small trees 87.5 87.5 25 0 0 0 0

Scrubs and small shrubs 50.0 37.5 0 0 0 0 0

Grass 50.0 0.0 0 0 0 0 0

Moreover, it is possible to graphically display the CAP of a given stand (it
may become difficult to interpret when the number of species is large). For
example, we can display the CAP for each functional group of the first stand
(plots="1"):

> plot(medreg.CAP, plots="1", sizes=strataUp, xlab="Height (cm)",

+ ylab="Cumulative percent cover")

> legend("topright", col=1:5, lty=1,

+ legend=c("Pines","Oaks","Tall shrubs","Scrubs","Grass"),

+ bty="n")
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In this case the vegetation is a short but dense shrubland. Note that in the
plot we used strataUp to set the x-axis, so that real heights are adequately
represented.

4 Cummulative abundance surfaces

The concept of cummulative abundance profile can be extended to two struc-
tural variables, which leads to the concept of cummulative abundance surface
(CAS). The CAS is a function that takes a the values of two structural vari-
ables (size1 and size2 ) as input and returns the cummulative abundance of
organisms whose size is equal to or larger than the input values in one of
the structural variables or in both. In the case of forests, natural choices for
structural variables are tree diameter and tree height. Since our post-fire
regeneration dataset only includes one structural variable, we will illustrate
the concept of CASs using a synthetic data set consisting in a single plot
where the species identity, diameter and height of a hundred trees has been
measured. We start by building a tree-based data set:

> pl = rep(1,100) # All trees in the same plot

> sp = ifelse(runif(100)>0.5,1,2) # Random species identity (species 1 or 2)

> h=rgamma(100,10,2) # Heights (m)
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> d = rpois(100, lambda=h^2) # Diameters (cm)

> m = data.frame(plot=pl,species=sp, height=h,diameter=d)

In this example, we will use basal area (m2) as measure of abundance. We
calculate the area (in square meters) of each tree:

> m$ba = pi*(m$diameter/200)^2

This specific data looks as follows:

> print(head(m))

plot species height diameter ba

1 1 2 4.808080 22 0.038013271

2 1 1 2.280920 6 0.002827433

3 1 2 4.097345 19 0.028352874

4 1 2 4.360489 23 0.041547563

5 1 1 4.266322 14 0.015393804

6 1 2 3.336293 16 0.020106193

We start our analysis by defining two sets of size classes, one for height and
the other for diameter:

> heights = seq(0,4, by=.25)^2 # Quadratic classes

> diams = seq(0,130, by=5) # Linear classes

We are ready to stratify the data set:

> tree.S<-stratifyvegdata(m, sizes1=heights, sizes2=diams,

+ plotColumn = "plot", speciesColumn = "species",

+ size1Column = "height", size2Column = "diameter",

+ abundanceColumn = "ba")

Function stratifyvegdata is used to reshape data sets so that they are
suitable for calculating CAPs or CASs. In the case of one structural variable,
the function returns a list of matrices, one for each plot. The post-fire
vegetation data presented in the previous section is an example of this. In
the case of two structural variables, the stratifyvegdata returns a list of
three-dimensional arrays, one for each plot. The cummulative abundance
surface is then calculated using function CAS:

> tree.CAS <- CAS(tree.S)

We can plot the surface corresponding to each species as follows:

> par(mfrow=c(2,1), mar=c(4,5,2,1))

> plot(tree.CAS, species=1, sizes1=heights[-1], xlab="height (m)",

+ ylab="diameter (cm)", sizes2=diams[-1], zlab="Basal area (m2)",
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+ zlim = c(0,6), main="Species 1")

> plot(tree.CAS, species=2, sizes1=heights[-1], xlab="height (m)",

+ ylab="diameter (cm)", sizes2=diams[-1], zlab="Basal area (m2)",

+ zlim = c(0,6), main = "Species 2")
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One nice property of CAS is that its marginal distributions are CAPs. This
can be easily shown if we compare the marginal CAP for height:

> print(CASmargin(tree.CAS, margin=1))

$`1`
(0,0.0625] (0.0625,0.25] (0.25,0.562] (0.562,1] (1,1.56]

1 4.291416 4.291416 4.291416 4.291416 4.291416

2 4.951150 4.951150 4.951150 4.951150 4.951150

(1.56,2.25] (2.25,3.06] (3.06,4] (4,5.06] (5.06,6.25]

1 4.291416 4.291416 4.288588 4.139520 3.686345

2 4.951150 4.950836 4.924761 4.716944 4.001839

(6.25,7.56] (7.56,9] (9,10.6] (10.6,12.2] (12.2,14.1] (14.1,16]

1 3.166882 1.357639 0 0 0 0

2 3.396690 2.090494 0 0 0 0

attr(,"class")

[1] "CAP" "list"

with the CAP directly build using heights:

> tree.S2<-stratifyvegdata(m, sizes1=heights, plotColumn = "plot",

+ speciesColumn = "species", size1Column = "height",

+ abundanceColumn = "ba")

> print(CAP(tree.S2))

$`1`
(0,0.0625] (0.0625,0.25] (0.25,0.562] (0.562,1] (1,1.56]

1 4.291416 4.291416 4.291416 4.291416 4.291416

2 4.951150 4.951150 4.951150 4.951150 4.951150

(1.56,2.25] (2.25,3.06] (3.06,4] (4,5.06] (5.06,6.25]

1 4.291416 4.291416 4.288588 4.139520 3.686345

2 4.951150 4.950836 4.924761 4.716944 4.001839

(6.25,7.56] (7.56,9] (9,10.6] (10.6,12.2] (12.2,14.1] (14.1,16]

1 3.166882 1.357639 0 0 0 0

2 3.396690 2.090494 0 0 0 0

attr(,"class")

[1] "CAP" "list"

Finally, compare the previous three-dimensional figures, with the marginal
CAP plots for diameters and heights:

> par(mfrow=c(2,1), mar=c(4,5,2,1))

> plot(CASmargin(tree.CAS,margin=1), plots=1, sizes=heights[-1],

+ xlab="height (m)", ylab="Basal area (m2)", ylim = c(0,7))
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> plot(CASmargin(tree.CAS,margin=2), plots=1, sizes=diams[-1],

+ xlab="diameter (cm)", ylab="Basal area (m2)", ylim = c(0,7))
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5 Dissimilarities in structure and composition

Although CAPs can be used to graphically display the structure and com-
position of vegetation stands, the whole point of defining the CAP function
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was to allow comparisons between stands. Returning to the post-fire vegeta-
tion regeneration data, ee can calculate dissimilarities for all pairs of stands,
thus obtaining a square and symmetric matrix with dissimilarity values:

> medreg.D = vegdiststruct(medreg.CAP, method="bray",

+ classWeights=strataWidths)

In the above sentence we forced strata to have different weight, according
to the range of heights that each stratum occupies. There are different
alternatives with respect to the dissimilarity index. In our case we chose the
CAP generalization of Bray-Curtis [De Cáceres et al., 2013]. If we want to
know, for example, the dissimilarity between stands ‘1’ and ‘2’ we simply
write:

> as.matrix(medreg.D)[1,2]

[1] 0.2713178

When calculating dissimilarities it is possible to transform the CAP values
in order to prevent large abundance values to have an undue influence in the
analysis. In our case we choose to take the square root of cumulative cover
values:

> medreg.Dsqrt = vegdiststruct(medreg.CAP, method="bray",

+ classWeights=strataWidths, transform="sqrt")

We can use metric multidimensional scaling to represent the distances be-
tween stands obtained in both cases:

> par(mfrow=c(2,1), mar=c(4,5,2,1))

> X<-cmdscale(medreg.D, k=2)

> plot(X, xlab="MDS 1", ylab="MDS 2", asp=1,

+ main="Cover untransformed", cex=0.5)

> Xsqrt<-cmdscale(medreg.Dsqrt, k=2)

> plot(Xsqrt, xlab="MDS 1", ylab="MDS 2", asp=1,

+ main="Cover sqrt-transformed", cex=0.5)
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Note that the differences between the two ordination plots are remarkable.

6 Classification of vegetation stands

In this section we use the square-root transformed dissimilarities between
vegetation stands to obtain a classification of the stands in terms of their
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structure and composition. If you are not familiarized with non-hierarchical
clustering, you can read the tutorial about vegclust package. We start
by setting the number of clusters to be found (nclusters) and the size of
clusters (dnoise, a parameter used to leave stands that are far from all
group prototypes unclassified):

> nclusters = 6

> dnoise = 0.40

We call function vegclust using the clustering method HNCdd, which indi-
cates (a) hard clustering, (b) medoids as prototypes, and (c) noise clustering
(i.e. excluding outliers in a special class called noise class):

> vc<-vegclustdist(medreg.Dsqrt, mobileMemb = nclusters,

+ method="HNCdd", dnoise=dnoise, nstart=100)

With nstart=100 we indicate that the algorithm should be run 100 times
starting from random seeds. This is advisable in order to maximize the
chance of having suboptimal solutions. The prototypes identified by the
algorithm are the following medoids (these are indices of stands in medreg):

> medoids<-vc$mobileCenters

> print(medoids)

[1] 20 24 7 92 4 38

The number of stands belonging to each cluster can be found using:

> cluster<-defuzzify(vc)$cluster

> table(cluster)

cluster

M1 M2 M3 M4 M5 M6 N

20 24 11 9 9 13 10

Note that, because of the model chosen (and with the parameter dnoise),
there are a number of stands that are left unclassified (i.e. those assigned
to class ‘N’). A useful way to display the results of the cluster analysis is by
showing the stand memberships to clusters in the ordination:

> clNum = as.numeric(as.factor(cluster))

> plot(Xsqrt, xlab="MDS 1", ylab="MDS 2",

+ pch=clNum, col=clNum)

> legend("topleft", col=1:(nclusters+1), pch=1:(nclusters+1),

+ legend=levels(as.factor(cluster)), bty="n")
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While the stands belonging to true clusters are more or less close, those that
are assigned to the noise can be far appart, because the only fact that makes
them be in the same class is their lack of membership for true clusters.

To facilitate the interpretation of the clusters we can extract the cumu-
lative abundance profiles of the cluster medoids:

> CAPm = CAPcenters(medreg.CAP, vc)

> names(CAPm)

[1] "M1" "M2" "M3" "M4" "M5" "M6"

For example, we can inspect the structure and composition of group M4:

> round(CAPm$M4, dig=1)

1 2 3 4 5 6 7

Pine trees 0.0 0.0 0.0 0.0 0 0 0

Quercus trees 25.0 25.0 0.0 0.0 0 0 0

Tall shrubs and small trees 117.5 112.5 87.5 12.5 0 0 0

Scrubs and small shrubs 25.0 25.0 0.0 0.0 0 0 0

Grass 37.5 0.0 0.0 0.0 0 0 0

The following displays graphically the CAPs of all six groups of vegetation
stands (code not shown):
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