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1 Introduction

Here we present BaSTA (Bayesian Survival Trajectory Analysis; Colchero et al. (2012)), a free

open-source R package (R Development Core Team 2011) that implements the hierarchical Bayesian

model described by Colchero & Clark (2012). This package facilitates drawing inference on age-

specific mortality from capture-recapture/recovery (CRR) data when a large proportion (or all) of

the records have missing information on times of birth and death. In addition, BaSTA allows users

to evaluate the effect of continuous and categorical covariates on mortality. To cite this package,

please refer to the paper by Colchero, Jones & Rebke (2012) published in Methods in Ecology and

Evolution. This document is based on the Supporting Information (appendix) published with that

paper.
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Figure 1: Work flow of BaSTA’s main function basta() after data input and argument definition

from the user. During the initial “Error check” sequence, 1 implies that no errors were detected

and 0 means otherwise. In the later case, the function is stopped and an error message is printed

explaining the error and suggesting solutions.

BaSTA consists of a set of routines initialised by the user through data input and the definition

of basic model settings (Fig. 1). The package then verifies that the data has the right format,

and that the user-defined model settings are consistent (i.e. initial error checks). If no errors are

found, the model runs one or multiple Markov Chain Monte Carlo (MCMC) algorithms (for a

full description of the algorithm see Colchero & Clark 2012). After the MCMC runs are finished,

the package calculates a range of diagnostics that include measures of serial autocorrelation on
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parameter traces, parameter update rates, convergence and preliminary model selection.

The package’s main function, called basta(), defines its own S3 method (Chambers & Hastie

1992) and outputs an object of class basta which can then be explored with the generic plot(),

summary() and print() functions. The package also includes two data formatting functions,

CensusToCaptHist() and MakeCovMat(), and a data checking function DataCheck().

2 Step-by-step tutorial

2.1 Data formatting

BaSTA’s input data format is compatible with other programs that deal with CRR data sets

such as MARK (White & Burnham 1999). The data need to be configured as a table in data

frame format where each row corresponds to one individual. The first column corresponds to the

individual IDs while the second and third columns give the years of birth and death, respectively.

Next, T columns (T = study span), one per study year, are filled with the individual recapture

histories. Thus, every year an individual is detected the corresponding column is filled with 1

and 0 otherwise. The years of birth and death are not coded as detection. If covariates are to

be included, additional columns can be added, with one column per covariate. In the following

sections we show how to use BaSTA’s built-in functions to organize the input data.

2.1.1 Constructing the capture history matrix: CensusToCaptHist()

Commonly, capture-recapture datasets are stored in what we call “census” or “survey” tables.

Typically, these tables have one row for each time an individual is observed, and include one

column for individual IDs and one column for detection date. Often, these tables are stored in a

spreadsheet software (e.g. Excel). We recommend that users save it either in tab delimited text

(.txt) or comma separated value (.csv) formats so they can be easily read into R. Below is the code

to read a table that was previously saved in Excel as tab delimited text:

> censusMat <- read.table("location of census table.txt",

+ sep = "\t", header = TRUE)

If the table was saved in .csv format, it can be read as:

> censusMat <- read.csv("location of census table.csv", header = TRUE)

Here is an example of a simulated dataset in a table called censusMat which includes five individuals

captured between 1990 and 1995. We can use the command head() to look at the first few rows

of data:

> head(censusMat)

ID Year

[1,] 1 1990

[2,] 1 1992

[3,] 1 1993

[4,] 2 1991

[5,] 2 1992

[6,] 2 1994
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This data can then be used as the input for the CensusToCaptHist() function in order to

construct the recapture matrix required by BaSTA:

> Y <- CensusToCaptHist(ID = censusMat[, 1], d = censusMat[, 2])

The ID argument in the CensusToCaptHist() function, takes a vector with the individual IDs,

in this case the first column in censusMat, along with the d argument, which is a vector of dates

on which each individual was detected (i.e. the second column in censusMat), and argument

dformat which is (optionally) used to specify the date format used in d. In case the d argument

is a character string based on a date format, or of class date, the minimun time interval can be

specified with argument timeInt, which takes a single character value, with the folowing options:

“Y” for years (default); “M” for months; “W” for weeks; and “D” for days.

The resulting capture history matrix (Y) looks like this:

ID 1990 1991 1992 1993 1994 1995

1 1 1 0 1 1 0 0

2 2 0 1 1 0 1 0

3 3 0 0 1 1 0 0

4 4 0 1 1 0 0 1

5 5 0 0 0 1 0 1

2.1.2 Matrix for times of birth and death

In addition, a two column matrix for the years of birth and death needs to be appended to the

capture-history matrix. Once again, this matrix can be read from any spreadsheet format after

being saved in .txt or .csv format (see example above). This matrix should contain the years of

birth and death when these are known, or 0 otherwise. For example, below we show a hypothetical

matrix called birthDeath for the five individuals in the preceeding example:

> print(birthDeath)

ID Birth Death

[1,] 1 0 1995

[2,] 2 1990 0

[3,] 3 1991 1994

[4,] 4 0 0

[5,] 5 0 0

In this case, the years of birth for individuals 1, 4, and 5 are unknown, while years of death are

only known for individuals 1 and 3.

2.1.3 Constructing the covariate matrix: MakeCovMat()

Covariates can be set up in the apropriate format with the MakeCovMat() function. Below is a

typical input table (rawCovMat) from a simulated dataset for each of the five individuals described

above.

> print(rawCovMat)

4



ID sex weight

1 1 f 8.235717

2 2 f 9.188451

3 3 m 12.031590

4 4 f 10.953258

5 5 m 7.702844

The example data frame rawCovMat contains one column for sex, a categorical covariate, and one

for a continuous covariate, weight in this case. This data frame can then be rearranged into a

suitable format for BaSTA with the MakeCovMat() function as follows:

> covMat <- MakeCovMat(x = c("sex", "weight"), data = rawCovMat)

which produces the following matrix:

ID sexf sexm weight

1 1 1 0 8.235717

2 2 1 0 9.188451

3 3 0 1 12.031590

4 4 1 0 10.953258

5 5 0 1 7.702844

The x argument, which is used to specify which covariates should be included in the covariate

matrix, can take the form of either a character string vector (as in the example above), or with a

numerical vector that indicates the column numbers in the data frame data that should be used

for inference. If all of the columns are to be included, the x argument can be ignored and only the

data argument needs to be specified. Alternatively, x can be of class formula, as we show in the

following example:

> covMat <- MakeCovMat(x = ~ sex + weight + sex:weight, data = rawCovMat)

which produces the following matrix:

ID sexf sexm weight sexm:weight

1 1 1 0 8.235717 0.000000

2 2 1 0 9.188451 0.000000

3 3 0 1 12.031590 12.031590

4 4 1 0 10.953258 0.000000

5 5 0 1 7.702844 7.702844

In this case, we are also including an interaction between sex and weight. For further details on

how to specify a formula in R, type help(formula) in the R console.

2.1.4 Merging the capture history, birth-death and covariate matrices

If the order of the rows in the birth-death, the capture-history and the covariate matrices is the

same (i.e. each row corresponds to the same individual), then these three matrices can be merged

very simply as follows:

> inputMat <- as.data.frame(cbind(birthDeath, Y[, -1], covMat[, -1]))

> print(inputMat)
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ID Birth Death 1990 1991 1992 1993 1994 1995 sexf sexm weight sexm:weight

1 1 0 1995 1 0 1 1 0 0 1 0 8.235717 0.000000

2 2 1990 0 0 1 1 0 1 0 1 0 9.188451 0.000000

3 3 1991 1994 0 0 1 1 0 0 0 1 12.031590 12.031590

4 4 0 0 0 1 1 0 0 1 1 0 10.953258 0.000000

5 5 0 0 0 0 0 1 0 1 0 1 7.702844 7.702844

In this case, the [,-1] notation is used to remove the first columns of the Y and covMat

matrices, which correspond to the individual IDs and are not required in the input data. If the

order of the rows in these matrices is not the same, then function merge can be used (twice) to

collate all three matrices as follows:

> inputMat <- merge(birthDeath, Y, by.x = "ID", by.y = "ID")

> inputMat <- merge(inputMat, covMat, by.x = "ID", by.y = "ID")

> print(inputMat)

ID Birth Death 1990 1991 1992 1993 1994 1995 sexf sexm weight sexm:weight

1 1 0 1995 1 0 1 1 0 0 1 0 8.235717 0.000000

2 2 1990 0 0 1 1 0 1 0 1 0 9.188451 0.000000

3 3 1991 1994 0 0 1 1 0 0 0 1 12.031590 12.031590

4 4 0 0 0 1 1 0 0 1 1 0 10.953258 0.000000

5 5 0 0 0 0 0 1 0 1 0 1 7.702844 7.702844

The merge function must be used twice because three matrices need to be combined.

2.2 Verifying data consistency: function DataCheck()

After the final data frame is constructed, its consistency can be verified with the DataCheck()

function. This function performs a range of diagnostic checks on the data frame (Table 3). Below

is an example with the simulated dataset described above:

> newData <- DataCheck(inputMat, studyStart = 1990,

+ studyEnd = 1995, autofix = rep(1, 7),

+ silent = FALSE)

Arguments studyStart and studyEnd correspond to the years of start and end of the study. If the

silent argument is set as FALSE, then the function prints out the following range of descriptive

statistics about the dataset:

No problems were detected with the data.

*DataSummary*

- Number of individuals = 5

- Number with known birth year = 2

- Number with known death year = 2

- Number with known birth

AND death years = 1

- Total number of detections
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in recapture matrix = 13

- Earliest detection time = 1990

- Latest detection time = 1995

- Earliest recorded birth year = 1990

- Latest recorded birth year = 1991

- Earliest recorded death year = 1994

- Latest recorded death year = 1995

DataCheck() searches the dataset for seven different types of error (Table 3), which can be

fixed using argument autofix. Although this can save a lot of time and effort to the user, we

strongly advise users to verify the reported errors and make an informed decision on how to fix

them.

Table 1: Description of error types in datasets as defined in the DataCheck() function and the

actions that are taken based on the values provided in argument autofix.

Error type Description autofix code

type 1 Deaths occurring before the

study starts

0 = do nothing; 1 = remove from dataframe

type 2 No birth/death AND no recap-

tures

0 = do nothing; 1 = remove from dataframe

type 3 Births recorded after death 0 = do nothing; 1 = replace death records with

0; 2 = replace birth records with 0; 3 = replace

both birth and death records with 0

type 4 Recaptures after death 0 = do nothing; 1 = remove spurious post-

death observations

type 5 Recaptures before birth 0 = do nothing; 1 = remove observations that

pre-date year of birth

type 6 Year of birth is not a zero in the

recapture matrix

0 = do nothing; 1 = replace birth year element

of observation matrix with 0

type 7 Year of death is not a zero in the

recapture matrix

0 = do nothing; 1 = replace death year ele-

ment of observation matrix with 0

When DataCheck finds errors, it prints a report on the console and it stores the ID’s of the

records in which the errors were detected. Below is one row of a new dataset (inputMatErr) almost

identical to inputMat but that has been modified to include one record (ID = 3) where the death

year is recorded to occur before the year of birth (i.e. a type 3 error):

ID Birth Death 1990 1991 1992 1993 1994 1995 sexf sexm weight sexm:weight

3 3 1991 1990 0 0 1 1 0 0 0 1 12.03159 12.03159

When evaluated with DataCheck, the function prints the folowing error message:

> newData <- DataCheck(inputMatErr, studyStart = 1990,

+ studyEnd = 1995, autofix = rep(1,7), silent = TRUE)
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The following rows have birth dates that are later than their death dates:

[1] 3

The death records have been replaced with 0.

2.3 Setting up the analysis: function basta()

After the data have been formatted and verified for consistency, the analysis can be performed

with the basta() function. In this section we explain the arguments used in this function and we

provide background information on the models used in BaSTA. This function can be run, in it’s

simplest form, by specifying only the dataset (with the object argument), and the start and end

times of the study with the studyStart and studyEnd arguments. Thus, a simple analysis for

the simulated dataset described above (i.e. inputMat) can be performed by entering the following

command:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995)

All of the other arguments in the basta() function have default values that allow users to run

the model without specifying any additional information. The default values can be viewed in

the basta() help file by typing ?basta in the R console. In order to take advantage of the full

functionality of BaSTA we recommend that users explore different models and shapes, as well as

a variety of covariate structures (if they have covariates). Below we provide a description of the

mortality models implemented in BaSTA and we outline how to set up an analysis to test a range

of models and covariate data structures.

2.4 Choosing mortality models: arguments model and shape

The model argument can be used to choose between four basic mortality functions: a) ‘EX’; expo-

nential (Cox & Oakes 1984); b) ‘GO’ (default); Gompertz (Gompertz 1825, Pletcher 1999); c) ‘WE’;

Weibull (Pinder III et al. 1978); and d) ‘LO’; logistic (Pletcher 1999). Each one of these functions

can describe different trends in age-specific mortality, giving BaSTA considerable flexibility when

estimating these vital rates (Fig. 2). For a detailed explanation on the properties of these models

please refer to section ‘Technical details’ in this document.

H
az

ar
d 

ra
te

Age

simple Makeham bathtub

a b c d

Figure 2: Mortality rates, µ(x|θ), resulting from the four basic models included in BaSTA:

a) exponential; b) Gompertz; c) Weibull; and d) logistic. The three different lines in each plot

(except in a) show examples of the shapes that can be tested with BaSTA, namely: ‘simple’;

‘Makeham’; and ‘bathtub’. Modified from Colchero, Jones & Rebke (2012).

In addition, BaSTA allows users to extend these basic functions in order to examine more

complex shapes. Specifically, three general forms can be defined with the shape argument: i)
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‘simple’ (the default shape), which uses only the basic functions defined in Table ??; ii) ‘Makeham’

(Pletcher 1999), which adds a constant to the mortality rate; and iii) ‘bathtub’ (e.g. Siler 1979),

which consists of adding a declining Gompertz function and a constant to the basic mortality rate.

The resulting shapes can be seen in Fig. 2. Clearly, the number of parameters used in each of

these combinations varies. In table 2 we show the number of parameters for the different types of

mortality models and shape combinations.

Table 2: Number of parameters for all combinations of mortality models and shapes that can

be tested in BaSTA.

Model simple Makeham bathtub

Exponential 1 – –

Gompertz 2 3 5

Weibull 2 3 5

Logistic 3 4 6

For example, to run the analysis using a logistic mortality rate with a bathtub shape, the

specifications for the function should be:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ model = "LO", shape = "bathtub")

If the model or the shape are misspecified, the analysis is stopped and an error message is

printed that clarifies which argument values should be used.

2.4.1 Conditioning on a minimum age: the minAge argument

In some species, the fates of individuals younger than a certain age are typically unknown. For ex-

ample, after fledging, juvenile seabirds disperse for several years, during which they can experience

high mortality. After this time, they may settle in a different colony from the colony where they

were born, and are thus never detected again. Consequently, uncertainty in the fate of juveniles

can inflate early mortality estimates. Accordingly, BaSTA allows users to condition the analysis to

survival after a minimum age with argument minAge. For example, to evaluate a simple Gompertz

model on individuals older than 2, the code should be:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ minAge = 2)

2.4.2 Defining covariate structure: the covarsStruct argument

BaSTA also allows users to define three optional structures to evaluate the effect of covariates on

age patterns of survival with argument covarsStruct: i) fused (default), in which covariates are

separated into continuous and categorical types, where the former are included into a proportional

hazards framework (Klein & Moeschberger 2003), and the latter are included as linear functions

of the survival parameters, in an analogous manner to the way they are handled in generalised

linear models (GLMs); ii) prop.haz, where all covariates are included under a proportional hazards

structure; and iii) all.in.mort, where all covariates are evaluated as linear functions of the survival
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parameters. The latter structure is currently only implemented with a simple-shaped Gompertz

model. In the proportional hazards model, differences between parameter estimates (e.g. differences

between the parameter for two sexes) are expressed as gamma parameters.

Figure 3 shows a schematic representation of the potential effects that can be depicted based

on the choice of covariate structure with one categorical covariate (e.g. sex) and one continuous

covariate (e.g. weight) using a Gompertz model.
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Figure 3: Simulated log-mortality as a function of sex and weight based on the choice of

covariate structure: a) fused; b) prop.haz; and c) all.in.mort.

For instance, the specifications for an analysis with all covariates included in the mortality

functions should be:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ covarsStruct = "all.in.mort")

2.4.3 Defining recapture probabilities: argument recaptTrans

Currently BaSTA allows the user to test if recapture probability should be constant (default) or

if it should be time dependent. This could be useful when the recapture effort is not sustained

equally in time. For example, to specify that recapture probabilities changed after year 1993 for

our simulated data set above, argument recaptTrans needs a two element vector with the first

element being the first year of the study (in this case 1990) and the second element the year when

recapture probabilities changed (i.e. 1993). Thus, the model can be specified as:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ recaptTrans = c(1990, 1993))

2.4.4 MCMC general settings: the niter, burnin and thinning arguments

The number of MCMC steps can be specified with the niter argument, while the burn-in sequence

and the thinning interval are controlled with arguments burnin and thinning, respectively. The

burn-in corresponds to the initial sequence before parameters reach convergence, which is commonly

discarded, leaving the remaining steps to calculate a range of diagnostics and other statistics (Clark

2007). The thinning interval is set in order to reduce serial autocorrelation between consecutive

parameter estimates. Based on the results from Colchero & Clark (2012), the default values are

niter = 50, 000 steps, burnin = 5, 001 and thinning = 50. Still, we recommend that these values

should be tested before the final simulations are implemented. Thus, for a short run of 1,000

iterations with a burnin of 100 steps and a thinned sequence every 10 steps, the model can be

specified as:
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> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ niter = 1000, burnin = 100, thinning = 10)

2.4.5 Initial parameters, jumps and priors

Initial parameters are simply the starting point for the parameter chains. Then, the jump values

define the standard deviation of the distribution from which BaSTA’s MCMC algorithm draws the

next value in the chain. Larger values will result in a faster traversal of parameter space. If the

values are too small parameter space is not efficiently searched, but if the values are too high there

is a risk that the optimal values might be missed.

Prior values reflect our belief in the values of the parameters. Ideally, the values selected for

the priors will have no strong effect on the outcome of the analysis (i.e. the posterior parameter

estimates).

Although BaSTA has default values for these initial parameters, jump standard deviations,

and priors, they can be modified with the arguments thetaStart and gammaStart for mortality

and proportional hazards initial parameters, and the corresponding thetaJumps, thetaPriorMean,

thetaPriorSd, gammaJumps, gammaPriorMean and gammaPriorSd arguments for jumps and priors.

It is important to note that the length of the vector or the dimensions of the matrices specified

should correspond to the number of parameters for each combination of model, shape, and co-

varsStruct. For instance, if a logistic (‘LO’) model with ‘simple’ shape (i.e. 3 parameters, Table

2) and a ‘mixed’ covariate structure is chosen, and two categorical and two continuous covariates

are included in the dataset, thetaStart, thetaJumps, thetaPriorMean and thetaPriorSd should

be vectors of length 3 (if we want the same set of parameters for both categorical covariates), or of

length 6 (if we want a single set of parameters per covariate), or matrices of dimension 2×3. Also,

gammaStart, gammaJumps, gammaPriorMean and gammaPriorSd, should all be vectors of length 2

for this example. For example, if we wish to specify the jumps for the mortality parameters in this

example, we could type:

> out <- basta(object = inputMat, studyStart = 1990,

+ studyEnd = 2000, model = "LO",

+ shape = "simple", thetaJumps = c(0.1, 0.1, 0.1))

or, alternatively we could create a matrix of jumps of the form:

> new.jumps <- matrix(c(rep(0.1, 3), rep(0.2, 3)), nrow = 2,

+ ncol = 3, byrow = TRUE,

+ dimnames = list(c('cov1', 'cov2'),

+ paste("b", 0:2, sep="")))

where each column corresponds to a mortality parameter, and each row to a covariate, of the form:

b0 b1 b2

cov1 0.1 0.1 0.1

cov2 0.2 0.2 0.2

which then we could use for the thetaJumps argument:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ model = "LO", shape = "simple", thetaJumps = new.jumps)
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2.4.6 Updating jumps: argument updateJumps

A difficult issue with hierarchical models that use Metropolis algorithms to sample parameters is to

find the appropriate combination of jump standard deviations for these parameters. BaSTA uses

this type of sampling scheme for all mortality parameters. A new feature in BaSTA is the possibility

of asking the algorithm to find the right combination of jump sd’s without having to manually run

it several times before finding the jumps. This can be achieved by setting argument updateJumps

as TRUE. If argument updateJumps is TRUE, then BaSTA runs an initial simulation only to find the

appropriate combination of jumps. This initial run implements an Adaptive Metropolis algorithm

as proposed by Roberts & Rosenthal (2009) which runs for 10,000 steps after which it starts the

main simulation(s) that will constitute the final results of the analysis. For example, to set this

routine on our hypothetical dataset and to run the model for two simulations in parallel, the code

can be specified as folows:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ model = "LO", shape = "simple", nsim = 2,

+ parallel = TRUE, ncpus = 2, updateJumps = TRUE)

As you can note, it is not necesary to specify jumps, however, if the user has a general idea

of where the jumps should lie, then they can be specified. This will only change the initial values

where the jumps are tested. If, on the other hand, only one simulation has been specified (i.e.

argument nsim = 1) then BaSTA runs the update jump routine on the main simulation. This can

be useful in case the user wants to find appropriate jumps manually.

2.4.7 Multiple runs: arguments nsim, parallel and ncpus

To ensure that parameter estimates derived from MCMC routines converge appropriately, it is

necessary to run several simulations from over-dispersed initial parameter values (Gelman et al.

2004). By doing this, it is possible to confirm whether the parameter chains (i.e. traces) all

converge to the same final values, irrespective of the initial parameters. BaSTA allows users to

run multiple simulations by specifying the number of runs desired with nsim argument. Moreover,

to reduce the amount of computing time, BaSTA facilitates the performance of these multiple

runs in parallel using the snowfall package (Knaus 2010). This is achieved by setting the logical

argument parallel as ‘TRUE’. In addition, the number of cores used can be selected with argument

ncpus. If the package snowfall is not installed, or the argument parallel is set as ‘FALSE’, then

the multiple simulations are run in series. We strongly recommend running multiple simulations

in parallel, since this reduces computing time proportionally to the number of cpus used. To run

4 simulations in parallel on 4 cpus for a simple-shaped Gompertz model, the basta() function

should be specified as:

> out <- basta(object = inputMat, studyStart = 1990, studyEnd = 1995,

+ nsim = 4, parallel = TRUE, ncpus = 4)

2.5 Results

2.5.1 Model outputs

The output provided by the basta() function is a list object of class basta that includes a range

of diagnostics and results. This list includes summarized results in the form of coefficients (with
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standard errors and credible intervals), the raw traces from all runs, summarized values for times of

birth and death, and MCMC performance diagnostics such as convergence, parameter update rates

and serial autocorrelation within each parameter chain. General information on model settings as

specified by the user is also included, as well as estimates of model fit and parameter overlap for

categorical covariates. In addition, the data used in the model and optional outputs such as life

tables for each categorical covariate calculated from the estimated ages at death are also included.

2.5.2 Printing results: functions print() and summary()

BaSTA’s outputs can be explored using some of R’s generic functions. For instance, the basic

print() and summary() functions print a range of summary statistics and descriptions of the

models used for inference. Basic summary values can be visualized simply by typing the name of

the BaSTA output object into the R console, while more information can be obtained with the

summary() function. For example, here are the summary values for a simple-shaped Gompertz

analysis on the simulated dataset included in the package, with 4 parallel simulations:

> summary(sim1Out, digits = 3)

Call:

Model : 2

Shape : 1

Covars. structure : fused

Minimum age : 0

Cat. covars. : f, m

Cont. covars. : weight

Model settings:

niter burnin thinning nsim

20000 5001 20 4

Jumps and priors:

NULL

Mean Kullback-Leibler

discrepancy calibration (KLDC):

b0 b1

m - f 0.975 0.997

Coefficients:

Estimate StdErr Lower95%CI Upper95%CI SerAutocor UpdateRate

b0.f -3.858 0.2034 -4.256 -3.465 0.7286 0.248

b0.m -3.399 0.1684 -3.727 -3.068 0.6157 0.237

b1.f 0.160 0.0175 0.125 0.194 0.7749 0.258

b1.m 0.220 0.0195 0.181 0.256 0.6336 0.248

gamma.weight 0.368 0.0671 0.237 0.497 0.3452 0.212

pi.51 0.630 0.0101 0.610 0.649 0.0805 1.000

PotScaleReduc
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b0.f 1.010

b0.m 1.003

b1.f 1.008

b1.m 1.002

gamma.weight 1.007

pi.51 0.999

Convergence:

Appropriate convergence reached for all parameters.

DIC:

3601.972

2.5.3 Plotting results: function plot()

To visually verify that all parameter estimates have reached convergence, function plot() can be

used on the BaSTA output object. Here is an example with the same output described above:

> plot(out)

This produces a plot of traces for the mortality parameters as in Fig. 4.
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Figure 4: Traces for θ parameters (b0 and b1) on a simple Gompertz model with 4 parallel runs

and sex covariate.
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In this case, no additional arguments are required. To plot the traces of the proportional hazards

or recapture probability parameters or of the posterior chains, argument trace.name should be

specified, with values gamma, pi or post. For instance, here is the code to plot the traces of the

proportional hazards parameters:

> plot(out, trace.name = "gamma")

In addition, the predicted survival probabilities and mortality rate functions for the different

categorical covariates can be plotted by typing:

> plot(sim1Out, plot.trace = FALSE)

which produces Fig. 5.
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Figure 5: Survival and mortality trajectories from a simple Gompertz analysis with sex covari-

ate.

3 Technical details

3.1 Survival analysis and mortality models included in BaSTA

BaSTA uses the framework described by Colchero & Clark (2012), in which age-specific survival

trends and the latent (i.e. unknown) times of birth and death are estimated using parametric

functions for mortality (commonly expressed as the hazard rate) and survival probability. This

hazard rate or mortality is usually expressed as:
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µ(x|θ) =
Pr (x < X < x+ dx|X > x,θ)

dx
, (1a)

where x is age and X is a random variable for ages at death, while θ are the corresponding survival

parameters. From equation 1a, the following functions can be derived:

S(x|θ) = Pr (X > x) = exp

[
−
∫ x

0

µ(y|θ)dy

]
, (1b)

F (x|θ) = Pr (X < x) = 1− S(x|θ), (1c)

f(x|θ) = Pr (x < X < x+ dx) = µ(x|θ)S(x|θ), (1d)

where equation (1b) is the survival probability, (1c) is the the probability that death occurs before

age x (or cumulative density function, cdf), and (1d) is the probability density function (pdf) of

ages at death.

BaSTA includes four basic mortality functions : a) exponential (Cox & Oakes 1984); b) Gom-

pertz (Gompertz 1825, Pletcher 1999); c) Weibull (Pinder III et al. 1978); and d) logistic (Vaupel

et al. 1979, Pletcher 1999) (Table 3).

Table 3: Basic mortality and survival probability functions included in BaSTA.

Function
Mortality rate Survival probability

Parameters
µb(x|b) Sb(x|b)

Exponential b e−bx b > 0

Gompertz eb0+b1x exp
[
eb0

b1
(1− eb1x)

]
−∞ < b0, b1 <∞

Weibull b0 b1 (b1x)b0−1 exp
[
−(b1x)b0

]
b0, b1 > 0

Logistic eb0+b1x

1+b2
eb0
b1

(eb1x−1)

(
1 + b2

eb0

b1

(
eb1x − 1

))−1/b2
b0, b1, b2 > 0

Additional terms can be added to explore more complex shapes in the mortality function (see

Fig. 2). For example, a Makeham type of structure (Pletcher 1999) consists of adding a constant

to the mortality function such that:

µ0(x|b, c) = c+ µb(x|b), (2a)

S0(x|b, c) = e−cxSb(x|b), (2b)

with c > 0 if µ(x) is declining (i.e. dµ(x)
dx < 0) or c > −µ(0) otherwise. A family of bathtub shapes

can also be explored (e.g. Siler 1979). In BaSTA, these are constructed by adding a declining

Gompertz function and a constant to the basic mortality, which yields:

µ0(x|b,a, c) = ea0−a1x + c+ µb(x|b), (3a)

S0(x|b,a, c) = exp

[
ea0

a1
(e−a1x − 1)− cx

]
Sb(x|b), (3b)

with −∞ < a0 <∞ , a1 > 0, and c > − [ea0−a1xmin + µb(xmin|b)], where xmin is the age at which

equation 3a is at its lowest values (i.e. dµ(x)
dx = 0).
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3.2 General properties of the mortality models

Each of the mortality functions evaluated in BaSTA can describe different trends in age-specific

mortality (see Fig. 2). For example, the exponential model (EX), assumes that mortality is constant

with age, which translates into an exponential decay of the survival probability in equation 1b.

The Gompertz model depicts an exponential change in mortality. If the Gompertz rate pa-

rameter (b1 in Table 3 for Gompertz) is larger than 0, then mortality increases exponentially,

accelerating also exponentially. If the rate parameter is less than 0, then mortality decreases with

age, decelerating exponentially and if it is equal to 0, the model becomes a simple exponential

function (Fig. 6):

lim
x→∞

µ(x|b0, b1) =


∞ if b1 > 0

b0 if b1 = 0

0 if b1 < 0.

(4)

This function has been used to model age-patterns of mortality in a range of species including

primates (Bronikowski et al. 2011), as well as in wild ungulate populations (Gaillard et al. 2004).

Furthermore, it can be used to test hypotheses on declining mortality with age, also called“negative

senescence”(Vaupel et al. 2004). A risk of using the declining Gompertz model is that it can predict

immortal individuals (which are not biologically reasonable) because, as equation 4 shows, mortality

will tend towards 0. This problem can be solved by using a ‘Makeham’ structure (with the shape

argument), which will make the model tend to the c parameter, rather than 0 at advanced ages

(equation 2).

Figure 6: Mortality trajectories using a Gompertz function with varying b1 parameters.

The Weibull model is a power function which, depending on the values of the shape parameter

(b0 in Table 3 for Weibull), can show an accelerating increase, a decelerating increase, a decrease,

or constant mortality (Fig. 7):

lim
x→∞

µ(x|b0, b1) =


∞ if b0 > 2

b0b
b0
1 if 1 < b0 < 2

b1 if b0 = 1

0 if 0 < b0 < 1.

(5)

This model has been used on wild and captive bird populations (Ricklefs & Scheuerlein 2001)

and can also be used to investigate or describe declining mortality. Again, we strongly recommend

using a Makeham term to avoid the problem of potentially immortal individuals.
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Figure 7: Mortality trajectories using a Weibull function with varying b0 parameters.

The logistic model implemented in BaSTA depicts an initially exponential increase in mortality

that decelerates after an inflection age until it reaches a plateau. The b2 parameter describes the

degree of deceleration in mortality with age. When this parameter is equal to 0, the model becomes

a simple Gompertz model (Fig. 8).

Logistic models (which are also known as Perks models; Perks (1932)) are characterized a

slackening of mortality with advancing age, such that there is an asymptote or plateau at older ages

(Fig. 8). The models are usually formulated as an extension of the Gompertz-Makeham model but

with an extra term that governs the rate of decline and the level of the asymptote. The slackening

of mortality can be interpreted as a real phenomenon (i.e. an improvement in the individuals with

age; Pletcher 1999), or as an artifact caused by heterogeneity among individuals in the population

(Vaupel et al. 1979). Beard (1959) was the first to note that Perks’ model had a logistic form

(Perks (1932) does not describe them as such), and that it could arise from heterogeneity among

individuals in the population. He showed that if the individuals in the population were subject

to Makeham mortality, but with the initial mortality parameter varying according to a gamma

distribution, then the population-level average would be logistic in form. This result, a “Gamma-

Makeham” model, was later independently discovered and developed by Vaupel et al. (1979) in a

model he described as a “frailty model”.

Figure 8: Mortality trajectories using a logistic function with varying b2 parameters.
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3.3 Broken stick model for survival after a minimum age

As we mentioned above, BaSTA allows users to condition the analysis to survival after a minimum

age, xm. In this case, the model uses a ‘broken stick’ approach whereby early mortality (or fate)

is assumed to be exponential, such that µj(x|λ) = λ, with pdf fj(x|λ) = λe−λx and survival

Sj(x|λ) = e−λx. Thus, the final pdf of ages at death (the basis for the likelihood) is calculated as:

f(x|θ, λ) =

{
fj(x|λ) if x ≤ xm
Sj(xm|λ)fa(x− xm|θ) if x > xm,

(6)

where fa(x−xm|θ) is defined as in equations 1 to 3. It is important to stress that estimates of this

parameter λ reflect only the rate of return of juveniles to the study site. This parameter should

be used for inference on early mortality only when there is a high probability that non-returning

juveniles are dead.

3.4 Covariates in mortality models

Proportional hazards are constructed as:

µ(x|θ,η, z) = µ0(x|θ) exp
[
ηT z

]
, (7a)

S(x|θ,η, z) = S0(x|θ)exp[ηT z], (7b)

where z is a vector of covariates, ηT is a transposed vector of proportional hazards parameters and

θ is a vector of survival parameters as defined in table 3 and equations 2 and 3.

Below is an example of how to incorporate covariates as a linear function of survival parameters

with a Gompertz mortality:

µ(x|θ) = exp


b0︷ ︸︸ ︷(

αT z
)

+

b1︷ ︸︸ ︷(
βT z

)
x

 , (8)

where αT and βT are two transposed vectors of linear coefficients that link the covariates z with

the survival parameters b0 and b1 (for an extended example see Appendix S1 in Colchero & Clark

2012) such that θ = α ∪ β.

3.5 MCMC convergence diagnostic

After the MCMC algorithms are finished, a range of diagnostics are calculated from the parameter

chains. If multiple simulations were implemented and all of them ran to completion, then potential

scale reduction is calculated for each parameter to estimate convergence (Gelman et al. 2004). This

diagnostic is calculated as R̂ =
√
v̂+/W , where W is a measure of the within-sequence variance and

v̂+ is a weighted average of the between-sequence variance (B) and W . Convergence is attained

when R̂ is close to 1. As a rule of thumb, we have assigned an arbitrary upper bound of R̂ < 1.1

above which it is assumed that parameters have not reached convergence.

3.6 Model fit

If all parameters have converged, BaSTA calculates the deviance information criterion (DIC;

Spiegelhalter et al. 2002), which has been described as a measure of predictive power and a criterion

for model fit. DIC approximates the expected predictive deviance, and is calculated as:
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DIC = 2D̂avg(y)−Dθ̂(y),

where y denotes the observed data, D̂avg(y) is the mean discrepancy between the data and the

model as a function of the parameters θ, averaged over the posterior distribution, and Dθ̂(y) is

the discrepancy at the posterior mode (here represented by the point estimate θ̂). It is important

to realize that the use of DICs is still controversial and, therefore, the results should to be taken

with caution (see responses in Spiegelhalter et al. 2002). In order to improve the measure provided,

BaSTA’s DIC is calculated as an approximation of the group-marginalized DIC presented by Millar

(2009).

3.7 Parameter comparison for categorical covariates

BaSTA also includes a diagnostic based on Kullback-Leibler discrepancies (KLD; Kullback &

Leibler 1951, McCulloch 1989), that provides the user with a measure of how differently (or

similarly) each categorical covariate affects survival. For instance, we may wish to evaluate the

differences in survival between males and females with a simple Gompertz model, such that the

mortality rate is calculated as in equation 8. To illustrate the calculation of KLD, lets take b0,

for which the resulting ‘sub-parameters’ would be αf and αm such that, for an individual i, we

have b0 = αfIi + αm(1− Ii), where Ii is an indicator function that assigns 1 if the individual is a

female and 0 otherwise. For each of these parameters, BaSTA produces a posterior distribution,

say Pf = p(αf | . . . ) and Pm = p(αm| . . . ), respectively. The KLD between these distributions is

calculated as:

K(Pf , Pm) =

∫ ∞
0

Pf log

(
Pf
Pm

)
dα. (9)

The result can be interpreted as how far off we would be if we tried to predict αm from the

posterior distribution of αf . If both distributions are identical, then K(Pf , Pm) = 0, suggesting

that there is no distinction between males and females for b0; as the KLD values increase the higher

the discrepancy becomes. As can be inferred from equation 9, the relationship is asymmetric,

namely K(Pf , Pm) 6= K(Pm, Pf ).

To make KLD easier to interpret McCulloch (1989) therefore proposed a simple calibration of

the KLD values that reduces the asymmetry. This is as follows: Let k = K(Pf , Pm) and q(k) be a

calibration function such that

k = K(Pf , Pm)

= K(B(
1

2
), B(q(k))),

where B( 1
2 ) is a Bernouilli distribution for an event with probability 1/2 (i.e. same probability of

success and failure). This calibration is then calculated as:

q(k) =
(1 + (1− e−2k)

1
2 )

2
. (10)

Thus, q(k) ranges from 0.5 to 1, where a value of 0.5 means that the distributions are identical,

and 1 that there is no overlap between them.
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